Skip to main content
Erschienen in: Journal of Materials Science 17/2016

31.05.2016 | Original Paper

Copper–graphite composites: thermal expansion, thermal and electrical conductivities, and cross-property connections

Erschienen in: Journal of Materials Science | Ausgabe 17/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper focuses on thermal and electrical properties of copper–graphite composites. Copper–graphite composites in the range of 0–50 vol% of graphite were prepared from the mixture of copper and graphite powder by the powder metallurgy method. Such composites combine high thermal and electrical conductivities provided by copper matrix and low thermal expansion coefficient and lubricating properties due to the graphite phase. We model thermal and electrical conductivities and thermal expansion coefficient using methods of micromechanics in connection with the material microstructure and measure these quantities experimentally to compare with the results of modeling. Cross-property connections between thermal and electrical properties of the composites are established and experimentally verified.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Tong XC (2011) Advanced materials for thermal management of electronic packaging. Springer, New YorkCrossRef Tong XC (2011) Advanced materials for thermal management of electronic packaging. Springer, New YorkCrossRef
2.
Zurück zum Zitat Dorfman S, Fuks D (1996) Diffusivity of carbon in the copper matrix. Influence of alloying. Compos A Appl Sci Manuf 27(9):697–701CrossRef Dorfman S, Fuks D (1996) Diffusivity of carbon in the copper matrix. Influence of alloying. Compos A Appl Sci Manuf 27(9):697–701CrossRef
3.
4.
Zurück zum Zitat Kúdela S, Schweighofer A, Kunkela J (1992) Pseudoalloy-type composite materials produced by pressure infiltration. Compos Manuf 3(1):43–46CrossRef Kúdela S, Schweighofer A, Kunkela J (1992) Pseudoalloy-type composite materials produced by pressure infiltration. Compos Manuf 3(1):43–46CrossRef
5.
Zurück zum Zitat Emmer S, Bielek J, Havalda A (1993) Cooper-graphite composite material for application to sliding electrical contacts. Le Journal de Physique IV 3(C7):C7–C1799 Emmer S, Bielek J, Havalda A (1993) Cooper-graphite composite material for application to sliding electrical contacts. Le Journal de Physique IV 3(C7):C7–C1799
6.
Zurück zum Zitat Yasar I, Canakci A, Arslan F (2007) The effect of brush spring pressure on the wear behaviour of copper–graphite brushes with electrical current. Tribol Int 40(9):1381–1386CrossRef Yasar I, Canakci A, Arslan F (2007) The effect of brush spring pressure on the wear behaviour of copper–graphite brushes with electrical current. Tribol Int 40(9):1381–1386CrossRef
7.
Zurück zum Zitat Kováčik J, Emmer Š, Bielek J (2008) Effect of composition on friction coefficient of Cu–graphite composites. Wear 265(3):417–421CrossRef Kováčik J, Emmer Š, Bielek J (2008) Effect of composition on friction coefficient of Cu–graphite composites. Wear 265(3):417–421CrossRef
8.
Zurück zum Zitat Klement M, Guth G, Lott O, Nagel A, Schneider G (2015) Synthesis and quantitative characterization of novel copper-graphite composite materials for use as electrical sliding contacts. Pract Metallogr 52(1):21–37CrossRef Klement M, Guth G, Lott O, Nagel A, Schneider G (2015) Synthesis and quantitative characterization of novel copper-graphite composite materials for use as electrical sliding contacts. Pract Metallogr 52(1):21–37CrossRef
9.
Zurück zum Zitat Glatz J, Vrable DL (1993) Applications of advanced composites for satellite packaging for improved electronic component thermal management. Acta Astronaut 29(7):527–535CrossRef Glatz J, Vrable DL (1993) Applications of advanced composites for satellite packaging for improved electronic component thermal management. Acta Astronaut 29(7):527–535CrossRef
10.
Zurück zum Zitat Firkowska I, Boden A, Boerner B, Reich S (2015) The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites. Nano Lett 15(7):4745–4751CrossRef Firkowska I, Boden A, Boerner B, Reich S (2015) The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites. Nano Lett 15(7):4745–4751CrossRef
11.
Zurück zum Zitat Ling Z, Zhang Z, Shi G, Fang X, Wang L, Gao X, Fang Y, Xua T, Wang S, Liu X (2014) Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sustain Energy Rev 31:427–438CrossRef Ling Z, Zhang Z, Shi G, Fang X, Wang L, Gao X, Fang Y, Xua T, Wang S, Liu X (2014) Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renew Sustain Energy Rev 31:427–438CrossRef
12.
Zurück zum Zitat Korab J, Štefánik P, Kavecký Š, Šebo P, Korb G (2002) Thermal conductivity of unidirectional copper matrix carbon fibre composites. Compos A Appl Sci Manuf 33(4):577–581CrossRef Korab J, Štefánik P, Kavecký Š, Šebo P, Korb G (2002) Thermal conductivity of unidirectional copper matrix carbon fibre composites. Compos A Appl Sci Manuf 33(4):577–581CrossRef
13.
Zurück zum Zitat Hutsch T, Schubert T, Weißgärber T, Kieback B (2010) Innovative metal-graphite composites as thermally conducting materials. In Proceedings of the powder metallurgy world congress and exhibition. PM2010, pp. 361–368 Hutsch T, Schubert T, Weißgärber T, Kieback B (2010) Innovative metal-graphite composites as thermally conducting materials. In Proceedings of the powder metallurgy world congress and exhibition. PM2010, pp. 361–368
14.
Zurück zum Zitat Kováčik J, Emmer Š, Bielek J (2016) Cross-property connections for copper–graphite composites. Acta Mech 227(1):105–112CrossRef Kováčik J, Emmer Š, Bielek J (2016) Cross-property connections for copper–graphite composites. Acta Mech 227(1):105–112CrossRef
15.
Zurück zum Zitat Kováčik J, Bielek J (1996) Electrical conductivity of Cu/graphite composite material as a function of structural characteristics. Scripta Mater 35(2):151–156CrossRef Kováčik J, Bielek J (1996) Electrical conductivity of Cu/graphite composite material as a function of structural characteristics. Scripta Mater 35(2):151–156CrossRef
16.
Zurück zum Zitat Tritt TM (2004) Thermal conductivity: theory, properties, and applications. Springer Science & Business Media Tritt TM (2004) Thermal conductivity: theory, properties, and applications. Springer Science & Business Media
17.
Zurück zum Zitat Kachanov M, Sevostianov I (2005) On quantitative characterization of microstructures and effective properties. Int J Solids Struct 42(2):309–336CrossRef Kachanov M, Sevostianov I (2005) On quantitative characterization of microstructures and effective properties. Int J Solids Struct 42(2):309–336CrossRef
18.
Zurück zum Zitat Horii H, Nemat-Nasser S (1983) Overall moduli of solids with microcracks: load-induced anisotropy. J Mech Phys Solids 31(2):155–171CrossRef Horii H, Nemat-Nasser S (1983) Overall moduli of solids with microcracks: load-induced anisotropy. J Mech Phys Solids 31(2):155–171CrossRef
19.
Zurück zum Zitat Sevostianov I, Kachanov M (1999) Compliance tensors of ellipsoidal inclusions. Int J Fract 96(1):3–7CrossRef Sevostianov I, Kachanov M (1999) Compliance tensors of ellipsoidal inclusions. Int J Fract 96(1):3–7CrossRef
20.
Zurück zum Zitat Sevostianov I, Kachanov M (2002) Explicit cross-property correlations for anisotropic two-phase composite materials. J Mech Phys Solids 50(2):253–282CrossRef Sevostianov I, Kachanov M (2002) Explicit cross-property correlations for anisotropic two-phase composite materials. J Mech Phys Solids 50(2):253–282CrossRef
21.
Zurück zum Zitat Sevostianov I, Giraud A (2013) Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape. Int J Eng Sci 64:23–36CrossRef Sevostianov I, Giraud A (2013) Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape. Int J Eng Sci 64:23–36CrossRef
22.
Zurück zum Zitat Sevostianov I (2012) On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech Mater 45:20–33CrossRef Sevostianov I (2012) On the thermal expansion of composite materials and cross-property connection between thermal expansion and thermal conductivity. Mech Mater 45:20–33CrossRef
23.
Zurück zum Zitat Levin VM (1967) On the coefficients of thermal expansion of heterogeneous material. Mechanics of Solids 2:58–61. (English transl. of Izvestia AN SSSR, Mekhanika Tverdogo Tela) Levin VM (1967) On the coefficients of thermal expansion of heterogeneous material. Mechanics of Solids 2:58–61. (English transl. of Izvestia AN SSSR, Mekhanika Tverdogo Tela)
24.
Zurück zum Zitat Rosen BW, Hashin Z (1970) Effective thermal expansion coefficients and specific heats of composite materials. Int J Eng Sci 8(2):157–173CrossRef Rosen BW, Hashin Z (1970) Effective thermal expansion coefficients and specific heats of composite materials. Int J Eng Sci 8(2):157–173CrossRef
25.
Zurück zum Zitat Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50(3):481–505CrossRef Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50(3):481–505CrossRef
26.
Zurück zum Zitat Markov KZ (2000) Elementary micromechanics of heterogeneous media. In Heterogeneous media. Birkhäuser Boston, pp. 1–162 Markov KZ (2000) Elementary micromechanics of heterogeneous media. In Heterogeneous media. Birkhäuser Boston, pp. 1–162
27.
Zurück zum Zitat Sevostianov I, Kováčik J, Simančík F (2006) Elastic and electric properties of closed-cell aluminum foams: cross-property connection. Mater Sci Eng, A 420(1):87–99CrossRef Sevostianov I, Kováčik J, Simančík F (2006) Elastic and electric properties of closed-cell aluminum foams: cross-property connection. Mater Sci Eng, A 420(1):87–99CrossRef
28.
Zurück zum Zitat Sevostianov I, Kachanov M (2012) Effective properties of heterogeneous materials: proper application of the non-interaction and the “dilute limit” approximations. Int J Eng Sci 58:124–128CrossRef Sevostianov I, Kachanov M (2012) Effective properties of heterogeneous materials: proper application of the non-interaction and the “dilute limit” approximations. Int J Eng Sci 58:124–128CrossRef
29.
Zurück zum Zitat Chowdhury A, Christov CI (2010) Fast Legendre spectral method for computing the perturbation of a gradient temperature field in an unbounded region due to the presence of two spheres. Numer Methods Partial Differ Equ 26(5):1125–1145 Chowdhury A, Christov CI (2010) Fast Legendre spectral method for computing the perturbation of a gradient temperature field in an unbounded region due to the presence of two spheres. Numer Methods Partial Differ Equ 26(5):1125–1145
30.
Zurück zum Zitat Clausius R (1879) The mechanical theory of heat. Macmillan Clausius R (1879) The mechanical theory of heat. Macmillan
31.
Zurück zum Zitat Bruggeman DAG (1935) Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen. I. Dielectrizitätkonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Physik Leipzig 24:636–679 Bruggeman DAG (1935) Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen. I. Dielectrizitätkonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Physik Leipzig 24:636–679
32.
Zurück zum Zitat Bruggeman DAG (1937) Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen. III. Die elastische Konstanten der Quaiisotropen Mischkörper aus isotropen Substanzen. Ann Physik Leipzig 29:160–178 Bruggeman DAG (1937) Berechnung verschiedener physikalisher Konstanten von heterogenen Substanzen. III. Die elastische Konstanten der Quaiisotropen Mischkörper aus isotropen Substanzen. Ann Physik Leipzig 29:160–178
33.
Zurück zum Zitat Hashin Z (1988) The differential scheme and its application to cracked materials. J Mech Phys Solids 36(6):719–734CrossRef Hashin Z (1988) The differential scheme and its application to cracked materials. J Mech Phys Solids 36(6):719–734CrossRef
34.
Zurück zum Zitat Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574CrossRef
35.
Zurück zum Zitat Benveniste Y (1986) On the Mori-Tanaka’s method in cracked bodies. Mech Res Commun 13(4):193–201CrossRef Benveniste Y (1986) On the Mori-Tanaka’s method in cracked bodies. Mech Res Commun 13(4):193–201CrossRef
36.
Zurück zum Zitat Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford
37.
Zurück zum Zitat Bristow JR (1960) Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals. Br J Appl Phys 11(2):81CrossRef Bristow JR (1960) Microcracks, and the static and dynamic elastic constants of annealed and heavily cold-worked metals. Br J Appl Phys 11(2):81CrossRef
38.
Zurück zum Zitat Berryman JG, Milton GW (1988) Microgeometry of random composites and porous media. J Phys D Appl Phys 21(1):87CrossRef Berryman JG, Milton GW (1988) Microgeometry of random composites and porous media. J Phys D Appl Phys 21(1):87CrossRef
39.
Zurück zum Zitat Gibiansky LV, Torquato S (1993) Link between the conductivity and elastic moduli of composite materials. Phys Rev Lett 71(18):2927CrossRef Gibiansky LV, Torquato S (1993) Link between the conductivity and elastic moduli of composite materials. Phys Rev Lett 71(18):2927CrossRef
40.
Zurück zum Zitat Gibiansky LV, Torquato S (1995) Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials. Philos Trans R Soc Lond A Math Phys Eng Sci 353(1702):243–278CrossRef Gibiansky LV, Torquato S (1995) Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials. Philos Trans R Soc Lond A Math Phys Eng Sci 353(1702):243–278CrossRef
41.
Zurück zum Zitat Chen T (1993) Thermoelastictic properties and conductivity of composites reinforced by spherically anisotropic particles. Mech Mater 14:257–268CrossRef Chen T (1993) Thermoelastictic properties and conductivity of composites reinforced by spherically anisotropic particles. Mech Mater 14:257–268CrossRef
42.
Zurück zum Zitat Sevostianov I, Kachanov M (2008) Contact of rough surfaces: a simple model for elasticity, conductivity and cross-property connections. J Mech Phys Solids 56(4):1380–1400CrossRef Sevostianov I, Kachanov M (2008) Contact of rough surfaces: a simple model for elasticity, conductivity and cross-property connections. J Mech Phys Solids 56(4):1380–1400CrossRef
43.
Zurück zum Zitat Sevostianov I, Kachanov M (2009) Connections between elastic and conductive properties of heterogeneous materials. Adv Appl Mech 42:69–252CrossRef Sevostianov I, Kachanov M (2009) Connections between elastic and conductive properties of heterogeneous materials. Adv Appl Mech 42:69–252CrossRef
44.
Zurück zum Zitat Kunin IA (1983) Elastic medium with random fields of inhomogeneities. In Elastic media with microstructure II. Springer, Berlin, pp. 165–228 Kunin IA (1983) Elastic medium with random fields of inhomogeneities. In Elastic media with microstructure II. Springer, Berlin, pp. 165–228
45.
Zurück zum Zitat Kanaun SK, Levin VM (2008) Self-consistent methods for composites, Vol 1: static problems. Springer Kanaun SK, Levin VM (2008) Self-consistent methods for composites, Vol 1: static problems. Springer
46.
Zurück zum Zitat Kováčik J, Emmer Š (2011) Thermal expansion of Cu/graphite composites: effect of copper coating. Kovove Materialy 49:411–416 Kováčik J, Emmer Š (2011) Thermal expansion of Cu/graphite composites: effect of copper coating. Kovove Materialy 49:411–416
47.
Zurück zum Zitat Gillis PP (1984) Calculating the elastic constants of graphite. Carbon 22(4/5):387–391CrossRef Gillis PP (1984) Calculating the elastic constants of graphite. Carbon 22(4/5):387–391CrossRef
Metadaten
Titel
Copper–graphite composites: thermal expansion, thermal and electrical conductivities, and cross-property connections
Publikationsdatum
31.05.2016
Erschienen in
Journal of Materials Science / Ausgabe 17/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0067-5

Weitere Artikel der Ausgabe 17/2016

Journal of Materials Science 17/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.