Skip to main content
Erschienen in: Experimental Mechanics 4/2021

20.01.2021 | Research paper

Critical Evaluation of Spherical Indentation Stress-Strain Protocols for the Estimation of the Yield Strengths of Steels

verfasst von: S. Mohan, N. Millan-Espitia, M. Yao, N. V. Steenberge, S. R. Kalidindi

Erschienen in: Experimental Mechanics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Background

Accelerated development of advanced metals and alloys requires validated relationships between the high throughput indentation measurements and standardized tensile test protocols.

Objective

The main objective of this paper is to critically evaluate the quantitative relationships between the yield strengths measured in standard tensile tests and the indentation yield strengths obtained from the recently developed spherical indentation stress-strain protocols for a broad range of steels with varying properties and microstructures. The tensile yield strengths for the tested steels varied from 300 to 1400 MPa, providing the broadest experimental evaluation to date for the spherical indentation stress-strain protocols.

Methods

Standardized tension tests, standardized hardness measurements, and the recently developed spherical microindentation stress-strain protocols were employed on all the steels included in this study. The indentation stress-strain protocols provide a suitably normalized characterization of the material’s intrinsic mechanical response, when compared to standardized hardness measurements.

Results

It was found that the yield strengths estimated using the spherical indentation stress-strain protocols were within a 10% error. Furthermore, it was found that the tensile strengths estimated from the conventional hardness measurements exhibited higher error compared to those estimated from the spherical indentation stress-strain protocols.

Conclusions

Spherical indentation stress-strain protocols were able to predict tensile yield strengths. The role of sample thickness on the indentation measurements was specifically investigated and quantified, resulting in specific recommendation for the minimum sample size for the indentation measurements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dwivedi A, Wyrobek TJ, Warren OL, Hattrick-Simpers J, Famodu OO, Takeuchi I (2008) High-throughput screening of shape memory alloy thin-film spreads using nanoindentation. J Appl Phys 104(7):073501CrossRef Dwivedi A, Wyrobek TJ, Warren OL, Hattrick-Simpers J, Famodu OO, Takeuchi I (2008) High-throughput screening of shape memory alloy thin-film spreads using nanoindentation. J Appl Phys 104(7):073501CrossRef
2.
Zurück zum Zitat Gong X, Mohan S, Mendoza M, Gray A, Collins P, Kalidindi SR (2017) High throughput assays for additively manufactured Ti-Ni alloys based on compositional gradients and spherical indentation. Integrating Mater Manuf Innov 6(3):218–228CrossRef Gong X, Mohan S, Mendoza M, Gray A, Collins P, Kalidindi SR (2017) High throughput assays for additively manufactured Ti-Ni alloys based on compositional gradients and spherical indentation. Integrating Mater Manuf Innov 6(3):218–228CrossRef
3.
Zurück zum Zitat Thienhaus S, Naujoks D, Pfetzing-Micklich J, König D, Ludwig A (2014) Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: a case study for the system Ni–Al. ACS Comb Sci 16(12):686–694CrossRef Thienhaus S, Naujoks D, Pfetzing-Micklich J, König D, Ludwig A (2014) Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: a case study for the system Ni–Al. ACS Comb Sci 16(12):686–694CrossRef
4.
Zurück zum Zitat Khosravani A, Cecen A, Kalidindi SR (2017) Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels. Acta Mater 123:55–69CrossRef Khosravani A, Cecen A, Kalidindi SR (2017) Development of high throughput assays for establishing process-structure-property linkages in multiphase polycrystalline metals: application to dual-phase steels. Acta Mater 123:55–69CrossRef
5.
Zurück zum Zitat Meier MAR, Schubert US (2004) Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials. J Mater Chem 14(22):3289–3299CrossRef Meier MAR, Schubert US (2004) Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials. J Mater Chem 14(22):3289–3299CrossRef
6.
Zurück zum Zitat Tsai P, Flores KM (2016) High-throughput discovery and characterization of multicomponent bulk metallic glass alloys. Acta Mater 120:426–434CrossRef Tsai P, Flores KM (2016) High-throughput discovery and characterization of multicomponent bulk metallic glass alloys. Acta Mater 120:426–434CrossRef
7.
Zurück zum Zitat Tweedie CA et al (2005) Combinatorial material mechanics: High-throughput polymer synthesis and nanomechanical screening. Adv Mat 17(21):2599CrossRef Tweedie CA et al (2005) Combinatorial material mechanics: High-throughput polymer synthesis and nanomechanical screening. Adv Mat 17(21):2599CrossRef
8.
Zurück zum Zitat Sormana JL, Chattopadhyay S, Meredith JC (2005) High-throughput mechanical characterization of free-standing polymer films. Rev Sci Instrum 76(6):9CrossRef Sormana JL, Chattopadhyay S, Meredith JC (2005) High-throughput mechanical characterization of free-standing polymer films. Rev Sci Instrum 76(6):9CrossRef
9.
Zurück zum Zitat Hintsala ED, Hangen U, Stauffer DD (2018) High-throughput Nanoindentation for statistical and spatial property determination. Jom 70(4):494–503CrossRef Hintsala ED, Hangen U, Stauffer DD (2018) High-throughput Nanoindentation for statistical and spatial property determination. Jom 70(4):494–503CrossRef
10.
Zurück zum Zitat Knoll H et al (2017) Combinatorial alloy design by laser additive manufacturing. Steel Res Int 88(8):11CrossRef Knoll H et al (2017) Combinatorial alloy design by laser additive manufacturing. Steel Res Int 88(8):11CrossRef
11.
Zurück zum Zitat Weaver JS, Kalidindi SR (2016) Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements. Mater Des 111:463–472CrossRef Weaver JS, Kalidindi SR (2016) Mechanical characterization of Ti-6Al-4V titanium alloy at multiple length scales using spherical indentation stress-strain measurements. Mater Des 111:463–472CrossRef
12.
Zurück zum Zitat Weaver JS, Priddy MW, McDowell DL, Kalidindi SR (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34CrossRef Weaver JS, Priddy MW, McDowell DL, Kalidindi SR (2016) On capturing the grain-scale elastic and plastic anisotropy of alpha-Ti with spherical nanoindentation and electron back-scattered diffraction. Acta Mater 117:23–34CrossRef
13.
Zurück zum Zitat Pathak S, Kalidindi SR, Mara NA (2015) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. SMM 113:241–245 Pathak S, Kalidindi SR, Mara NA (2015) Investigations of orientation and length scale effects on micromechanical responses in polycrystalline zirconium using spherical nanoindentation. SMM 113:241–245
14.
Zurück zum Zitat Pathak S, Stojakovic D, Kalidindi SR (2009) Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater 57(10):3020–3028CrossRef Pathak S, Stojakovic D, Kalidindi SR (2009) Measurement of the local mechanical properties in polycrystalline samples using spherical nanoindentation and orientation imaging microscopy. Acta Mater 57(10):3020–3028CrossRef
15.
Zurück zum Zitat Vachhani SJ, Doherty RD, Kalidindi SR (2016) Studies of grain boundary regions in deformed polycrystalline aluminum using spherical nanoindentation. Int J Plast 81:87–101CrossRef Vachhani SJ, Doherty RD, Kalidindi SR (2016) Studies of grain boundary regions in deformed polycrystalline aluminum using spherical nanoindentation. Int J Plast 81:87–101CrossRef
16.
Zurück zum Zitat Vachhani SJ, Kalidindi SR (2015) Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater 90:27–36CrossRef Vachhani SJ, Kalidindi SR (2015) Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater 90:27–36CrossRef
17.
Zurück zum Zitat Ohmura T, Tsuzaki K, Yin F (2005) Nanoindentation-induced deformation behavior in the vicinity of single grain boundary of interstitial-free steel. Mater Trans 46(9):2026–2029CrossRef Ohmura T, Tsuzaki K, Yin F (2005) Nanoindentation-induced deformation behavior in the vicinity of single grain boundary of interstitial-free steel. Mater Trans 46(9):2026–2029CrossRef
18.
Zurück zum Zitat Soer WA, Aifantis KE, De Hosson JTM (2005) Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater 53(17):4665–4676CrossRef Soer WA, Aifantis KE, De Hosson JTM (2005) Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater 53(17):4665–4676CrossRef
19.
Zurück zum Zitat Eliash T, Kazakevich M, Semenov VN, Rabkin E (2008) Nanohardness of molybdenum in the vicinity of grain boundaries and triple junctions. Acta Mater 56(19):5640–5652CrossRef Eliash T, Kazakevich M, Semenov VN, Rabkin E (2008) Nanohardness of molybdenum in the vicinity of grain boundaries and triple junctions. Acta Mater 56(19):5640–5652CrossRef
20.
Zurück zum Zitat Wo P, Ngan A (2004) Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni 3 Al using nanoindentation. J Mater Res 19(1):189–201CrossRef Wo P, Ngan A (2004) Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni 3 Al using nanoindentation. J Mater Res 19(1):189–201CrossRef
21.
Zurück zum Zitat Soifer YM, Verdyan A, Kazakevich M, Rabkin E (2002) Nanohardness of copper in the vicinity of grain boundaries. Scr Mater 47(12):799–804CrossRef Soifer YM, Verdyan A, Kazakevich M, Rabkin E (2002) Nanohardness of copper in the vicinity of grain boundaries. Scr Mater 47(12):799–804CrossRef
22.
Zurück zum Zitat Yang B, Vehoff H (2007) Dependence of nanohardness upon indentation size and grain size–a local examination of the interaction between dislocations and grain boundaries. Acta Mater 55(3):849–856CrossRef Yang B, Vehoff H (2007) Dependence of nanohardness upon indentation size and grain size–a local examination of the interaction between dislocations and grain boundaries. Acta Mater 55(3):849–856CrossRef
23.
Zurück zum Zitat Pathak S, Michler J, Wasmer K, Kalidindi SR (2012) Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J Mater Sci 47(2):815–823CrossRef Pathak S, Michler J, Wasmer K, Kalidindi SR (2012) Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J Mater Sci 47(2):815–823CrossRef
24.
Zurück zum Zitat Kalidindi SR, Mohan S, Rossi A (2017) Mechanical characterization of Mesoscale interfaces using indentation techniques. JOM 69(1):22–29CrossRef Kalidindi SR, Mohan S, Rossi A (2017) Mechanical characterization of Mesoscale interfaces using indentation techniques. JOM 69(1):22–29CrossRef
25.
Zurück zum Zitat Hodzic A, Kim JK, Stachurski ZH (2001) Nano-indentation and nano-scratch of polymer/glass interfaces. II: model of interphases in water aged composite materials. Polymer 42(13):5701–5710CrossRef Hodzic A, Kim JK, Stachurski ZH (2001) Nano-indentation and nano-scratch of polymer/glass interfaces. II: model of interphases in water aged composite materials. Polymer 42(13):5701–5710CrossRef
26.
Zurück zum Zitat Kim J-K, Sham M-L, Wu J (2001) Nanoscale characterisation of interphase in silane treated glass fibre composites. Compos A: Appl Sci Manuf 32(5):607–618CrossRef Kim J-K, Sham M-L, Wu J (2001) Nanoscale characterisation of interphase in silane treated glass fibre composites. Compos A: Appl Sci Manuf 32(5):607–618CrossRef
27.
Zurück zum Zitat Göken M, Kempf M, Bordenet M, Vehoff H (1999) Nanomechanical characterizations of metals and thin films. Surf Interface Anal 27(5–6):302–306CrossRef Göken M, Kempf M, Bordenet M, Vehoff H (1999) Nanomechanical characterizations of metals and thin films. Surf Interface Anal 27(5–6):302–306CrossRef
28.
Zurück zum Zitat ASTM (2017) E384–17, standard test method for microindentation hardness of materials. ASTM International, West Conshohocken, PA www.astm.org ASTM (2017) E384–17, standard test method for microindentation hardness of materials. ASTM International, West Conshohocken, PA www.​astm.​org
29.
Zurück zum Zitat ASTM (2017) E92–17, standard test methods for Vickers hardness and Knoop hardness of metallic materials. ASTM International, West Conshohocken, PA www.astm.org ASTM (2017) E92–17, standard test methods for Vickers hardness and Knoop hardness of metallic materials. ASTM International, West Conshohocken, PA www.​astm.​org
30.
Zurück zum Zitat ASTM (2018) E10–18, standard test method for Brinell hardness of metallic materials. ASTM International, West Conshohocken, PA www.astm.org ASTM (2018) E10–18, standard test method for Brinell hardness of metallic materials. ASTM International, West Conshohocken, PA www.​astm.​org
31.
Zurück zum Zitat Cahoon JR, Broughton WH, Kutzak AR (1971) The determination of yield strength from hardness measurements. Metall Trans 2(7):1979–1983CrossRef Cahoon JR, Broughton WH, Kutzak AR (1971) The determination of yield strength from hardness measurements. Metall Trans 2(7):1979–1983CrossRef
32.
Zurück zum Zitat Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRef Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRef
33.
Zurück zum Zitat Tiryakioğlu M, Robinson JS, Salazar-Guapuriche MA, Zhao YY, Eason PD (2015) Hardness–strength relationships in the aluminum alloy 7010. Mater Sci Eng A 631:196–200CrossRef Tiryakioğlu M, Robinson JS, Salazar-Guapuriche MA, Zhao YY, Eason PD (2015) Hardness–strength relationships in the aluminum alloy 7010. Mater Sci Eng A 631:196–200CrossRef
34.
Zurück zum Zitat Zhang HW, Subhash G, Jing XN, Kecskes LJ, Dowding RJ (2006) Evaluation of hardness–yield strength relationships for bulk metallic glasses. Philos Mag Lett 86(5):333–345CrossRef Zhang HW, Subhash G, Jing XN, Kecskes LJ, Dowding RJ (2006) Evaluation of hardness–yield strength relationships for bulk metallic glasses. Philos Mag Lett 86(5):333–345CrossRef
35.
Zurück zum Zitat ASTM (2020) A370–20, standard test methods and definitions for mechanical testing of steel products. ASTM International, West Conshohocken, PA www.astm.org ASTM (2020) A370–20, standard test methods and definitions for mechanical testing of steel products. ASTM International, West Conshohocken, PA www.​astm.​org
36.
Zurück zum Zitat Meyer E (1908) Contribution to the knowledge of hardness and hardness testing. Zeitschrift Des Vereines Deutscher Ingenieure 52:645–654 Meyer E (1908) Contribution to the knowledge of hardness and hardness testing. Zeitschrift Des Vereines Deutscher Ingenieure 52:645–654
37.
Zurück zum Zitat Tabor, D. (1951) The hardness of metals, ed. O.U. Press. N Y Tabor, D. (1951) The hardness of metals, ed. O.U. Press. N Y
38.
Zurück zum Zitat Hill R et al (1947) The theory of wedge indentation of ductile materials. Proceed Royal Soc London. Series A. Math Phys Sci 188(1013):273–289MathSciNet Hill R et al (1947) The theory of wedge indentation of ductile materials. Proceed Royal Soc London. Series A. Math Phys Sci 188(1013):273–289MathSciNet
39.
Zurück zum Zitat Ishlinsky, A.I., The three-dimensional plasticity problem and Brinell hardness test. J. Appl. Math. Mech. (USSR), 1944. 8(3): p. 201–244 Ishlinsky, A.I., The three-dimensional plasticity problem and Brinell hardness test. J. Appl. Math. Mech. (USSR), 1944. 8(3): p. 201–244
40.
Zurück zum Zitat Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18(2):115–126CrossRef Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18(2):115–126CrossRef
41.
42.
Zurück zum Zitat Taljat B, Zacharia T, Kosel F (1998) New analytical procedure to determine stress-strain curve from spherical indentation data. Int J Solids Struct 35(33):4411–4426MATHCrossRef Taljat B, Zacharia T, Kosel F (1998) New analytical procedure to determine stress-strain curve from spherical indentation data. Int J Solids Struct 35(33):4411–4426MATHCrossRef
43.
Zurück zum Zitat Beghini M, Bertini L, Fontanari V (2006) Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int J Solids Struct 43(7):2441–2459MATHCrossRef Beghini M, Bertini L, Fontanari V (2006) Evaluation of the stress–strain curve of metallic materials by spherical indentation. Int J Solids Struct 43(7):2441–2459MATHCrossRef
44.
Zurück zum Zitat Bhattacharya AK, Nix WD (1988) Finite element simulation of indentation experiments. Int J Solids Struct 24(9):881–891CrossRef Bhattacharya AK, Nix WD (1988) Finite element simulation of indentation experiments. Int J Solids Struct 24(9):881–891CrossRef
45.
Zurück zum Zitat Park YJ, Pharr GM (2004) Nanoindentation with spherical indenters: finite element studies of deformation in the elastic–plastic transition regime. Thin Solid Films 447-448:246–250CrossRef Park YJ, Pharr GM (2004) Nanoindentation with spherical indenters: finite element studies of deformation in the elastic–plastic transition regime. Thin Solid Films 447-448:246–250CrossRef
46.
Zurück zum Zitat Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform 17(6):888–893CrossRef Pavlina EJ, Van Tyne CJ (2008) Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform 17(6):888–893CrossRef
47.
Zurück zum Zitat Matsuoka S (2004) Relationship between 02% proof stress and Vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS. Nippon Kikai Gakkai Ronbunshu, A Hen 70(698):1535–1541 Matsuoka S (2004) Relationship between 02% proof stress and Vickers hardness of work-hardened low carbon austenitic stainless steel, 316SS. Nippon Kikai Gakkai Ronbunshu, A Hen 70(698):1535–1541
48.
Zurück zum Zitat Takakuwa O, Kawaragi Y, Soyama H (2013) Estimation of the Yield Stress of Stainless Steel from the Vickers Hardness Taking Account of the Residual Stress. J Surf Eng Mater Adv Technol 03(04):7 Takakuwa O, Kawaragi Y, Soyama H (2013) Estimation of the Yield Stress of Stainless Steel from the Vickers Hardness Taking Account of the Residual Stress. J Surf Eng Mater Adv Technol 03(04):7
49.
Zurück zum Zitat Rudnitsky VA, Kren AP, Lantsman GA (2019) Determining yield strength of metals by microindentation with a spherical tip. Russ J Nondestruct Test 55(2):162–168CrossRef Rudnitsky VA, Kren AP, Lantsman GA (2019) Determining yield strength of metals by microindentation with a spherical tip. Russ J Nondestruct Test 55(2):162–168CrossRef
50.
Zurück zum Zitat Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425MATHCrossRef Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425MATHCrossRef
51.
Zurück zum Zitat Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487CrossRef Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487CrossRef
52.
Zurück zum Zitat Demir E, Raabe D, Zaafarani N, Zaefferer S (2009) Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater 57(2):559–569CrossRef Demir E, Raabe D, Zaafarani N, Zaefferer S (2009) Investigation of the indentation size effect through the measurement of the geometrically necessary dislocations beneath small indents of different depths using EBSD tomography. Acta Mater 57(2):559–569CrossRef
53.
Zurück zum Zitat Kim J-Y, Kang SK, Greer JR, Kwon D (2008) Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter. Acta Mater 56(14):3338–3343CrossRef Kim J-Y, Kang SK, Greer JR, Kwon D (2008) Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter. Acta Mater 56(14):3338–3343CrossRef
54.
Zurück zum Zitat Budiarsa IN (2013) Indentation size effect (ISE) of Vickers hardness in steels: correlation with H/E. Appl Mech Mater 391:23–28CrossRef Budiarsa IN (2013) Indentation size effect (ISE) of Vickers hardness in steels: correlation with H/E. Appl Mech Mater 391:23–28CrossRef
55.
Zurück zum Zitat Farges G, Degout D (1989) Interpretation of the indentation size effect in vickers microhardness measurements-absolute hardness of materials. Thin Solid Films 181(1):365–374CrossRef Farges G, Degout D (1989) Interpretation of the indentation size effect in vickers microhardness measurements-absolute hardness of materials. Thin Solid Films 181(1):365–374CrossRef
56.
Zurück zum Zitat Qian L, Li M, Zhou Z, Yang H, Shi X (2005) Comparison of nano-indentation hardness to microhardness. Surf Coat Technol 195(2):264–271CrossRef Qian L, Li M, Zhou Z, Yang H, Shi X (2005) Comparison of nano-indentation hardness to microhardness. Surf Coat Technol 195(2):264–271CrossRef
57.
Zurück zum Zitat Ohmura T, Tsuzaki K, Matsuoka S (2001) Nanohardness measurement of high-purity Fe–C martensite. Scr Mater 45(8):889–894CrossRef Ohmura T, Tsuzaki K, Matsuoka S (2001) Nanohardness measurement of high-purity Fe–C martensite. Scr Mater 45(8):889–894CrossRef
58.
Zurück zum Zitat Nguyen N-V, Pham T-H, Kim S-E (2018) Characterization of strain rate effects on the plastic properties of structural steel using nanoindentation. Constr Build Mater 163:305–314CrossRef Nguyen N-V, Pham T-H, Kim S-E (2018) Characterization of strain rate effects on the plastic properties of structural steel using nanoindentation. Constr Build Mater 163:305–314CrossRef
59.
Zurück zum Zitat Benzing JT, Poling WA, Pierce DT, Bentley J, Findley KO, Raabe D, Wittig JE (2018) Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel. Mater Sci Eng A 711:78–92CrossRef Benzing JT, Poling WA, Pierce DT, Bentley J, Findley KO, Raabe D, Wittig JE (2018) Effects of strain rate on mechanical properties and deformation behavior of an austenitic Fe-25Mn-3Al-3Si TWIP-TRIP steel. Mater Sci Eng A 711:78–92CrossRef
60.
Zurück zum Zitat Hu Z, Lynne K, Delfanian F (2015) Characterization of materials' elasticity and yield strength through micro−/nano-indentation testing with a cylindrical flat-tip indenter. J Mater Res 30(4):578–591CrossRef Hu Z, Lynne K, Delfanian F (2015) Characterization of materials' elasticity and yield strength through micro−/nano-indentation testing with a cylindrical flat-tip indenter. J Mater Res 30(4):578–591CrossRef
61.
Zurück zum Zitat Hu Z, Lynne KJ, Markondapatnaikuni SP, Delfanian F (2013) Material elastic–plastic property characterization by nanoindentation testing coupled with computer modeling. Mater Sci Eng A 587:268–282CrossRef Hu Z, Lynne KJ, Markondapatnaikuni SP, Delfanian F (2013) Material elastic–plastic property characterization by nanoindentation testing coupled with computer modeling. Mater Sci Eng A 587:268–282CrossRef
62.
Zurück zum Zitat Das G, Ghosh S, Sahay SK, Ranganath VR, Vaze KK (2004) Influence of pre-straining on mechanical properties of HSLA steel by using ball indentation technique. Z Met 95(12):1120–1127 Das G, Ghosh S, Sahay SK, Ranganath VR, Vaze KK (2004) Influence of pre-straining on mechanical properties of HSLA steel by using ball indentation technique. Z Met 95(12):1120–1127
63.
Zurück zum Zitat Hamada AS, Haggag FM, Porter DA (2012) Non-destructive determination of the yield strength and flow properties of high-manganese twinning-induced plasticity steel. Mater Sci Eng A 558:766–770CrossRef Hamada AS, Haggag FM, Porter DA (2012) Non-destructive determination of the yield strength and flow properties of high-manganese twinning-induced plasticity steel. Mater Sci Eng A 558:766–770CrossRef
64.
Zurück zum Zitat Nayebi A, el Abdi R, Bartier O, Mauvoisin G (2002) New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech Mater 34(4):243–254CrossRef Nayebi A, el Abdi R, Bartier O, Mauvoisin G (2002) New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech Mater 34(4):243–254CrossRef
65.
Zurück zum Zitat Ma Y et al (2013) Plastic characterization of metals by combining nanoindentation test and finite element simulation. Trans Nonferrous Metals Soc China 23(8):2368–2373CrossRef Ma Y et al (2013) Plastic characterization of metals by combining nanoindentation test and finite element simulation. Trans Nonferrous Metals Soc China 23(8):2368–2373CrossRef
66.
Zurück zum Zitat Pamnani R, Karthik V, Jayakumar T, Vasudevan M, Sakthivel T (2016) Evaluation of mechanical properties across micro alloyed HSLA steel weld joints using automated ball indentation. Mater Sci Eng A 651:214–223CrossRef Pamnani R, Karthik V, Jayakumar T, Vasudevan M, Sakthivel T (2016) Evaluation of mechanical properties across micro alloyed HSLA steel weld joints using automated ball indentation. Mater Sci Eng A 651:214–223CrossRef
67.
Zurück zum Zitat Ghosh S, Pal TK, Mukherjee S, Das G, Ghosh S (2008) Comparative study of heat-affected zone with weld and base material after post-weld heat treatment of HSLA steel using ball indentation technique. J Mater Sci 43(16):5474–5482CrossRef Ghosh S, Pal TK, Mukherjee S, Das G, Ghosh S (2008) Comparative study of heat-affected zone with weld and base material after post-weld heat treatment of HSLA steel using ball indentation technique. J Mater Sci 43(16):5474–5482CrossRef
68.
Zurück zum Zitat Murty KL, Miraglia PQ, Mathew MD, Shah VN, Haggag FM (1999) Characterization of gradients in mechanical properties of SA-533B steel welds using ball indentation. Int J Press Vessel Pip 76(6):361–369CrossRef Murty KL, Miraglia PQ, Mathew MD, Shah VN, Haggag FM (1999) Characterization of gradients in mechanical properties of SA-533B steel welds using ball indentation. Int J Press Vessel Pip 76(6):361–369CrossRef
69.
Zurück zum Zitat Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater 56(14):3523–3532CrossRef Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater 56(14):3523–3532CrossRef
70.
Zurück zum Zitat Pathak S, Shaffer J, Kalidindi S (2009) Determination of an effective zero-point and extraction of indentation stress–strain curves without the continuous stiffness measurement signal. Scr Mater 60(6):439–442CrossRef Pathak S, Shaffer J, Kalidindi S (2009) Determination of an effective zero-point and extraction of indentation stress–strain curves without the continuous stiffness measurement signal. Scr Mater 60(6):439–442CrossRef
71.
Zurück zum Zitat Iskakov A, Yabansu YC, Rajagopalan S, Kapustina A, Kalidindi SR (2018) Application of spherical indentation and the materials knowledge system framework to establishing microstructure-yield strength linkages from carbon steel scoops excised from high-temperature exposed components. Acta Mater 144:758–767CrossRef Iskakov A, Yabansu YC, Rajagopalan S, Kapustina A, Kalidindi SR (2018) Application of spherical indentation and the materials knowledge system framework to establishing microstructure-yield strength linkages from carbon steel scoops excised from high-temperature exposed components. Acta Mater 144:758–767CrossRef
72.
Zurück zum Zitat Weaver JS et al (2016) High throughput exploration of process- property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integrating Mat Manuf Innov:1–20 Weaver JS et al (2016) High throughput exploration of process- property linkages in Al-6061 using instrumented spherical microindentation and microstructurally graded samples. Integrating Mat Manuf Innov:1–20
73.
Zurück zum Zitat Patel DK, Surya R (2016) Kalidindi, Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302CrossRef Patel DK, Surya R (2016) Kalidindi, Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302CrossRef
74.
Zurück zum Zitat Haggag, F.M., et al. (1990) The use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials, in Applications of Automation Technology to Fatigue and Fracture Testing, N.A. A. Braun, and F. Smith, Editor. 1989: (West Conshohocken, PA: ASTM International), 188–208. Haggag, F.M., et al. (1990) The use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials, in Applications of Automation Technology to Fatigue and Fracture Testing, N.A. A. Braun, and F. Smith, Editor. 1989: (West Conshohocken, PA: ASTM International), 188–208.
75.
Zurück zum Zitat ISO 6892-1 (2016) Metallic materials- Tensile testing-part 1: Method of test at room temperature. p. 1–78 ISO 6892-1 (2016) Metallic materials- Tensile testing-part 1: Method of test at room temperature. p. 1–78
76.
Zurück zum Zitat Pathak S, Stojakovic D, Doherty R, Kalidindi SR (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J Mater Res 24:1142–1155CrossRef Pathak S, Stojakovic D, Doherty R, Kalidindi SR (2009) Importance of surface preparation on the nano-indentation stress-strain curves measured in metals. J Mater Res 24:1142–1155CrossRef
77.
Zurück zum Zitat Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress-strain curves. Mat Sci Eng R: Reports 91:1–36CrossRef Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress-strain curves. Mat Sci Eng R: Reports 91:1–36CrossRef
78.
Zurück zum Zitat Hertz, H., Miscellaneous papers. 1896: Macmillan Hertz, H., Miscellaneous papers. 1896: Macmillan
79.
Zurück zum Zitat Marcinkowski M, Szirmae A, FISHER R (1964) Effect of 500degreesc aging on deformation behavior of iron-chromium alloy. Trans Metallurgical Soc AIME 230(4):676 Marcinkowski M, Szirmae A, FISHER R (1964) Effect of 500degreesc aging on deformation behavior of iron-chromium alloy. Trans Metallurgical Soc AIME 230(4):676
80.
Zurück zum Zitat Speich G, Warlimont H (1968) Yield strength and transformation substructure of low-carbon martensite. J Iron Steel Inst 206(4):385–392 Speich G, Warlimont H (1968) Yield strength and transformation substructure of low-carbon martensite. J Iron Steel Inst 206(4):385–392
81.
Zurück zum Zitat Donohue BR, Ambrus A, Kalidindi SR (2012) Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater 60(9):3943–3952CrossRef Donohue BR, Ambrus A, Kalidindi SR (2012) Critical evaluation of the indentation data analyses methods for the extraction of isotropic uniaxial mechanical properties using finite element models. Acta Mater 60(9):3943–3952CrossRef
Metadaten
Titel
Critical Evaluation of Spherical Indentation Stress-Strain Protocols for the Estimation of the Yield Strengths of Steels
verfasst von
S. Mohan
N. Millan-Espitia
M. Yao
N. V. Steenberge
S. R. Kalidindi
Publikationsdatum
20.01.2021
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 4/2021
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-021-00689-7

Weitere Artikel der Ausgabe 4/2021

Experimental Mechanics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.