Skip to main content
Erschienen in: Journal of Materials Science 7/2019

11.12.2018 | Metals

Crystallization kinetics of the Fe40Ni40P14B6 metallic glass in an extended range of heating rates

verfasst von: S. V. Vasiliev, O. V. Kovalenko, K. A. Svyrydova, A. I. Limanovskii, V. I. Tkatch

Erschienen in: Journal of Materials Science | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of heating rate (in the range of 0.083–3.333 K s−1) on the parameters of thermal stability and crystallization kinetics of the Fe40Ni40P14B6 metallic glass has been investigated by differential scanning calorimetry and X-ray diffraction. An analytical model of glass crystallization describing the homogeneous nucleation rate, the velocity of interface-limited growth, the number of crystal volume density in crystallized samples as well as the crystallization kinetics at constant rate heating is presented. A modified procedure of estimation of thermodynamic and kinetic parameters governing the rate of crystal nucleation and growth based on the use of the measured heating rate-dependent variations of the volume fraction crystallized and the average grain size is proposed. The values of the effective diffusivity have been estimated by the Kissinger-like isoconversional method accounting the contribution of both the free energy difference and the specific interfacial nucleus-melt energy changes estimated from the structural data. It has been shown for the first time that the shapes of the non-isothermal experimental kinetic crystallization curves measured at the heating rates ≤ 1.333 K s−1 are well described by the approximate analytical equation and the values of the Avrami exponent lowering from 5.5 to 2.3 with the heating rates increasing have been estimated. The evaluated ranges of the nucleation rate (1.4 × 1016–2.5 × 1017 m−3 s−1) and growth velocity of crystals (2.05 × 10−9–3.0 × 10−7 m s−1) in Fe40Ni40P14B6 glass at temperatures from 653 to 714 K are in reasonable agreement with the experimental data. Possible variations of the established eutectic crystallization mechanism revealed by changes of the Avrami exponent with the heating rate increasing are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kelton KF (1991) Crystal nucleation in liquids and glasses. In: Ehrenreich H, Turnbull D (eds) Solid state physics: advances in research and applications, vol 45. Academic Press, New York, pp 75–177 Kelton KF (1991) Crystal nucleation in liquids and glasses. In: Ehrenreich H, Turnbull D (eds) Solid state physics: advances in research and applications, vol 45. Academic Press, New York, pp 75–177
2.
Zurück zum Zitat Christian JW (1965) The theory of transformations in metals and alloys. Pergamon, Oxford Christian JW (1965) The theory of transformations in metals and alloys. Pergamon, Oxford
3.
Zurück zum Zitat Fokin VM, Zanotto ED, Yuritsin NS, Schmelzer JWP (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non-Cryst Sol 352:2681–2714CrossRef Fokin VM, Zanotto ED, Yuritsin NS, Schmelzer JWP (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non-Cryst Sol 352:2681–2714CrossRef
4.
Zurück zum Zitat Kolmogorov AN (1937) Statistical theory of crystallization of metals. Bull Acad Sci USSR Ser Math 1:355–360 (in Russian) Kolmogorov AN (1937) Statistical theory of crystallization of metals. Bull Acad Sci USSR Ser Math 1:355–360 (in Russian)
5.
Zurück zum Zitat Johnson WA, Mehl RE (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall 135:416–434 Johnson WA, Mehl RE (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall 135:416–434
6.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change I. General theory. J Chem Phys 7:1103–1112CrossRef Avrami M (1939) Kinetics of phase change I. General theory. J Chem Phys 7:1103–1112CrossRef
7.
Zurück zum Zitat Henderson DW (1979) Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids 30:301–315CrossRef Henderson DW (1979) Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J Non-Cryst Solids 30:301–315CrossRef
8.
Zurück zum Zitat Kruger P (1993) On the relation between non-isothermal and isothermal Kolmogorov–Johnson–Mehl–Avrami crystallization kinetics. J Phys Chem Solids 54:1549–1555CrossRef Kruger P (1993) On the relation between non-isothermal and isothermal Kolmogorov–Johnson–Mehl–Avrami crystallization kinetics. J Phys Chem Solids 54:1549–1555CrossRef
9.
Zurück zum Zitat Naberezhnykh VP, Tkatch VI, Limanovskii AI, Kameneva VYu (1991) The crystallization of the Fe80B20 amorphous alloy at the constant heating rate. Fiz Metall Metalloved 71:153–160 (in Russian) Naberezhnykh VP, Tkatch VI, Limanovskii AI, Kameneva VYu (1991) The crystallization of the Fe80B20 amorphous alloy at the constant heating rate. Fiz Metall Metalloved 71:153–160 (in Russian)
10.
Zurück zum Zitat Ruitenberg G, Woldt E, Petford-Long AK (2001) Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta 378:97–105CrossRef Ruitenberg G, Woldt E, Petford-Long AK (2001) Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta 378:97–105CrossRef
12.
Zurück zum Zitat Blazquez JS, Conde CF, Conde A (2005) Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater 53:2305–2311CrossRef Blazquez JS, Conde CF, Conde A (2005) Non-isothermal approach to isokinetic crystallization processes: application to the nanocrystallization of HITPERM alloys. Acta Mater 53:2305–2311CrossRef
15.
Zurück zum Zitat Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state transformation kinetics: models and recipes. Int Mater Rev 52:193–212CrossRef Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Analysis of solid state transformation kinetics: models and recipes. Int Mater Rev 52:193–212CrossRef
16.
Zurück zum Zitat Popov VV, Tkatch VI, Rassolov SG, Aronin AS (2010) Effect of replacement of Ni by Co on thermal stability of Fe40Co40P14B6 metallic glass. J Non-Cryst Sol 356:1344–1348CrossRef Popov VV, Tkatch VI, Rassolov SG, Aronin AS (2010) Effect of replacement of Ni by Co on thermal stability of Fe40Co40P14B6 metallic glass. J Non-Cryst Sol 356:1344–1348CrossRef
17.
Zurück zum Zitat Morris DG (1981) Crystallization of the Metglas 2826 amorphous alloy. Acta Metall 29:1213–1220CrossRef Morris DG (1981) Crystallization of the Metglas 2826 amorphous alloy. Acta Metall 29:1213–1220CrossRef
18.
Zurück zum Zitat Tkatch VI (1998) Determination of temperature dependence of the nucleus-melt interfacial tension for Fe40Ni40P14B6 alloy. Int J Non-Equilib Process 10:339–352 Tkatch VI (1998) Determination of temperature dependence of the nucleus-melt interfacial tension for Fe40Ni40P14B6 alloy. Int J Non-Equilib Process 10:339–352
19.
Zurück zum Zitat Vasiliev SV, Tkatch VI, Aronin AS, Kovalenko OV, Rassolov SG (2018) Analysis of the transient behavior of nucleation in the Fe40Ni40P14B6 glass. J Alloys Compd 744:141–145CrossRef Vasiliev SV, Tkatch VI, Aronin AS, Kovalenko OV, Rassolov SG (2018) Analysis of the transient behavior of nucleation in the Fe40Ni40P14B6 glass. J Alloys Compd 744:141–145CrossRef
20.
Zurück zum Zitat Metglass Alloy 2826 (Code no. Ni-235) (2018) Alloy digest: data on world wide metals and alloys. ASM International Metglass Alloy 2826 (Code no. Ni-235) (2018) Alloy digest: data on world wide metals and alloys. ASM International
22.
Zurück zum Zitat Morris DG (1982) Early crystallization behaviour of an amorphous metal alloy. Scr Metall 16:585–588CrossRef Morris DG (1982) Early crystallization behaviour of an amorphous metal alloy. Scr Metall 16:585–588CrossRef
23.
Zurück zum Zitat Miura H, Isa Sh (1985) Free energy changes on crystallization of amorphous (Fe1−xNix)80P14B6 alloys. In: Steeb S, Warlimont H (eds) Rapidly quenched metals. North-Holland, Amsterdam, pp 287–290CrossRef Miura H, Isa Sh (1985) Free energy changes on crystallization of amorphous (Fe1−xNix)80P14B6 alloys. In: Steeb S, Warlimont H (eds) Rapidly quenched metals. North-Holland, Amsterdam, pp 287–290CrossRef
24.
Zurück zum Zitat Tiwari RS (1986) Analysis of steady state crystal nucleation in Metglas 2826. J Non-Cryst Solids 83:126–133CrossRef Tiwari RS (1986) Analysis of steady state crystal nucleation in Metglas 2826. J Non-Cryst Solids 83:126–133CrossRef
25.
Zurück zum Zitat Shen TD, Schwarz RB (2001) Bulk ferromagnetic glasses in the Fe–Ni–P–B system. Acta Mater 49:837–847CrossRef Shen TD, Schwarz RB (2001) Bulk ferromagnetic glasses in the Fe–Ni–P–B system. Acta Mater 49:837–847CrossRef
26.
Zurück zum Zitat Tkatch VI, Svyrydova KA, Vasiliev SV, Kovalenko OV (2017) Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients. Phys Metals Metall 118:764–772CrossRef Tkatch VI, Svyrydova KA, Vasiliev SV, Kovalenko OV (2017) Relation between the structural parameters of metallic glasses at the onset crystallization temperatures and threshold values of the effective diffusion coefficients. Phys Metals Metall 118:764–772CrossRef
27.
Zurück zum Zitat Ji X, Pan Y (2007) Gibbs free energy difference in metallic glass forming liquids. J Non-Cryst Sol 353:2443–2446CrossRef Ji X, Pan Y (2007) Gibbs free energy difference in metallic glass forming liquids. J Non-Cryst Sol 353:2443–2446CrossRef
28.
Zurück zum Zitat Thompson CV, Spaepen F (1979) On the approximation of the free energy change on crystallization. Acta Metall 22:1855–1859CrossRef Thompson CV, Spaepen F (1979) On the approximation of the free energy change on crystallization. Acta Metall 22:1855–1859CrossRef
29.
Zurück zum Zitat Greer AL (1980) The use of DSC to determine the Curie temperature of metallic glasses. Thermochim Acta 42:193–222CrossRef Greer AL (1980) The use of DSC to determine the Curie temperature of metallic glasses. Thermochim Acta 42:193–222CrossRef
30.
Zurück zum Zitat Khonik VA, Kitagawa K, Morii H (2000) On the determination of the crystallization activation energy of metallic glasses. J Appl Phys 87:8440–8443CrossRef Khonik VA, Kitagawa K, Morii H (2000) On the determination of the crystallization activation energy of metallic glasses. J Appl Phys 87:8440–8443CrossRef
31.
Zurück zum Zitat Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef Inoue A (2000) Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater 48:279–306CrossRef
33.
Zurück zum Zitat Zanotto ED, James PF (1990) A theoretical and experimental assessment of systematic errors in nucleation experiments. J Non-Cryst Sol 124:86–90CrossRef Zanotto ED, James PF (1990) A theoretical and experimental assessment of systematic errors in nucleation experiments. J Non-Cryst Sol 124:86–90CrossRef
34.
Zurück zum Zitat Kissinger HE (1956) Variation of peak temperature with heating rate. J Res Natl Inst Stand 57:217–221CrossRef Kissinger HE (1956) Variation of peak temperature with heating rate. J Res Natl Inst Stand 57:217–221CrossRef
35.
Zurück zum Zitat Kelton KF (1993) Numerical model for isothermal and non-isothermal crystallization of liquids and glasses. J Non-Cryst Solids 163:283–296CrossRef Kelton KF (1993) Numerical model for isothermal and non-isothermal crystallization of liquids and glasses. J Non-Cryst Solids 163:283–296CrossRef
36.
Zurück zum Zitat Parkins WE, Dienes GJ, Brown FW (1951) Pulse-annealing for the study of relaxation processes in solids. J Appl Phys 22:1012–1019CrossRef Parkins WE, Dienes GJ, Brown FW (1951) Pulse-annealing for the study of relaxation processes in solids. J Appl Phys 22:1012–1019CrossRef
37.
Zurück zum Zitat Pratap A, Lilly Shanker Rao T, Lad KN, Dhurandhar D (2007) Isoconversional vs. model fitting methods. A case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calor 89:399–405CrossRef Pratap A, Lilly Shanker Rao T, Lad KN, Dhurandhar D (2007) Isoconversional vs. model fitting methods. A case study of crystallization kinetics of a Fe-based metallic glass. J Therm Anal Calor 89:399–405CrossRef
38.
Zurück zum Zitat Battezzati L, Baricco M (1993) Growth of crystals from amorphous alloys. Philos Mag B 68:813–824CrossRef Battezzati L, Baricco M (1993) Growth of crystals from amorphous alloys. Philos Mag B 68:813–824CrossRef
39.
Zurück zum Zitat Abrosimova GE, Aronin AS, Stelmukh VA (1991) Crystallization of amorphous Fe85B15 alloy above glass transition temperature. Phys Sol State 33:3570–3576 (in Russian) Abrosimova GE, Aronin AS, Stelmukh VA (1991) Crystallization of amorphous Fe85B15 alloy above glass transition temperature. Phys Sol State 33:3570–3576 (in Russian)
40.
Zurück zum Zitat Sharma P, Zhang X, Zhang Y, Makino A (2015) Competition driven nanocrystallization in high B s and low coreloss Fe–Si–B–P–Cu soft magnetic alloys. Scr Mater 95:3–6CrossRef Sharma P, Zhang X, Zhang Y, Makino A (2015) Competition driven nanocrystallization in high B s and low coreloss Fe–Si–B–P–Cu soft magnetic alloys. Scr Mater 95:3–6CrossRef
41.
Zurück zum Zitat Koshiba K, Scudino S, Kobold R, Kühn U, Greer AL, Eckert J, Pauly S (2017) Transient nucleation and microstructural design in flash-annealed bulk metallic glasses. Acta Mater 127:416–425CrossRef Koshiba K, Scudino S, Kobold R, Kühn U, Greer AL, Eckert J, Pauly S (2017) Transient nucleation and microstructural design in flash-annealed bulk metallic glasses. Acta Mater 127:416–425CrossRef
Metadaten
Titel
Crystallization kinetics of the Fe40Ni40P14B6 metallic glass in an extended range of heating rates
verfasst von
S. V. Vasiliev
O. V. Kovalenko
K. A. Svyrydova
A. I. Limanovskii
V. I. Tkatch
Publikationsdatum
11.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03225-6

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Science 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.