Skip to main content
Erschienen in: Integrating Materials and Manufacturing Innovation 4/2020

02.10.2020 | Technical Article

Data-Driven Constitutive Model for the Inelastic Response of Metals: Application to 316H Steel

verfasst von: Aaron E. Tallman, M. Arul Kumar, Andrew Castillo, Wei Wen, Laurent Capolungo, Carlos N. Tomé

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Predictions of the mechanical response of structural elements are conditioned by the accuracy of constitutive models used at the engineering length-scale. In this regard, a prospect of mechanistic crystal-plasticity-based constitutive models is that they could be used for extrapolation beyond regimes in which they are calibrated. However, their use for assessing the performance of a component is computationally onerous. To address this limitation, a new approach is proposed whereby a surrogate constitutive model (SM) of the inelastic response of 316H steel is derived from a mechanistic crystal plasticity-based polycrystal model tracking the evolution of dislocation densities on all slip systems. The latter is used to generate a database of the expected plastic response and dislocation content evolution associated with several instances of creep loading. From the database, a SM is developed. It relies on the use of orthogonal polynomial regression to describe the evolution of the dislocation content. The SM is then validated against predictions of the dead load creep response given by the polycrystal model across a range of temperatures and stresses. When the SM is used to predict the response of 316H during complex non monotonic loading, extrapolating to new loading conditions, it is found that predictions compare particularly well against those from the physics-based polycrystal model.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lee MG, Kim SJ, Wagoner RH, Chung K, Kim HY (2009) Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: Application to sheet springback. Int J Plast 25:70–104 Lee MG, Kim SJ, Wagoner RH, Chung K, Kim HY (2009) Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets: Application to sheet springback. Int J Plast 25:70–104
2.
Zurück zum Zitat Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24:1642–1693 Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive theories. Int J Plast 24:1642–1693
3.
Zurück zum Zitat Chen B, Smith DJ, Flewitt PEJ, Spindler MW (2011) Constitutive equations that describe creep stress relaxation for 316H stainless steel at 550°C. Mater High Temp 28:155–164 Chen B, Smith DJ, Flewitt PEJ, Spindler MW (2011) Constitutive equations that describe creep stress relaxation for 316H stainless steel at 550°C. Mater High Temp 28:155–164
4.
Zurück zum Zitat Hyde TH, Becker AA, Sun W, Williams JA (2006) Finite-element creep damage analyses of P91 pipes. Int J Press Vessels Pip 83:853–863 Hyde TH, Becker AA, Sun W, Williams JA (2006) Finite-element creep damage analyses of P91 pipes. Int J Press Vessels Pip 83:853–863
5.
Zurück zum Zitat Goyal S, Laha K, Das CR, Panneer Selvi S, Mathew MD (2013) Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behaviour of 2.25Cr–1Mo steel. Mater Sci Eng, A 563:68–77 Goyal S, Laha K, Das CR, Panneer Selvi S, Mathew MD (2013) Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behaviour of 2.25Cr–1Mo steel. Mater Sci Eng, A 563:68–77
6.
Zurück zum Zitat Hall FR, Hayhurst DR (1991) Continuum damage mechanics modelling of high temperature deformation and failure in a pipe weldment. Proc Math Phys Sci 433:383–403 Hall FR, Hayhurst DR (1991) Continuum damage mechanics modelling of high temperature deformation and failure in a pipe weldment. Proc Math Phys Sci 433:383–403
7.
Zurück zum Zitat Frost HJ, Ashby MF (1977) Deformation-mechanism maps for pure iron, two austenitic stainless steels, and a low-alloy ferritic steel. In: Jaffee RI, Wilcox BA (eds) Fundamental aspects of structural alloy design. Battelle Institute Materials Science Colloquia. Springer, Boston, pp 27–65 Frost HJ, Ashby MF (1977) Deformation-mechanism maps for pure iron, two austenitic stainless steels, and a low-alloy ferritic steel. In: Jaffee RI, Wilcox BA (eds) Fundamental aspects of structural alloy design. Battelle Institute Materials Science Colloquia. Springer, Boston, pp 27–65
8.
Zurück zum Zitat Chen B, Flewitt PEJ, Cocks ACF, Smith DJ (2015) A review of the changes of internal state related to high temperature creep of polycrystalline metals and alloys. Int Mater Rev 60:1–29 Chen B, Flewitt PEJ, Cocks ACF, Smith DJ (2015) A review of the changes of internal state related to high temperature creep of polycrystalline metals and alloys. Int Mater Rev 60:1–29
9.
Zurück zum Zitat Wang Y-J, Ishii A, Ogata S (2011) Transition of creep mechanism in nanocrystalline metals. Phys Rev B 84:224102 Wang Y-J, Ishii A, Ogata S (2011) Transition of creep mechanism in nanocrystalline metals. Phys Rev B 84:224102
10.
Zurück zum Zitat Yang X-S, Wang Y-J, Zhai H-R, Wang G-Y, Su Y-J, Dai LH, Ogata S, Zhang T-Y (2016) Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J Mech Phys Solids 94:191–206 Yang X-S, Wang Y-J, Zhai H-R, Wang G-Y, Su Y-J, Dai LH, Ogata S, Zhang T-Y (2016) Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J Mech Phys Solids 94:191–206
11.
Zurück zum Zitat Kloc L, Sklenička V (1997) Transition from power-law to viscous creep behaviour of p-91 type heat-resistant steel. Mater Sci Eng, A 234–236:962–965 Kloc L, Sklenička V (1997) Transition from power-law to viscous creep behaviour of p-91 type heat-resistant steel. Mater Sci Eng, A 234–236:962–965
12.
Zurück zum Zitat Wen W, Kohnert A, Arul Kumar M, Capolungo L, Tomé CN (2020) Mechanism-based modeling of thermal and irradiation creep behavior: an application to ferritic/martensitic HT9 steel. Int J Plast 126:102633 Wen W, Kohnert A, Arul Kumar M, Capolungo L, Tomé CN (2020) Mechanism-based modeling of thermal and irradiation creep behavior: an application to ferritic/martensitic HT9 steel. Int J Plast 126:102633
13.
Zurück zum Zitat Kloc L, Skienička V, Ventruba J (2001) Comparison of low stress creep properties of ferritic and austenitic creep resistant steels. Mater Sci Eng, A 319–321:774–778 Kloc L, Skienička V, Ventruba J (2001) Comparison of low stress creep properties of ferritic and austenitic creep resistant steels. Mater Sci Eng, A 319–321:774–778
14.
Zurück zum Zitat Pahutová M (1980) Research report UFM CSAV (Brno) Pahutová M (1980) Research report UFM CSAV (Brno)
15.
Zurück zum Zitat Rabotnov YN (1965) Experimental data on creep of engineering alloys and phenomenological theories of creep. A review. J Appl Mech Technol Phys 6:137–154 Rabotnov YN (1965) Experimental data on creep of engineering alloys and phenomenological theories of creep. A review. J Appl Mech Technol Phys 6:137–154
16.
Zurück zum Zitat Wilshire B, Scharning PJ (2008) Extrapolation of creep life data for 1Cr–0.5Mo steel. Int J Press Vessels Pip 85:739–743 Wilshire B, Scharning PJ (2008) Extrapolation of creep life data for 1Cr–0.5Mo steel. Int J Press Vessels Pip 85:739–743
17.
Zurück zum Zitat Brown SB, Kim KH, Anand L (1989) An internal variable constitutive model for hot working of metals. Int J Plast 5:95–130 Brown SB, Kim KH, Anand L (1989) An internal variable constitutive model for hot working of metals. Int J Plast 5:95–130
18.
Zurück zum Zitat Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5:247–302 Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast 5:247–302
19.
Zurück zum Zitat Watanabe O, Atluri SN (1986) Constitutive modeling of cyclic plasticity and creep, using an internal time concept. Int J Plast 2:107–134 Watanabe O, Atluri SN (1986) Constitutive modeling of cyclic plasticity and creep, using an internal time concept. Int J Plast 2:107–134
20.
Zurück zum Zitat Murakami S, Ohno N (1982) A constitutive equation of creep based on the concept of a creep-hardening surface. Int J Solids Struct 18:597–609 Murakami S, Ohno N (1982) A constitutive equation of creep based on the concept of a creep-hardening surface. Int J Solids Struct 18:597–609
21.
Zurück zum Zitat Moosbrugger JC, McDowell DL (1989) On a class of kinematic hardening rules for nonproportional cyclic plasticity. J Eng Mater Technol 111:87–98 Moosbrugger JC, McDowell DL (1989) On a class of kinematic hardening rules for nonproportional cyclic plasticity. J Eng Mater Technol 111:87–98
22.
Zurück zum Zitat Bammann DJ (1984) An internal variable model of viscoplasticity. Int J Eng Sci 22:1041–1053 Bammann DJ (1984) An internal variable model of viscoplasticity. Int J Eng Sci 22:1041–1053
23.
Zurück zum Zitat Bammann DJ (1990) Modeling temperature and strain rate dependent large deformations of metals. Appl Mech Rev 43:S312–S319 Bammann DJ (1990) Modeling temperature and strain rate dependent large deformations of metals. Appl Mech Rev 43:S312–S319
24.
Zurück zum Zitat Johnson GR, Cook WH (1983) A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings: seventh international symposium on ballistics, pp 541–547 Johnson GR, Cook WH (1983) A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proceedings: seventh international symposium on ballistics, pp 541–547
25.
Zurück zum Zitat Mecking H, Kocks UF (1981) Kinetics of flow and strain-hardening. Acta Metall 29:1865–1875 Mecking H, Kocks UF (1981) Kinetics of flow and strain-hardening. Acta Metall 29:1865–1875
26.
Zurück zum Zitat Norton FH (1929) The creep of steel at high temperatures. McGraw-Hill, New York Norton FH (1929) The creep of steel at high temperatures. McGraw-Hill, New York
27.
Zurück zum Zitat Garofalo F (1963) An empirical relation defining stress dependence of minimum creep rate. Trans Metall Soc AIME 227:351 Garofalo F (1963) An empirical relation defining stress dependence of minimum creep rate. Trans Metall Soc AIME 227:351
28.
Zurück zum Zitat Mukherjee A, Bird J, Dorn J (1969) Experimental correlations for high-temperature creep. ASM Trans Q 62:155 Mukherjee A, Bird J, Dorn J (1969) Experimental correlations for high-temperature creep. ASM Trans Q 62:155
29.
Zurück zum Zitat Bari S, Hassan T (2002) An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. Int J Plast 18:873–894 Bari S, Hassan T (2002) An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. Int J Plast 18:873–894
30.
Zurück zum Zitat Lu ZK, Weng GJ (1996) A simple unified theory for the cyclic deformation of metals at high temperature. Acta Mech 118:135–149 Lu ZK, Weng GJ (1996) A simple unified theory for the cyclic deformation of metals at high temperature. Acta Mech 118:135–149
31.
Zurück zum Zitat Nouailhas D (1989) Unified modelling of cyclic viscoplasticity: application to austenitic stainless steels. Int J Plast 5:501–520 Nouailhas D (1989) Unified modelling of cyclic viscoplasticity: application to austenitic stainless steels. Int J Plast 5:501–520
32.
Zurück zum Zitat Tanaka E (1994) A Nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. Eur J Mech Solids 13:155–173 Tanaka E (1994) A Nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening. Eur J Mech Solids 13:155–173
33.
Zurück zum Zitat Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA (2012) Power-law creep from discrete dislocation dynamics. Phys Rev Lett 109:265504 Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA (2012) Power-law creep from discrete dislocation dynamics. Phys Rev Lett 109:265504
34.
Zurück zum Zitat Patra A, McDowell DL (2012) Crystal plasticity-based constitutive modelling of irradiated bcc structures. Philos Mag 92:861–887 Patra A, McDowell DL (2012) Crystal plasticity-based constitutive modelling of irradiated bcc structures. Philos Mag 92:861–887
35.
Zurück zum Zitat Beyerlein IJ, Tomé CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast 24:867–895 Beyerlein IJ, Tomé CN (2008) A dislocation-based constitutive law for pure Zr including temperature effects. Int J Plast 24:867–895
36.
Zurück zum Zitat Krishna S, Zamiri A, De S (2010) Dislocation and defect density-based micromechanical modeling of the mechanical behavior of fcc metals under neutron irradiation. Philos Mag 90:4013–4025 Krishna S, Zamiri A, De S (2010) Dislocation and defect density-based micromechanical modeling of the mechanical behavior of fcc metals under neutron irradiation. Philos Mag 90:4013–4025
37.
Zurück zum Zitat Needleman A, Asaro RJ, Lemonds J, Peirce D (1985) Finite element analysis of crystalline solids. Comput Methods Appl Mech Eng 52:689–708 Needleman A, Asaro RJ, Lemonds J, Peirce D (1985) Finite element analysis of crystalline solids. Comput Methods Appl Mech Eng 52:689–708
38.
Zurück zum Zitat Asaro RJ (1983) Crystal plasticity. J Appl Mech 50:921–934 Asaro RJ (1983) Crystal plasticity. J Appl Mech 50:921–934
39.
Zurück zum Zitat Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211 Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58:1152–1211
40.
Zurück zum Zitat Roters F, Raabe D, Gottstein G (2000) Work hardening in heterogeneous alloys—a microstructural approach based on three internal state variables. Acta Mater 48:4181–4189 Roters F, Raabe D, Gottstein G (2000) Work hardening in heterogeneous alloys—a microstructural approach based on three internal state variables. Acta Mater 48:4181–4189
41.
Zurück zum Zitat Barton NR, Arsenlis A, Marian J (2013) A polycrystal plasticity model of strain localization in irradiated iron. J Mech Phys Solids 61:341–351 Barton NR, Arsenlis A, Marian J (2013) A polycrystal plasticity model of strain localization in irradiated iron. J Mech Phys Solids 61:341–351
42.
Zurück zum Zitat Castelluccio GM, McDowell DL (2017) Mesoscale cyclic crystal plasticity with dislocation substructures. Int J Plast 98:1–26 Castelluccio GM, McDowell DL (2017) Mesoscale cyclic crystal plasticity with dislocation substructures. Int J Plast 98:1–26
43.
Zurück zum Zitat Arsenlis A, Wirth BD, Rhee M (2004) Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos Mag 84:3617–3635 Arsenlis A, Wirth BD, Rhee M (2004) Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos Mag 84:3617–3635
44.
Zurück zum Zitat Nes E (1997) Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci 41:129–193 Nes E (1997) Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci 41:129–193
45.
Zurück zum Zitat Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682 Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682
46.
Zurück zum Zitat Lebensohn RA, Hartley CS, Tomé CN, Castelnau O (2010) Modeling the mechanical response of polycrystals deforming by climb and glide. Philos Mag 90:567–583 Lebensohn RA, Hartley CS, Tomé CN, Castelnau O (2010) Modeling the mechanical response of polycrystals deforming by climb and glide. Philos Mag 90:567–583
47.
Zurück zum Zitat Bishop JE, Emery JM, Field RV, Weinberger CR, Littlewood DJ (2015) Direct numerical simulations in solid mechanics for understanding the macroscale effects of microscale material variability. Comput Methods Appl Mech Eng 287:262–289 Bishop JE, Emery JM, Field RV, Weinberger CR, Littlewood DJ (2015) Direct numerical simulations in solid mechanics for understanding the macroscale effects of microscale material variability. Comput Methods Appl Mech Eng 287:262–289
48.
Zurück zum Zitat Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418 Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418
49.
Zurück zum Zitat Knezevic M, Savage DJ (2014) A high-performance computational framework for fast crystal plasticity simulations. Comput Mater Sci 83:101–106 Knezevic M, Savage DJ (2014) A high-performance computational framework for fast crystal plasticity simulations. Comput Mater Sci 83:101–106
50.
Zurück zum Zitat Zecevic M, McCabe RJ, Knezevic M (2015) Spectral database solutions to elasto-viscoplasticity within finite elements: application to a cobalt-based FCC superalloy. Int J Plast 70:151–165 Zecevic M, McCabe RJ, Knezevic M (2015) Spectral database solutions to elasto-viscoplasticity within finite elements: application to a cobalt-based FCC superalloy. Int J Plast 70:151–165
51.
Zurück zum Zitat Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192 Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192
52.
Zurück zum Zitat Patra A, Tomé CN (2017) Finite element simulation of gap opening between cladding tube and spacer grid in a fuel rod assembly using crystallographic models of irradiation growth and creep. Nucl Eng Des 315:155–169 Patra A, Tomé CN (2017) Finite element simulation of gap opening between cladding tube and spacer grid in a fuel rod assembly using crystallographic models of irradiation growth and creep. Nucl Eng Des 315:155–169
53.
Zurück zum Zitat Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley-Blackwell, Chichester Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling: a practical guide. Wiley-Blackwell, Chichester
54.
Zurück zum Zitat Fast T, Kalidindi SR (2011) Formulation and calibration of higher-order elastic localization relationships using the MKS approach. Acta Mater 59:4595–4605 Fast T, Kalidindi SR (2011) Formulation and calibration of higher-order elastic localization relationships using the MKS approach. Acta Mater 59:4595–4605
55.
Zurück zum Zitat Becker R, Lloyd JT (2016) A reduced-order crystal model for HCP metals: application to Mg. Mech Mater 98:98–110 Becker R, Lloyd JT (2016) A reduced-order crystal model for HCP metals: application to Mg. Mech Mater 98:98–110
56.
Zurück zum Zitat Kalidindi SR, Duvvuru HK, Knezevic M (2006) Spectral calibration of crystal plasticity models. Acta Mater 54:1795–1804 Kalidindi SR, Duvvuru HK, Knezevic M (2006) Spectral calibration of crystal plasticity models. Acta Mater 54:1795–1804
57.
Zurück zum Zitat Knezevic M, Al-Harbi HF, Kalidindi SR (2009) Crystal plasticity simulations using discrete Fourier transforms. Acta Mater 57:1777–1784 Knezevic M, Al-Harbi HF, Kalidindi SR (2009) Crystal plasticity simulations using discrete Fourier transforms. Acta Mater 57:1777–1784
58.
Zurück zum Zitat Zecevic M, McCabe RJ, Knezevic M (2015) A new implementation of the spectral crystal plasticity framework in implicit finite elements. Mech Mater 84:114–126 Zecevic M, McCabe RJ, Knezevic M (2015) A new implementation of the spectral crystal plasticity framework in implicit finite elements. Mech Mater 84:114–126
59.
Zurück zum Zitat Narula SC (1979) Orthogonal polynomial regression. Int Stat Rev Rev Int Stat 47:31–36 Narula SC (1979) Orthogonal polynomial regression. Int Stat Rev Rev Int Stat 47:31–36
60.
Zurück zum Zitat Wang H, Capolungo L, Clausen B, Tomé CN (2017) A crystal plasticity model based on transition state theory. Int J Plast 93:251–268 Wang H, Capolungo L, Clausen B, Tomé CN (2017) A crystal plasticity model based on transition state theory. Int J Plast 93:251–268
61.
Zurück zum Zitat Wen W, Capolungo L, Patra A, Tomé CN (2017) A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys. Metall Mater Trans A 48:2603–2617 Wen W, Capolungo L, Patra A, Tomé CN (2017) A physics-based crystallographic modeling framework for describing the thermal creep behavior of Fe-Cr alloys. Metall Mater Trans A 48:2603–2617
62.
Zurück zum Zitat Wang H, Clausen B, Capolungo L, Beyerlein IJ, Wang J, Tomé CN (2016) Stress and strain relaxation in magnesium AZ31 rolled plate: in situ neutron measurement and elastic viscoplastic polycrystal modeling. Int J Plast 79:275–292 Wang H, Clausen B, Capolungo L, Beyerlein IJ, Wang J, Tomé CN (2016) Stress and strain relaxation in magnesium AZ31 rolled plate: in situ neutron measurement and elastic viscoplastic polycrystal modeling. Int J Plast 79:275–292
63.
Zurück zum Zitat Wen W, Capolungo L, Tomé CN (2018) Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy. Int J Plast 106:88–106 Wen W, Capolungo L, Tomé CN (2018) Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy. Int J Plast 106:88–106
64.
Zurück zum Zitat Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624 Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall Mater 41:2611–2624
65.
Zurück zum Zitat Lebensohn RA, Tomé CN, CastaÑeda PP (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87:4287–4322 Lebensohn RA, Tomé CN, CastaÑeda PP (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87:4287–4322
66.
Zurück zum Zitat Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95 Hill R (1967) The essential structure of constitutive laws for metal composites and polycrystals. J Mech Phys Solids 15:79–95
67.
Zurück zum Zitat Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25:309–338 Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25:309–338
68.
Zurück zum Zitat Joseph VR (2016) Space-filling designs for computer experiments: a review. Qual Eng 28:28–35 Joseph VR (2016) Space-filling designs for computer experiments: a review. Qual Eng 28:28–35
69.
Zurück zum Zitat Pronzato L, Müller WG (2012) Design of computer experiments: space filling and beyond. Stat Comput 22:681–701 Pronzato L, Müller WG (2012) Design of computer experiments: space filling and beyond. Stat Comput 22:681–701
70.
Zurück zum Zitat Tang B (1993) Orthogonal array-based latin hypercubes. J Am Stat Assoc 88:1392–1397 Tang B (1993) Orthogonal array-based latin hypercubes. J Am Stat Assoc 88:1392–1397
71.
Zurück zum Zitat Deutsch JL, Deutsch CV (2012) Latin hypercube sampling with multidimensional uniformity. J Stat Plan Inference 142:763–772 Deutsch JL, Deutsch CV (2012) Latin hypercube sampling with multidimensional uniformity. J Stat Plan Inference 142:763–772
72.
Zurück zum Zitat Moza S (2019) sahilm89/lhsmdu: first release for this code (Zenodo) Moza S (2019) sahilm89/lhsmdu: first release for this code (Zenodo)
73.
Zurück zum Zitat Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Rev Comput Stat 2:128–149 Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Rev Comput Stat 2:128–149
74.
Zurück zum Zitat Weisstein EW (2002) Legendre polynomial. MathWorld–Wolfram Web Resour Weisstein EW (2002) Legendre polynomial. MathWorld–Wolfram Web Resour
75.
Zurück zum Zitat Franciosi P, Zaoui A (1982) Multislip in fcc crystals a theoretical approach compared with experimental data. Acta Metall 30:1627–1637 Franciosi P, Zaoui A (1982) Multislip in fcc crystals a theoretical approach compared with experimental data. Acta Metall 30:1627–1637
76.
Zurück zum Zitat Franciosi P, Zaoui A (1982) Multislip tests on copper crystals: a junctions hardening effect. Acta Metall 30:2141–2151 Franciosi P, Zaoui A (1982) Multislip tests on copper crystals: a junctions hardening effect. Acta Metall 30:2141–2151
77.
Zurück zum Zitat Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Pergamon Press, Oxford Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Pergamon Press, Oxford
78.
Zurück zum Zitat Austin RA, McDowell DL (2011) A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int J Plast 27:1–24 Austin RA, McDowell DL (2011) A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates. Int J Plast 27:1–24
79.
Zurück zum Zitat Lloyd JT, Clayton JD, Austin RA, McDowell DL (2014) Plane wave simulation of elastic-viscoplastic single crystals. J Mech Phys Solids 69:14–32 Lloyd JT, Clayton JD, Austin RA, McDowell DL (2014) Plane wave simulation of elastic-viscoplastic single crystals. J Mech Phys Solids 69:14–32
80.
Zurück zum Zitat Dong Y, Nogaret T, Curtin WA (2010) Scaling of dislocation strengthening by multiple obstacle types. Metall Mater Trans A 41:1954–1960 Dong Y, Nogaret T, Curtin WA (2010) Scaling of dislocation strengthening by multiple obstacle types. Metall Mater Trans A 41:1954–1960
81.
Zurück zum Zitat Lagerpusch U, Mohles V, Baither D, Anczykowski B, Nembach E (2000) Double strengthening of copper by dissolved gold-atoms and by incoherent SiO2-particles: how do the two strengthening contributions superimpose? Acta Mater 48:3647–3656 Lagerpusch U, Mohles V, Baither D, Anczykowski B, Nembach E (2000) Double strengthening of copper by dissolved gold-atoms and by incoherent SiO2-particles: how do the two strengthening contributions superimpose? Acta Mater 48:3647–3656
82.
Zurück zum Zitat Kitayama K, Tomé CN, Rauch EF, Gracio JJ, Barlat F (2013) A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels. Int J Plast 46:54–69 Kitayama K, Tomé CN, Rauch EF, Gracio JJ, Barlat F (2013) A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels. Int J Plast 46:54–69
83.
Zurück zum Zitat Estrin Y (1998) Dislocation theory based constitutive modelling: foundations and applications. J Mater Process Technol 80–81:33–39 Estrin Y (1998) Dislocation theory based constitutive modelling: foundations and applications. J Mater Process Technol 80–81:33–39
Metadaten
Titel
Data-Driven Constitutive Model for the Inelastic Response of Metals: Application to 316H Steel
verfasst von
Aaron E. Tallman
M. Arul Kumar
Andrew Castillo
Wei Wen
Laurent Capolungo
Carlos N. Tomé
Publikationsdatum
02.10.2020
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 4/2020
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-020-00181-5

Weitere Artikel der Ausgabe 4/2020

Integrating Materials and Manufacturing Innovation 4/2020 Zur Ausgabe

Thematic Section: 5th International Congress on 3D Materials Science

Unsupervised Deep Learning for Laboratory-Based Diffraction Contrast Tomography

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.