Skip to main content
Erschienen in: Autonomous Robots 7/2019

14.01.2019

Deep learning of structured environments for robot search

verfasst von: Jeffrey A. Caley, Nicholas R. J. Lawrance, Geoffrey A. Hollinger

Erschienen in: Autonomous Robots | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Robots often operate in built environments containing underlying structure that can be exploited to help predict future observations. In this work, we present a framework based on convolutional neural networks to predict point of interest locations in structured environments. The proposed technique exploits the inherent structure of the environment to train a convolutional neural network that is leveraged to facilitate robotic search. We start by investigating environments where the full environmental structure is known, and then we extend the work to unknown environments. Experimental results show the proposed framework provides a reliable method for increasing the efficiency of current search methods across multiple domains. Finally, we demonstrate the proposed framework increases the search efficiency of a mobile robot in a real-world office environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aydemir, A., Jensfelt, P., & Folkesson, J. (2012). What can we learn from 38,000 rooms? reasoning about unexplored space in indoor environments. In Proceedings IEEE international conference on intelligent robots and systems (pp. 4675–4682). Aydemir, A., Jensfelt, P., & Folkesson, J. (2012). What can we learn from 38,000 rooms? reasoning about unexplored space in indoor environments. In Proceedings IEEE international conference on intelligent robots and systems (pp. 4675–4682).
Zurück zum Zitat Bai, S., Chen, F., & Englot, B. (2017). Toward autonomous mapping and exploration for mobile robots through deep supervised learning. In International conference on intelligent robots and systems (pp. 2379–2384). IEEE. Bai, S., Chen, F., & Englot, B. (2017). Toward autonomous mapping and exploration for mobile robots through deep supervised learning. In International conference on intelligent robots and systems (pp. 2379–2384). IEEE.
Zurück zum Zitat Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.CrossRef Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.CrossRef
Zurück zum Zitat Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., & Kleywegt, A. (2003). Robot exploration withcombinatorial auctions. In Proceedings of IEEE international conference on intelligent robots and systems (vol. 2, pp. 1957–1962). Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., & Kleywegt, A. (2003). Robot exploration withcombinatorial auctions. In Proceedings of IEEE international conference on intelligent robots and systems (vol. 2, pp. 1957–1962).
Zurück zum Zitat Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000). Collaborative multi-robot exploration. In Proceedings of the IEEE international conference on robotics and automation (vol. 1, pp. 476–481). Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000). Collaborative multi-robot exploration. In Proceedings of the IEEE international conference on robotics and automation (vol. 1, pp. 476–481).
Zurück zum Zitat Burt, P. J., & Adelson, E. H. (1987). The Laplacian pyramid as a compact image code. In M. A. Fischler & O. Firschein (Eds.), Readings in computer vision (pp. 671–679). Amsterdam: Elsevier. Burt, P. J., & Adelson, E. H. (1987). The Laplacian pyramid as a compact image code. In M. A. Fischler & O. Firschein (Eds.), Readings in computer vision (pp. 671–679). Amsterdam: Elsevier.
Zurück zum Zitat Caley, J. A, Lawrance, N. R. J., & Hollinger, G. A. (2016). Deep learning of structured environments for robot search. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3987–3992). IEEE. Caley, J. A, Lawrance, N. R. J., & Hollinger, G. A. (2016). Deep learning of structured environments for robot search. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3987–3992). IEEE.
Zurück zum Zitat Chen, T., & Guestrin, C., (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785–794). ACM. Chen, T., & Guestrin, C., (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785–794). ACM.
Zurück zum Zitat Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In Proceedings of the IEEE international conference on computer vision and pattern recognition (pp. 3642–3649). Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In Proceedings of the IEEE international conference on computer vision and pattern recognition (pp. 3642–3649).
Zurück zum Zitat Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of the IEEE international conference on computer vision and pattern recognition (vol. 1, pp. 886–893). Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of the IEEE international conference on computer vision and pattern recognition (vol. 1, pp. 886–893).
Zurück zum Zitat Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.MathSciNetCrossRefMATH Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.MathSciNetCrossRefMATH
Zurück zum Zitat Guo, X., Singh, S., Lee, H., Lewis, R. L, & Wang, X. (2014). Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning. In Proceedings of the advances in neural information processing systems (pp. 3338–3346). Guo, X., Singh, S., Lee, H., Lewis, R. L, & Wang, X. (2014). Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning. In Proceedings of the advances in neural information processing systems (pp. 3338–3346).
Zurück zum Zitat Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.CrossRef Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., et al. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.CrossRef
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105). Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).
Zurück zum Zitat Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), 98–113.CrossRef Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), 98–113.CrossRef
Zurück zum Zitat Lenz, I., Knepper, R., & Saxena, A. (2015). DeepMPC: Learning deep latent features for model predictive control. In Proceedings of the robotics: science and systems conference, Rome, Italy. Lenz, I., Knepper, R., & Saxena, A. (2015). DeepMPC: Learning deep latent features for model predictive control. In Proceedings of the robotics: science and systems conference, Rome, Italy.
Zurück zum Zitat Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. Journal of Machine Learning Research, 17(39), 1–40.MathSciNetMATH Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. Journal of Machine Learning Research, 17(39), 1–40.MathSciNetMATH
Zurück zum Zitat Levine, S., Pastor, P., Krizhevsky, A., & Quillen, D. (2016). Learning hand-eye coordination for robotic grasping with large-scale data collection. In International symposium on experimental robotics (pp. 173–184). Berlin: Springer. Levine, S., Pastor, P., Krizhevsky, A., & Quillen, D. (2016). Learning hand-eye coordination for robotic grasping with large-scale data collection. In International symposium on experimental robotics (pp. 173–184). Berlin: Springer.
Zurück zum Zitat Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dolla, P. (2017). Focal loss for dense object detection. In 2017 IEEE international conference on computer vision (ICCV) (pp. 2980–2988). IEEE. Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dolla, P. (2017). Focal loss for dense object detection. In 2017 IEEE international conference on computer vision (ICCV) (pp. 2980–2988). IEEE.
Zurück zum Zitat Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRef Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRef
Zurück zum Zitat Macé, S., Locteau, H., Valveny, E., & Tabbone, S. (2010). A system to detect rooms in architectural floor plan images. In Proceedings of the IAPR international workshop on document analysis systems (pp. 167–174). ACM. Macé, S., Locteau, H., Valveny, E., & Tabbone, S. (2010). A system to detect rooms in architectural floor plan images. In Proceedings of the IAPR international workshop on document analysis systems (pp. 167–174). ACM.
Zurück zum Zitat Maddison, C. J, Huang, A., Sutskever, I., & Silver, D. (2014). Move evaluation in Go using deep convolutional neural networks. arXiv preprint arXiv:1412.6564. Maddison, C. J, Huang, A., Sutskever, I., & Silver, D. (2014). Move evaluation in Go using deep convolutional neural networks. arXiv preprint arXiv:​1412.​6564.
Zurück zum Zitat Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86.CrossRef Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86.CrossRef
Zurück zum Zitat Perea Ström, D., Nenci, F., & Stachniss, C. (2015). Predictive exploration considering previously mapped environments. In Proceedings of the IEEE international conference on robotics and automation (pp. 2761–2766). Perea Ström, D., Nenci, F., & Stachniss, C. (2015). Predictive exploration considering previously mapped environments. In Proceedings of the IEEE international conference on robotics and automation (pp. 2761–2766).
Zurück zum Zitat Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J. et al. (2009). ROS: An open-source robot operating system. Kobe, Japan. In Proceedings of the ICRA workshop on open source software. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J. et al. (2009). ROS: An open-source robot operating system. Kobe, Japan. In Proceedings of the ICRA workshop on open source software.
Zurück zum Zitat Richter, C., & Roy, N. (2017). Safe visual navigation via deep learning and novelty detection. In Proceedings of the robotics: Science and systems conference. Richter, C., & Roy, N. (2017). Safe visual navigation via deep learning and novelty detection. In Proceedings of the robotics: Science and systems conference.
Zurück zum Zitat Rota Bulo, S., Neuhold, G., & Kontschieder, P. (2017). Loss max-pooling for semantic image segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2126–2135). Rota Bulo, S., Neuhold, G., & Kontschieder, P. (2017). Loss max-pooling for semantic image segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2126–2135).
Zurück zum Zitat Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556.
Zurück zum Zitat Tai, L., Li, S., & Liu, M. (2016). A deep-network solution towards model-less obstacle avoidance. In International conference on intelligent robots and systems (pp. 2759–2764). IEEE. Tai, L., Li, S., & Liu, M. (2016). A deep-network solution towards model-less obstacle avoidance. In International conference on intelligent robots and systems (pp. 2759–2764). IEEE.
Zurück zum Zitat Tola, E., Lepetit, V., & Fua, P. (2010). Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 815–830.CrossRef Tola, E., Lepetit, V., & Fua, P. (2010). Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 815–830.CrossRef
Zurück zum Zitat Wurm, K. M., Stachniss, C., & Burgard, W. (2008). Coordinated multi-robot exploration using a segmentation of the environment. In Proceedings of the IEEE international conference on intelligent robots and systems (pp. 1160–1165). Wurm, K. M., Stachniss, C., & Burgard, W. (2008). Coordinated multi-robot exploration using a segmentation of the environment. In Proceedings of the IEEE international conference on intelligent robots and systems (pp. 1160–1165).
Zurück zum Zitat Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In Proceedings of the IEEE international symposium on computational intelligence in robotics and automation (pp. 146–151). Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In Proceedings of the IEEE international symposium on computational intelligence in robotics and automation (pp. 146–151).
Zurück zum Zitat Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the international conference on autonomous agents (pp. 47–53). ACM. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the international conference on autonomous agents (pp. 47–53). ACM.
Metadaten
Titel
Deep learning of structured environments for robot search
verfasst von
Jeffrey A. Caley
Nicholas R. J. Lawrance
Geoffrey A. Hollinger
Publikationsdatum
14.01.2019
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 7/2019
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-018-09821-4

Weitere Artikel der Ausgabe 7/2019

Autonomous Robots 7/2019 Zur Ausgabe

Neuer Inhalt