Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

29.07.2019 | Original Article | Ausgabe 4/2020

International Journal of Machine Learning and Cybernetics 4/2020

DeepSite: bidirectional LSTM and CNN models for predicting DNA–protein binding

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 4/2020
Autoren:
Yongqing Zhang, Shaojie Qiao, Shengjie Ji, Yizhou Li
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Transcription factors are cis-regulatory molecules that bind to specific sub-regions of DNA promoters and initiate transcription, the process that regulates the conversion of genetic information from DNA to RNA. Several computational methods have been developed to predict DNA–protein binding sites in DNA sequence using convolutional neural network (CNN). However, these techniques could indicate the dependency information of DNA sequence information in the framework of CNN. In addition, these methods are not accurate enough in prediction of the DNA–protein binding sites from the DNA sequence. In this study, we employ the bidirectional long short-term memory (BLSTM) and CNN to capture long-term dependencies between the sequence motifs in DNA, which is called DeepSite. Apart from traditional CNN, which includes six layers: input layer, BLSTM layer, CNN layer, pooling layer, full connection layer and output layer, DeepSite approach can predict DNA–protein binding sites with 87.12% sensitivity, 91.06% specificity, 89.19% accuracy and 0.783 MCC, when tested on the 690 Chip-seq experiments from ENCODE. Lastly, we conclude that our proposed method can also be applied to find DNA–protein binding sites in different DNA sequences.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

International Journal of Machine Learning and Cybernetics 4/2020 Zur Ausgabe