Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2023

23.07.2022 | Research Article

Delay-dependent transitions of phase synchronization and coupling symmetry between neurons shaped by spike-timing-dependent plasticity

verfasst von: Mojtaba Madadi Asl, Saeideh Ramezani Akbarabadi

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synchronization plays a key role in learning and memory by facilitating the communication between neurons promoted by synaptic plasticity. Spike-timing-dependent plasticity (STDP) is a form of synaptic plasticity that modifies the strength of synaptic connections between neurons based on the coincidence of pre- and postsynaptic spikes. In this way, STDP simultaneously shapes the neuronal activity and synaptic connectivity in a feedback loop. However, transmission delays due to the physical distance between neurons affect neuronal synchronization and the symmetry of synaptic coupling. To address the question that how transmission delays and STDP can jointly determine the emergent pairwise activity-connectivity patterns, we studied phase synchronization properties and coupling symmetry between two bidirectionally coupled neurons using both phase oscillator and conductance-based neuron models. We show that depending on the range of transmission delays, the activity of the two-neuron motif can achieve an in-phase/anti-phase synchronized state and its connectivity can attain a symmetric/asymmetric coupling regime. The coevolutionary dynamics of the neuronal system and the synaptic weights due to STDP stabilizes the motif in either one of these states by transitions between in-phase/anti-phase synchronization states and symmetric/asymmetric coupling regimes at particular transmission delays. These transitions crucially depend on the phase response curve (PRC) of the neurons, but they are relatively robust to the heterogeneity of transmission delays and potentiation-depression imbalance of the STDP profile.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Achuthan S, Canavier CC (2009) Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. J Neurosci 29(16):5218–5233PubMedPubMedCentralCrossRef Achuthan S, Canavier CC (2009) Phase-resetting curves determine synchronization, phase locking, and clustering in networks of neural oscillators. J Neurosci 29(16):5218–5233PubMedPubMedCentralCrossRef
Zurück zum Zitat Agmon-Snir H, Segev I (1993) Signal delay and input synchronization in passive dendritic structures. J Neurophysiol 70(5):2066–2085PubMedCrossRef Agmon-Snir H, Segev I (1993) Signal delay and input synchronization in passive dendritic structures. J Neurophysiol 70(5):2066–2085PubMedCrossRef
Zurück zum Zitat Aoki T, Aoyagi T (2009) Co-evolution of phases and connection strengths in a network of phase oscillators. Phys Rev Lett 102(3):034101PubMedCrossRef Aoki T, Aoyagi T (2009) Co-evolution of phases and connection strengths in a network of phase oscillators. Phys Rev Lett 102(3):034101PubMedCrossRef
Zurück zum Zitat Asadi A, Madadi Asl M, Vahabie AH, Valizadeh A (2022) The origin of abnormal beta oscillations in the parkinsonian corticobasal ganglia circuits. Parkinson’s Disease 2022(7524066):1–13 Asadi A, Madadi Asl M, Vahabie AH, Valizadeh A (2022) The origin of abnormal beta oscillations in the parkinsonian corticobasal ganglia circuits. Parkinson’s Disease 2022(7524066):1–13
Zurück zum Zitat Axmacher N, Mormann F, Fernández G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52(1):170–182PubMedCrossRef Axmacher N, Mormann F, Fernández G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52(1):170–182PubMedCrossRef
Zurück zum Zitat Babadi B, Abbott LF (2013) Pairwise analysis can account for network structures arising from spike-timing dependent plasticity. PLoS Comput Biol 9(2):e1002906PubMedPubMedCentralCrossRef Babadi B, Abbott LF (2013) Pairwise analysis can account for network structures arising from spike-timing dependent plasticity. PLoS Comput Biol 9(2):e1002906PubMedPubMedCentralCrossRef
Zurück zum Zitat Barardi A, Sancristóbal B, Garcia-Ojalvo J (2014) Phase-coherence transitions and communication in the gamma range between delay-coupled neuronal populations. PLoS Comput Biol 10(7):e1003723PubMedPubMedCentralCrossRef Barardi A, Sancristóbal B, Garcia-Ojalvo J (2014) Phase-coherence transitions and communication in the gamma range between delay-coupled neuronal populations. PLoS Comput Biol 10(7):e1003723PubMedPubMedCentralCrossRef
Zurück zum Zitat Berner R, Vock S, Schöll E, Yanchuk S (2021) Desynchronization transitions in adaptive networks. Phys Rev Lett 126(2):028301PubMedCrossRef Berner R, Vock S, Schöll E, Yanchuk S (2021) Desynchronization transitions in adaptive networks. Phys Rev Lett 126(2):028301PubMedCrossRef
Zurück zum Zitat Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472PubMedPubMedCentralCrossRef Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472PubMedPubMedCentralCrossRef
Zurück zum Zitat Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929PubMedCrossRef Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929PubMedCrossRef
Zurück zum Zitat Câteau H, Kitano K, Fukai T (2008) Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering. Phys Rev E 77(5):051909CrossRef Câteau H, Kitano K, Fukai T (2008) Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering. Phys Rev E 77(5):051909CrossRef
Zurück zum Zitat Ermentrout B (1996) Type i membranes, phase resetting curves, and synchrony. Neural Comput 8(5):979–1001PubMedCrossRef Ermentrout B (1996) Type i membranes, phase resetting curves, and synchrony. Neural Comput 8(5):979–1001PubMedCrossRef
Zurück zum Zitat Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci 95(3):1259–1264PubMedPubMedCentralCrossRef Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci 95(3):1259–1264PubMedPubMedCentralCrossRef
Zurück zum Zitat Ernst U, Pawelzik K, Geisel T (1995) Synchronization induced by temporal delays in pulse-coupled oscillators. Phys Rev Lett 74(9):1570PubMedCrossRef Ernst U, Pawelzik K, Geisel T (1995) Synchronization induced by temporal delays in pulse-coupled oscillators. Phys Rev Lett 74(9):1570PubMedCrossRef
Zurück zum Zitat Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118PubMedCrossRef Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12(2):105–118PubMedCrossRef
Zurück zum Zitat Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879):433–438PubMedCrossRef Froemke RC, Dan Y (2002) Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879):433–438PubMedCrossRef
Zurück zum Zitat Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76PubMedCrossRef Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383(6595):76PubMedCrossRef
Zurück zum Zitat Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks iv. Biol Cybern 101(5–6):427PubMedCrossRef Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks iv. Biol Cybern 101(5–6):427PubMedCrossRef
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500PubMedPubMedCentralCrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500PubMedPubMedCentralCrossRef
Zurück zum Zitat Izhikevich EM (1999) Weakly pulse-coupled oscillators, fm interactions, synchronization, and oscillatory associative memory. IEEE Trans Neural Networks 10(3):508–526PubMedCrossRef Izhikevich EM (1999) Weakly pulse-coupled oscillators, fm interactions, synchronization, and oscillatory associative memory. IEEE Trans Neural Networks 10(3):508–526PubMedCrossRef
Zurück zum Zitat Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14(8):933–944PubMedCrossRef Izhikevich EM, Gally JA, Edelman GM (2004) Spike-timing dynamics of neuronal groups. Cereb Cortex 14(8):933–944PubMedCrossRef
Zurück zum Zitat Khoshkhou M, Montakhab A (2019) Spike-timing-dependent plasticity with axonal delay tunes networks of izhikevich neurons to the edge of synchronization transition with scale-free avalanches. Front Syst Neurosci 13:73PubMedPubMedCentralCrossRef Khoshkhou M, Montakhab A (2019) Spike-timing-dependent plasticity with axonal delay tunes networks of izhikevich neurons to the edge of synchronization transition with scale-free avalanches. Front Syst Neurosci 13:73PubMedPubMedCentralCrossRef
Zurück zum Zitat Kim SY, Lim W (2018) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12(3):315–342PubMedPubMedCentralCrossRef Kim SY, Lim W (2018) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12(3):315–342PubMedPubMedCentralCrossRef
Zurück zum Zitat Knoblauch A, Hauser F, Gewaltig M-O, Körner E, Palm G (2012) Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Front Comput Neurosci 6(55):55PubMedPubMedCentral Knoblauch A, Hauser F, Gewaltig M-O, Körner E, Palm G (2012) Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony? Front Comput Neurosci 6(55):55PubMedPubMedCentral
Zurück zum Zitat Knoblauch A, Sommer FT (2003) Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas. Neurocomputing 52:301–306CrossRef Knoblauch A, Sommer FT (2003) Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas. Neurocomputing 52:301–306CrossRef
Zurück zum Zitat Knoblauch A, Sommer FT (2004) Spike-timing-dependent synaptic plasticity can form zero lag links for cortical oscillations. Neurocomputing 58:185–190CrossRef Knoblauch A, Sommer FT (2004) Spike-timing-dependent synaptic plasticity can form zero lag links for cortical oscillations. Neurocomputing 58:185–190CrossRef
Zurück zum Zitat Kozloski J, Cecchi GA (2010) A theory of loop formation and elimination by spike timing-dependent plasticity. Front Neural Circuits 4:7PubMedPubMedCentral Kozloski J, Cecchi GA (2010) A theory of loop formation and elimination by spike timing-dependent plasticity. Front Neural Circuits 4:7PubMedPubMedCentral
Zurück zum Zitat Li X, Wu Y, Wei M, Guo Y, Yu Z, Wang H, Li Z, Fan H (2021) A novel index of functional connectivity: phase lag based on wilcoxon signed rank test. Cogn Neurodyn 15(4):621–636PubMedCrossRef Li X, Wu Y, Wei M, Guo Y, Yu Z, Wang H, Li Z, Fan H (2021) A novel index of functional connectivity: phase lag based on wilcoxon signed rank test. Cogn Neurodyn 15(4):621–636PubMedCrossRef
Zurück zum Zitat Lubenov EV, Siapas AG (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58(1):118–131PubMedCrossRef Lubenov EV, Siapas AG (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58(1):118–131PubMedCrossRef
Zurück zum Zitat Madadi Asl M, Asadi A, Enayati J, Valizadeh A (2022) Inhibitory spike-timing-dependent plasticity can account for pathological strengthening of pallido-subthalamic synapses in parkinson’s disease. Front Physiol 13(915626):1–13 Madadi Asl M, Asadi A, Enayati J, Valizadeh A (2022) Inhibitory spike-timing-dependent plasticity can account for pathological strengthening of pallido-subthalamic synapses in parkinson’s disease. Front Physiol 13(915626):1–13
Zurück zum Zitat Madadi Asl M, Ramezani Akbarabadi S (2021) Voltage-dependent plasticity of spin-polarized conductance in phenyl-based single-molecule magnetic tunnel junctions. PLoS ONE 16(9):e0257228PubMedPubMedCentralCrossRef Madadi Asl M, Ramezani Akbarabadi S (2021) Voltage-dependent plasticity of spin-polarized conductance in phenyl-based single-molecule magnetic tunnel junctions. PLoS ONE 16(9):e0257228PubMedPubMedCentralCrossRef
Zurück zum Zitat Madadi Asl M, Vahabie AH, Valizadeh A (2019) Dopaminergic modulation of synaptic plasticity, its role in neuropsychiatric disorders, and its computational modeling. Basic Clinical Neurosci 10(1):1 Madadi Asl M, Vahabie AH, Valizadeh A (2019) Dopaminergic modulation of synaptic plasticity, its role in neuropsychiatric disorders, and its computational modeling. Basic Clinical Neurosci 10(1):1
Zurück zum Zitat Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA (2022) Spike-timing-dependent plasticity mediated by dopamine and its role in parkinson’s disease pathophysiology. Front Netw Physiol 2(817524):1–18 Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA (2022) Spike-timing-dependent plasticity mediated by dopamine and its role in parkinson’s disease pathophysiology. Front Netw Physiol 2(817524):1–18
Zurück zum Zitat Madadi Asl M, Valizadeh A, Tass PA (2017) Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses. Sci Rep 7(1):39682PubMedPubMedCentralCrossRef Madadi Asl M, Valizadeh A, Tass PA (2017) Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses. Sci Rep 7(1):39682PubMedPubMedCentralCrossRef
Zurück zum Zitat Madadi Asl M, Valizadeh A, Tass PA (2018) Delay-induced multistability and loop formation in neuronal networks with spike-timing-dependent plasticity. Sci Rep 8(1):12068PubMedPubMedCentralCrossRef Madadi Asl M, Valizadeh A, Tass PA (2018) Delay-induced multistability and loop formation in neuronal networks with spike-timing-dependent plasticity. Sci Rep 8(1):12068PubMedPubMedCentralCrossRef
Zurück zum Zitat Madadi Asl M, Valizadeh A, Tass PA (2018) Dendritic and axonal propagation delays may shape neuronal networks with plastic synapses. Front Physiol 9:1849PubMedPubMedCentralCrossRef Madadi Asl M, Valizadeh A, Tass PA (2018) Dendritic and axonal propagation delays may shape neuronal networks with plastic synapses. Front Physiol 9:1849PubMedPubMedCentralCrossRef
Zurück zum Zitat Madadi Asl M, Valizadeh A, Tass PA (2018) Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks. Chaos 28(10):106308PubMedCrossRef Madadi Asl M, Valizadeh A, Tass PA (2018) Propagation delays determine neuronal activity and synaptic connectivity patterns emerging in plastic neuronal networks. Chaos 28(10):106308PubMedCrossRef
Zurück zum Zitat Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275(5297):213–215PubMedCrossRef Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275(5297):213–215PubMedCrossRef
Zurück zum Zitat Matias FS, Carelli PV, Mirasso CR, Copelli M (2015) Self-organized near-zero-lag synchronization induced by spike-timing dependent plasticity in cortical populations. PLoS ONE 10(10):e0140504PubMedPubMedCentralCrossRef Matias FS, Carelli PV, Mirasso CR, Copelli M (2015) Self-organized near-zero-lag synchronization induced by spike-timing dependent plasticity in cortical populations. PLoS ONE 10(10):e0140504PubMedPubMedCentralCrossRef
Zurück zum Zitat Mikkelsen K, Imparato A, Torcini A (2013) Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity. Phys Rev Lett 110(20):208101PubMedCrossRef Mikkelsen K, Imparato A, Torcini A (2013) Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity. Phys Rev Lett 110(20):208101PubMedCrossRef
Zurück zum Zitat Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19(6):1437–1467PubMedCrossRef Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19(6):1437–1467PubMedCrossRef
Zurück zum Zitat Popovych OV, Yanchuk S, Tass PA (2013) Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity. Sci Rep 3(1):1–6CrossRef Popovych OV, Yanchuk S, Tass PA (2013) Self-organized noise resistance of oscillatory neural networks with spike timing-dependent plasticity. Sci Rep 3(1):1–6CrossRef
Zurück zum Zitat Ratas I, Pyragas K, Tass PA (2021) Multistability in a star network of kuramoto-type oscillators with synaptic plasticity. Sci Rep 11(1):1–15 Ratas I, Pyragas K, Tass PA (2021) Multistability in a star network of kuramoto-type oscillators with synaptic plasticity. Sci Rep 11(1):1–15
Zurück zum Zitat Ren Q, Zhao J (2007) Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys Rev E 76(1):016207CrossRef Ren Q, Zhao J (2007) Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys Rev E 76(1):016207CrossRef
Zurück zum Zitat Rezaei H, Aertsen A, Kumar A, Valizadeh A (2020) Facilitating the propagation of spiking activity in feedforward networks by including feedback. PLoS Comput Biol 16(8):e1008033PubMedPubMedCentralCrossRef Rezaei H, Aertsen A, Kumar A, Valizadeh A (2020) Facilitating the propagation of spiking activity in feedforward networks by including feedback. PLoS Comput Biol 16(8):e1008033PubMedPubMedCentralCrossRef
Zurück zum Zitat Saa A (2018) Symmetries and synchronization in multilayer random networks. Phys Rev E 97(4):042304PubMedCrossRef Saa A (2018) Symmetries and synchronization in multilayer random networks. Phys Rev E 97(4):042304PubMedCrossRef
Zurück zum Zitat Sadeghi S, Valizadeh A (2014) Synchronization of delayed coupled neurons in presence of inhomogeneity. J Comput Neurosci 36(1):55–66PubMedCrossRef Sadeghi S, Valizadeh A (2014) Synchronization of delayed coupled neurons in presence of inhomogeneity. J Comput Neurosci 36(1):55–66PubMedCrossRef
Zurück zum Zitat Schierwagen A, Claus C (2001) Dendritic morphology and signal delay in superior colliculus neurons. Neurocomputing 38:343–350CrossRef Schierwagen A, Claus C (2001) Dendritic morphology and signal delay in superior colliculus neurons. Neurocomputing 38:343–350CrossRef
Zurück zum Zitat Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926PubMedCrossRef Song S, Miller KD, Abbott LF (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926PubMedCrossRef
Zurück zum Zitat Stoelzel CR, Bereshpolova Y, Alonso J-M, Swadlow HA (2017) Axonal conduction delays, brain state, and corticogeniculate communication. J Neurosci 37(26):6342–6358PubMedPubMedCentralCrossRef Stoelzel CR, Bereshpolova Y, Alonso J-M, Swadlow HA (2017) Axonal conduction delays, brain state, and corticogeniculate communication. J Neurosci 37(26):6342–6358PubMedPubMedCentralCrossRef
Zurück zum Zitat Swadlow HA (1990) Efferent neurons and suspected interneurons in s-1 forelimb representation of the awake rabbit: receptive fields and axonal properties. J Neurophysiol 63(6):1477–1498PubMedCrossRef Swadlow HA (1990) Efferent neurons and suspected interneurons in s-1 forelimb representation of the awake rabbit: receptive fields and axonal properties. J Neurophysiol 63(6):1477–1498PubMedCrossRef
Zurück zum Zitat Ter Wal M, Tiesinga PH (2017) Phase difference between model cortical areas determines level of information transfer. Front Comput Neurosci 11:6PubMedPubMedCentral Ter Wal M, Tiesinga PH (2017) Phase difference between model cortical areas determines level of information transfer. Front Comput Neurosci 11:6PubMedPubMedCentral
Zurück zum Zitat Wang R, Zhang Z, Qu J, Cao J (2011) Phase synchronization motion and neural coding in dynamic transmission of neural information. IEEE Trans Neural Networks 22(7):1097–1106PubMedCrossRef Wang R, Zhang Z, Qu J, Cao J (2011) Phase synchronization motion and neural coding in dynamic transmission of neural information. IEEE Trans Neural Networks 22(7):1097–1106PubMedCrossRef
Zurück zum Zitat Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268PubMedCrossRef Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268PubMedCrossRef
Zurück zum Zitat Woodman MM, Canavier CC (2011) Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators. J Comput Neurosci 31(2):401–418PubMedPubMedCentralCrossRef Woodman MM, Canavier CC (2011) Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators. J Comput Neurosci 31(2):401–418PubMedPubMedCentralCrossRef
Zurück zum Zitat Xie H, Gong Y, Wang Q (2016) Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks. Eur Phys J B 89(7):1–7CrossRef Xie H, Gong Y, Wang Q (2016) Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks. Eur Phys J B 89(7):1–7CrossRef
Zurück zum Zitat Zhigulin VP, Rabinovich MI, Huerta R, Abarbanel HD (2003) Robustness and enhancement of neural synchronization by activity-dependent coupling. Phys Rev E 67(2):021901CrossRef Zhigulin VP, Rabinovich MI, Huerta R, Abarbanel HD (2003) Robustness and enhancement of neural synchronization by activity-dependent coupling. Phys Rev E 67(2):021901CrossRef
Zurück zum Zitat Ziaeemehr A, Valizadeh A (2021) Frequency-resolved functional connectivity: role of delay and the strength of connections. Front Neural Circuits 15:608655PubMedPubMedCentralCrossRef Ziaeemehr A, Valizadeh A (2021) Frequency-resolved functional connectivity: role of delay and the strength of connections. Front Neural Circuits 15:608655PubMedPubMedCentralCrossRef
Metadaten
Titel
Delay-dependent transitions of phase synchronization and coupling symmetry between neurons shaped by spike-timing-dependent plasticity
verfasst von
Mojtaba Madadi Asl
Saeideh Ramezani Akbarabadi
Publikationsdatum
23.07.2022
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2023
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09850-x

Weitere Artikel der Ausgabe 2/2023

Cognitive Neurodynamics 2/2023 Zur Ausgabe

Neuer Inhalt