Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 10/2019

10.04.2019

Dependence of phase distribution and magnetic properties of milled and annealed ZnO·Fe2O3 nanostructures as efficient adsorbents of heavy metals

verfasst von: L. Khezami, T. S. Alwqyan, M. Bououdina, B. Al-Najar, M. N. Shaikh, A. Modwi, Kamal K. Taha

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mixed oxides and ferrites nanoparticles (NPs) have shown a considerable potential in environmental applications of purifying wastewater from heavy metal by adsorption. In this paper, ZnO·Fe2O3 powders mixture were mechanical milled followed by annealing at 500, 600 and 700 °C. X-ray diffraction characterization confirmed the phase composition and showed crystal growth from 7 to 11 nm due to annealing. Scanning electron microscope revealed agglomerated and spherical particles that increased in size with same trend as XRD results. These nanopowders exhibited a ferromagnetic behavior with varying magnetization and coercivity, the saturation magnetization was found to decrease from 1.45 to 0.09 emu/g with increasing annealing temperature. This was explained due to phase transition and the allocation of A and B atoms in the tetrahedral and octahedral sites in ferrites as a result of annealing. Moreover, BET surface calculations showed an un-patterned pore size distribution with a maximum surface area of 1.84 m2/g obtained after annealing at 500 °C. This sample also demonstrated the highest adsorption capacity at 49.42, 54.69 and 12.34 mg/g for heavy metals ions of nickel, cadmium and chromium, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5(10), 1561–1573 (2005)CrossRef Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5(10), 1561–1573 (2005)CrossRef
2.
Zurück zum Zitat R. Bomila, A. Venkatesan, S. Srinivasan, Structural, luminescence and photocatalytic properties of pure and octylamine capped ZnO nanoparticles. Optik 158, 565–573 (2018)CrossRef R. Bomila, A. Venkatesan, S. Srinivasan, Structural, luminescence and photocatalytic properties of pure and octylamine capped ZnO nanoparticles. Optik 158, 565–573 (2018)CrossRef
3.
Zurück zum Zitat J. Becker et al., Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C 115(28), 13844–13850 (2011)CrossRef J. Becker et al., Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C 115(28), 13844–13850 (2011)CrossRef
4.
Zurück zum Zitat P. Mokoena, Study of the Structure, Particle Morphology and Optical Properties of Mixed Metal Oxides (University of the Free State, Bloemfontein, 2017) P. Mokoena, Study of the Structure, Particle Morphology and Optical Properties of Mixed Metal Oxides (University of the Free State, Bloemfontein, 2017)
5.
Zurück zum Zitat L. Khezamia et al., Removal of Cadmium (II) from aqueous solution by zinc oxide nanoparticles: kinetic and thermodynamic studies. Desalination Water Treat. 62, 346–354 (2017)CrossRef L. Khezamia et al., Removal of Cadmium (II) from aqueous solution by zinc oxide nanoparticles: kinetic and thermodynamic studies. Desalination Water Treat. 62, 346–354 (2017)CrossRef
6.
Zurück zum Zitat B. Ladgaonkar, A. Vaingankar, X-ray diffraction investigation of cation distribution in CdχCu1-χFe2O4 ferrite system. Mater. Chem. Phys. 56(3), 280–283 (1998)CrossRef B. Ladgaonkar, A. Vaingankar, X-ray diffraction investigation of cation distribution in CdχCu1-χFe2O4 ferrite system. Mater. Chem. Phys. 56(3), 280–283 (1998)CrossRef
7.
Zurück zum Zitat Z. Bai, Y. Zhang, Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J. Alloys Compd. 675, 325–330 (2016)CrossRef Z. Bai, Y. Zhang, Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J. Alloys Compd. 675, 325–330 (2016)CrossRef
8.
Zurück zum Zitat A. Shirzadi, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of supported CuO–ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample. J. Mol. Catal. A 411, 222–229 (2016)CrossRef A. Shirzadi, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of supported CuO–ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample. J. Mol. Catal. A 411, 222–229 (2016)CrossRef
9.
Zurück zum Zitat V. Arumugam, K.G. Moodley, Mixed metal and metal oxide nanofibers: preparation, fabrication, and applications, in Handbook of Nanofibers (2018), pp. 1–24 V. Arumugam, K.G. Moodley, Mixed metal and metal oxide nanofibers: preparation, fabrication, and applications, in Handbook of Nanofibers (2018), pp. 1–24
10.
Zurück zum Zitat T. Tatarchuk et al., Structure-redox reactivity relationships in Co1−xZnxFe2O4: the role of stoichiometry. New J. Chem. 43(7), 3038–3049 (2019)CrossRef T. Tatarchuk et al., Structure-redox reactivity relationships in Co1−xZnxFe2O4: the role of stoichiometry. New J. Chem. 43(7), 3038–3049 (2019)CrossRef
11.
Zurück zum Zitat Q. Song, Z.J. Zhang, Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J. Am. Chem. Soc. 134(24), 10182–10190 (2012)CrossRef Q. Song, Z.J. Zhang, Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J. Am. Chem. Soc. 134(24), 10182–10190 (2012)CrossRef
12.
Zurück zum Zitat J. Kennedy et al., Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing. Nanotechnology 22(11), 115602 (2011)CrossRef J. Kennedy et al., Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing. Nanotechnology 22(11), 115602 (2011)CrossRef
13.
Zurück zum Zitat J. Leveneur et al., Large room temperature magnetoresistance in ion beam synthesized surface Fe nanoclusters on SiO2. Appl. Phys. Lett. 98(5), 053111 (2011)CrossRef J. Leveneur et al., Large room temperature magnetoresistance in ion beam synthesized surface Fe nanoclusters on SiO2. Appl. Phys. Lett. 98(5), 053111 (2011)CrossRef
14.
Zurück zum Zitat K. Niemirowicz et al., Magnetic nanoparticles as new diagnostic tools in medicine. Adv. Med. Sci. 57(2), 196–207 (2012)CrossRef K. Niemirowicz et al., Magnetic nanoparticles as new diagnostic tools in medicine. Adv. Med. Sci. 57(2), 196–207 (2012)CrossRef
15.
Zurück zum Zitat S. Medeiros et al., Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403(1–2), 139–161 (2011)CrossRef S. Medeiros et al., Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403(1–2), 139–161 (2011)CrossRef
16.
Zurück zum Zitat Y. Tang et al., Solvothermal synthesis of Co1-xNixFe2O4 nanoparticles and its application in ammonia vapors detection. Prog. Nat. Sci.: Mater. Int. 22(1), 53–58 (2012)CrossRef Y. Tang et al., Solvothermal synthesis of Co1-xNixFe2O4 nanoparticles and its application in ammonia vapors detection. Prog. Nat. Sci.: Mater. Int. 22(1), 53–58 (2012)CrossRef
17.
Zurück zum Zitat D. Lu et al., Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J. Alloy. Compd. 579, 336–342 (2013)CrossRef D. Lu et al., Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J. Alloy. Compd. 579, 336–342 (2013)CrossRef
18.
Zurück zum Zitat H. Gupta, P. Paul, N. Kumar, Synthesis and characterization of DHA/ZnO/ZnFe2O4 nanostructures for biomedical imaging application. Procedia Mater. Sci. 5, 198–203 (2014)CrossRef H. Gupta, P. Paul, N. Kumar, Synthesis and characterization of DHA/ZnO/ZnFe2O4 nanostructures for biomedical imaging application. Procedia Mater. Sci. 5, 198–203 (2014)CrossRef
19.
Zurück zum Zitat M. Ebrahimi et al., Magnetic properties of zinc ferrite nanoparticles synthesized by coprecipitation method. J. Supercond. Novel Magn. 27(6), 1587–1592 (2014)CrossRef M. Ebrahimi et al., Magnetic properties of zinc ferrite nanoparticles synthesized by coprecipitation method. J. Supercond. Novel Magn. 27(6), 1587–1592 (2014)CrossRef
20.
Zurück zum Zitat T. Marinca et al., Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling. Optoelectron. Adv. Mater. Rapid Commun. 5, 39–43 (2011) T. Marinca et al., Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling. Optoelectron. Adv. Mater. Rapid Commun. 5, 39–43 (2011)
21.
Zurück zum Zitat A. Singh et al., Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloy. Compd. 618, 475–483 (2015)CrossRef A. Singh et al., Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloy. Compd. 618, 475–483 (2015)CrossRef
22.
Zurück zum Zitat R. Rahimi, M. Heidari-Golafzani, M. Rabbani, Preparation and photocatalytic application of ZnFe2O4@ ZnO core–shell nanostructures. Superlatt. Microstruct. 85, 497–503 (2015)CrossRef R. Rahimi, M. Heidari-Golafzani, M. Rabbani, Preparation and photocatalytic application of ZnFe2O4@ ZnO core–shell nanostructures. Superlatt. Microstruct. 85, 497–503 (2015)CrossRef
23.
Zurück zum Zitat B. Bogacz et al., Two-level model description of superparamagnetic relaxation in nanoferrites (Co, Zn) Fe2O4. Acta Phys. Polonica. A Gen. Phys. Solid State Phys. Appl. Phys. 134(5), 493–497 (2018) B. Bogacz et al., Two-level model description of superparamagnetic relaxation in nanoferrites (Co, Zn) Fe2O4. Acta Phys. Polonica. A Gen. Phys. Solid State Phys. Appl. Phys. 134(5), 493–497 (2018)
24.
Zurück zum Zitat A. Shanmugavani et al., Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synthesized by the combustion method: comparison between aspartic acid and glycine as fuels. J. Magn. Magn. Mater. 354, 363–371 (2014)CrossRef A. Shanmugavani et al., Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synthesized by the combustion method: comparison between aspartic acid and glycine as fuels. J. Magn. Magn. Mater. 354, 363–371 (2014)CrossRef
25.
Zurück zum Zitat M. Valenzuela et al., Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J. Photochem. Photobiol., A 148(1–3), 177–182 (2002)CrossRef M. Valenzuela et al., Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J. Photochem. Photobiol., A 148(1–3), 177–182 (2002)CrossRef
26.
Zurück zum Zitat S.-W. Cao et al., ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J. Hazard. Mater. 171(1–3), 431–435 (2009)CrossRef S.-W. Cao et al., ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J. Hazard. Mater. 171(1–3), 431–435 (2009)CrossRef
27.
Zurück zum Zitat X. Li et al., A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J. Colloid Interface Sci. 358(1), 102–108 (2011)CrossRef X. Li et al., A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J. Colloid Interface Sci. 358(1), 102–108 (2011)CrossRef
28.
Zurück zum Zitat I. Mironyuk et al., Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous Mesoporous Mater. 277, 95–104 (2019)CrossRef I. Mironyuk et al., Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous Mesoporous Mater. 277, 95–104 (2019)CrossRef
29.
Zurück zum Zitat C.R. Chaudhury et al., Magneto-optical properties of α-Fe2O3@ ZnO nanocomposites prepared by the high energy ball-milling technique. J. Phys. Chem. Solids 92, 38–44 (2016)CrossRef C.R. Chaudhury et al., Magneto-optical properties of α-Fe2O3@ ZnO nanocomposites prepared by the high energy ball-milling technique. J. Phys. Chem. Solids 92, 38–44 (2016)CrossRef
30.
Zurück zum Zitat J.-R. Fu et al., Synthesis of porous magnetic Fe3O4/Fe@ ZnO core–shell heterostructure with superior capability for water treatment. J. Alloy. Compd. 650, 463–469 (2015)CrossRef J.-R. Fu et al., Synthesis of porous magnetic Fe3O4/Fe@ ZnO core–shell heterostructure with superior capability for water treatment. J. Alloy. Compd. 650, 463–469 (2015)CrossRef
31.
Zurück zum Zitat B.C. Lippens, J. De Boer, Studies on pore systems in catalysts: V. The t method. J. Catal. 4(3), 319–323 (1965)CrossRef B.C. Lippens, J. De Boer, Studies on pore systems in catalysts: V. The t method. J. Catal. 4(3), 319–323 (1965)CrossRef
32.
Zurück zum Zitat E. Kester et al., Thermal behavior and cation distribution of submicron copper ferrite spinels CuxFe3–xO4 (0 ≤ x ≤ 0.5) studied by DTG, FTIR, and XPS. J. Solid State Chem. 126(1), 7–14 (1996)CrossRef E. Kester et al., Thermal behavior and cation distribution of submicron copper ferrite spinels CuxFe3–xO4 (0 ≤ x ≤ 0.5) studied by DTG, FTIR, and XPS. J. Solid State Chem. 126(1), 7–14 (1996)CrossRef
33.
Zurück zum Zitat M. Zhou et al., Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater. Chem. Phys. 93(1), 159–163 (2005)CrossRef M. Zhou et al., Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater. Chem. Phys. 93(1), 159–163 (2005)CrossRef
34.
Zurück zum Zitat L. McCusker et al., Rietveld refinement guidelines. J. Appl. Crystallogr. 32(1), 36–50 (1999)CrossRef L. McCusker et al., Rietveld refinement guidelines. J. Appl. Crystallogr. 32(1), 36–50 (1999)CrossRef
35.
Zurück zum Zitat D.K. Lonsdale, International Tables for X-Ray Crystallography (Kynoch Press, Birmingham, 1968) D.K. Lonsdale, International Tables for X-Ray Crystallography (Kynoch Press, Birmingham, 1968)
36.
Zurück zum Zitat V. Šepelák, K. Tkacova, Mechanically induced structural disordering in spinel ferrites. Acta Montan. Slovaca 3, 266–272 (1997) V. Šepelák, K. Tkacova, Mechanically induced structural disordering in spinel ferrites. Acta Montan. Slovaca 3, 266–272 (1997)
37.
Zurück zum Zitat M. Kaur, S. Rana, P. Tarsikka, Comparative analysis of cadmium doped magnesium ferrite Mg (1 − x) Cdx Fe2O4 (x = 0.0, 0.2, 0.4, 0.6) nanoparticles. Ceram. Int. 38(5), 4319–4323 (2012)CrossRef M. Kaur, S. Rana, P. Tarsikka, Comparative analysis of cadmium doped magnesium ferrite Mg (1 − x) Cdx Fe2O4 (x = 0.0, 0.2, 0.4, 0.6) nanoparticles. Ceram. Int. 38(5), 4319–4323 (2012)CrossRef
38.
Zurück zum Zitat M. Gateshki et al., Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38(5), 772–779 (2005)CrossRef M. Gateshki et al., Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38(5), 772–779 (2005)CrossRef
39.
Zurück zum Zitat Z. Khan et al., Thermal hysteresis of permeability and transport properties of Cu substituted. Adv. Chem. Lett. 1, 111–116 (2013)CrossRef Z. Khan et al., Thermal hysteresis of permeability and transport properties of Cu substituted. Adv. Chem. Lett. 1, 111–116 (2013)CrossRef
40.
Zurück zum Zitat B. Cullity, S. Stock, Elements of X-Ray Diffraction (Prentice Hall, New Jersey, 2001), p. 170 B. Cullity, S. Stock, Elements of X-Ray Diffraction (Prentice Hall, New Jersey, 2001), p. 170
41.
Zurück zum Zitat R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32(5), 751–767 (1976)CrossRef R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32(5), 751–767 (1976)CrossRef
42.
Zurück zum Zitat A.N. Birgani, M. Niyaifar, A. Hasanpour, Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)CrossRef A.N. Birgani, M. Niyaifar, A. Hasanpour, Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)CrossRef
43.
Zurück zum Zitat D. Kurmude et al., X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J. Supercond. Novel Magn. 27(2), 547–553 (2014)CrossRef D. Kurmude et al., X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J. Supercond. Novel Magn. 27(2), 547–553 (2014)CrossRef
44.
Zurück zum Zitat A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Magnetic properties of rare earth ion (Sm3 +) added nanocrystalline Mg–Cd ferrites, prepared by oxalate co-precipitation method. J. Magn. Magn. Mater. 322(24), 3823–3827 (2010)CrossRef A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Magnetic properties of rare earth ion (Sm3 +) added nanocrystalline Mg–Cd ferrites, prepared by oxalate co-precipitation method. J. Magn. Magn. Mater. 322(24), 3823–3827 (2010)CrossRef
45.
Zurück zum Zitat K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140(2), 114–131 (2008)CrossRef K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140(2), 114–131 (2008)CrossRef
46.
Zurück zum Zitat Y. Marcus, Ionic radii in aqueous solutions. Chem. Rev. 88(8), 1475–1498 (1988)CrossRef Y. Marcus, Ionic radii in aqueous solutions. Chem. Rev. 88(8), 1475–1498 (1988)CrossRef
47.
Zurück zum Zitat W. Konicki et al., Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 398, 152–160 (2013)CrossRef W. Konicki et al., Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 398, 152–160 (2013)CrossRef
48.
Zurück zum Zitat I. Mironyuk et al., Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr (II) cations. J. Mol. Liq. 282, 587–597 (2019)CrossRef I. Mironyuk et al., Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr (II) cations. J. Mol. Liq. 282, 587–597 (2019)CrossRef
49.
Zurück zum Zitat O.M. Lemine, L. Ghilouf, M. Bououdina, L. Khezami, M.O. M’hamed, T. Hassan, Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution. J. Alloys Compd. 588, 592–595 (2014)CrossRef O.M. Lemine, L. Ghilouf, M. Bououdina, L. Khezami, M.O. M’hamed, T. Hassan, Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution. J. Alloys Compd. 588, 592–595 (2014)CrossRef
50.
Zurück zum Zitat L. Khezami, M.O. M’hamed, O.M. Lemine, M. Bououdina, A. Bessadok-Jemai, Milled goethite nanocrystalline for selective and fast uptake of cadmium ions from aqueous solution. Desalination Water Treat 57(14), 6531–6539 (2016)CrossRef L. Khezami, M.O. M’hamed, O.M. Lemine, M. Bououdina, A. Bessadok-Jemai, Milled goethite nanocrystalline for selective and fast uptake of cadmium ions from aqueous solution. Desalination Water Treat 57(14), 6531–6539 (2016)CrossRef
51.
Zurück zum Zitat Zhigang Jia, Qi Qin, Jianhong Liu, Hao Shi, Xuexia Zhang, Hu Runan, Shengbiao Li, Rongsun Zhu, The synthesis of hierarchical ZnFe2O4 architecture and their application for Cr(VI) adsorption removal from aqueous solution. Superlatt. Microstruct. 82, 174–187 (2015)CrossRef Zhigang Jia, Qi Qin, Jianhong Liu, Hao Shi, Xuexia Zhang, Hu Runan, Shengbiao Li, Rongsun Zhu, The synthesis of hierarchical ZnFe2O4 architecture and their application for Cr(VI) adsorption removal from aqueous solution. Superlatt. Microstruct. 82, 174–187 (2015)CrossRef
52.
Zurück zum Zitat H. Hallaji, A.R. Keshtkar, M.A. Moosavian, A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 46, 109–118 (2015)CrossRef H. Hallaji, A.R. Keshtkar, M.A. Moosavian, A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 46, 109–118 (2015)CrossRef
53.
Zurück zum Zitat H. Jing, C. Guohua, M.C. Lo Irene, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 39, 4528–4536 (2005)CrossRef H. Jing, C. Guohua, M.C. Lo Irene, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 39, 4528–4536 (2005)CrossRef
Metadaten
Titel
Dependence of phase distribution and magnetic properties of milled and annealed ZnO·Fe2O3 nanostructures as efficient adsorbents of heavy metals
verfasst von
L. Khezami
T. S. Alwqyan
M. Bououdina
B. Al-Najar
M. N. Shaikh
A. Modwi
Kamal K. Taha
Publikationsdatum
10.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 10/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01303-2

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science: Materials in Electronics 10/2019 Zur Ausgabe

Neuer Inhalt