Skip to main content
Erschienen in: Journal of Elasticity 2/2021

27.10.2021

Deployable Structures: Structural Design and Static/Dynamic Analysis

verfasst von: Xiao Zhang, Rui Nie, Yan Chen, Baiyan He

Erschienen in: Journal of Elasticity | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Deployable structures can realize the transformation from a folded configuration to a deployed configuration to satisfy the requirements of applications. They have been widely used in aerospace structures, civil temporary components, medical devices, transformable robotics and other engineering applications. A large amount of research has been carried out on the structural design ranging from rigid, rigid-flexible to flexible structures and the performance analysis including the static loading properties and structural stability, as well as the dynamics during deployment and in the deployed configuration. However, to date, there are no mature systematic approaches for the design and analysis of deployable structures due to diverted application demands. Therefore, in this review, efforts are made to find a common methodology from most existing successful cases and to propose the major challenges for the future applications of deployable structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pellegrino, S.: Deployable Structures. Springer, Italy (2014) Pellegrino, S.: Deployable Structures. Springer, Italy (2014)
2.
Zurück zum Zitat Gruber, P., Häuplik, S., Imhof, B., Özdemir, K., Waclavicek, R., Perino, M.A.: Deployable structures for a human lunar base. Acta Astronaut. 61, 484–495 (2007) ADSCrossRef Gruber, P., Häuplik, S., Imhof, B., Özdemir, K., Waclavicek, R., Perino, M.A.: Deployable structures for a human lunar base. Acta Astronaut. 61, 484–495 (2007) ADSCrossRef
3.
Zurück zum Zitat Lee, N., Backes, P., Burdick, J., Pellegrino, S., Fuller, C., Hogstrom, K., Kennedy, B., Kim, J., Mukherjee, R., Seubert, C., Wu, Y.: Architecture for in-space robotic assembly of a modular space telescope. J. Astron. Telesc. Instrum. Syst. 2, 041207 (2016) ADSCrossRef Lee, N., Backes, P., Burdick, J., Pellegrino, S., Fuller, C., Hogstrom, K., Kennedy, B., Kim, J., Mukherjee, R., Seubert, C., Wu, Y.: Architecture for in-space robotic assembly of a modular space telescope. J. Astron. Telesc. Instrum. Syst. 2, 041207 (2016) ADSCrossRef
4.
Zurück zum Zitat You, Z.: Deployable structure of curved profile for space antennas. J. Aerosp. Eng. 13, 139–143 (2000) CrossRef You, Z.: Deployable structure of curved profile for space antennas. J. Aerosp. Eng. 13, 139–143 (2000) CrossRef
5.
Zurück zum Zitat Nassehpour, S., Kwan, A.S.K.: New concepts in large deployable parabolic solid reflectors. In: Proceedings of the AECEF Symposium, pp. 162–171. Vilnius Gediminas Technical University, Department of Construction Economics & Property, Vilnius (2008) Nassehpour, S., Kwan, A.S.K.: New concepts in large deployable parabolic solid reflectors. In: Proceedings of the AECEF Symposium, pp. 162–171. Vilnius Gediminas Technical University, Department of Construction Economics & Property, Vilnius (2008)
6.
Zurück zum Zitat Zirbel, S.A., Lang, R.J., Thomson, M.W., Sigel, D.A., Walkemeyer, P.E., Trease, B.P., Magleby, S.P., Howell, L.L.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135, 111005 (2013) Zirbel, S.A., Lang, R.J., Thomson, M.W., Sigel, D.A., Walkemeyer, P.E., Trease, B.P., Magleby, S.P., Howell, L.L.: Accommodating thickness in origami-based deployable arrays. J. Mech. Des. 135, 111005 (2013)
7.
Zurück zum Zitat Murphy, D.M., Eskenazi, M.I., McEachen, M.E., Spink, J.W.: Ultraflex and megaflex-development of highly scalable solar power. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 1–8. IEEE, New Orleans (2015) Murphy, D.M., Eskenazi, M.I., McEachen, M.E., Spink, J.W.: Ultraflex and megaflex-development of highly scalable solar power. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), pp. 1–8. IEEE, New Orleans (2015)
8.
Zurück zum Zitat Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C.: NanoSail-D: a solar sail demonstration mission. Acta Astronaut. 68, 571–575 (2011) ADSCrossRef Johnson, L., Whorton, M., Heaton, A., Pinson, R., Laue, G., Adams, C.: NanoSail-D: a solar sail demonstration mission. Acta Astronaut. 68, 571–575 (2011) ADSCrossRef
9.
Zurück zum Zitat Wilson, L., Pellegrino, S., Danner, R.: Origami sunshield concepts for space telescopes. In: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1594. AIAA, Boston (2013) Wilson, L., Pellegrino, S., Danner, R.: Origami sunshield concepts for space telescopes. In: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1594. AIAA, Boston (2013)
10.
Zurück zum Zitat Doroftei, I.A., Bujoreanu, C., Doroftei, I.: An overview on the applications of mechanisms in architecture. Part I: bar structures. In: The 8th International Conference on Advanced Concepts in Mechanical Engineering, p. 052018. IOP Publishing, Bristol (2018) Doroftei, I.A., Bujoreanu, C., Doroftei, I.: An overview on the applications of mechanisms in architecture. Part I: bar structures. In: The 8th International Conference on Advanced Concepts in Mechanical Engineering, p. 052018. IOP Publishing, Bristol (2018)
11.
Zurück zum Zitat Doroftei, I.A., Bujoreanu, C., Doroftei, I.: An overview on the applications of mechanisms in architecture. Part II: foldable plate structures. In: The 8th International Conference on Advanced Concepts in Mechanical Engineering, p. 052019. IOP Publishing, Bristol (2018) Doroftei, I.A., Bujoreanu, C., Doroftei, I.: An overview on the applications of mechanisms in architecture. Part II: foldable plate structures. In: The 8th International Conference on Advanced Concepts in Mechanical Engineering, p. 052019. IOP Publishing, Bristol (2018)
12.
Zurück zum Zitat Lee, T.U., Gattas, J.M.: Geometric design and construction of structurally stabilized accordion shelters. J. Mech. Robot. 8, 031009 (2016) CrossRef Lee, T.U., Gattas, J.M.: Geometric design and construction of structurally stabilized accordion shelters. J. Mech. Robot. 8, 031009 (2016) CrossRef
13.
Zurück zum Zitat De Temmerman, I.A.N., Mollaert, M., Van Mele, I.A.T., De Laet, I.A.L.: Design and analysis of a foldable mobile shelter system. Int. J. Space Struct. 22, 161–168 (2007) CrossRef De Temmerman, I.A.N., Mollaert, M., Van Mele, I.A.T., De Laet, I.A.L.: Design and analysis of a foldable mobile shelter system. Int. J. Space Struct. 22, 161–168 (2007) CrossRef
14.
Zurück zum Zitat Liu, X., Gattas, J.M., Chen, Y.: One-DOF superimposed rigid origami with multiple states. Sci. Rep. 6, 36883 (2016) ADSCrossRef Liu, X., Gattas, J.M., Chen, Y.: One-DOF superimposed rigid origami with multiple states. Sci. Rep. 6, 36883 (2016) ADSCrossRef
15.
Zurück zum Zitat Chikahiro, Y., Ario, I., Pawlowski, P., Graczykowski, C., Nakazawa, M., Holnicki-Szulc, J., Ono, S.: Dynamics of the scissors-type mobile bridge. Proc. Eng. 199, 2919–2924 (2017) CrossRef Chikahiro, Y., Ario, I., Pawlowski, P., Graczykowski, C., Nakazawa, M., Holnicki-Szulc, J., Ono, S.: Dynamics of the scissors-type mobile bridge. Proc. Eng. 199, 2919–2924 (2017) CrossRef
16.
Zurück zum Zitat Zhu, L., Zhang, D., Shao, F., Xu, Q., Zhao, Q.: Structural evaluation of torsional rigidity of new FRP-aluminum space truss bridge with rigid transverse braces. KSCE J. Civ. Eng. 23, 3021–3029 (2019) CrossRef Zhu, L., Zhang, D., Shao, F., Xu, Q., Zhao, Q.: Structural evaluation of torsional rigidity of new FRP-aluminum space truss bridge with rigid transverse braces. KSCE J. Civ. Eng. 23, 3021–3029 (2019) CrossRef
17.
Zurück zum Zitat Kassabian, P., You, Z., Pellegrino, S.: Retractable roof structures. Proc. Inst. Civ. Eng. Struct. Build. 134, 45–56 (1999) CrossRef Kassabian, P., You, Z., Pellegrino, S.: Retractable roof structures. Proc. Inst. Civ. Eng. Struct. Build. 134, 45–56 (1999) CrossRef
18.
Zurück zum Zitat Ozaki, Y., Violaris, A.G., Serruys, P.W.: New stent technologies. Prog. Cardiovasc. Dis. 39, 129–140 (1996) CrossRef Ozaki, Y., Violaris, A.G., Serruys, P.W.: New stent technologies. Prog. Cardiovasc. Dis. 39, 129–140 (1996) CrossRef
19.
Zurück zum Zitat Duda, S.H., Wiskirchen, J., Tepe, G., Bitzer, M., Kaulich, T.W., Stoeckel, D., Claussen, C.D.: Physical properties of endovascular stents: an experimental comparison. J. Vasc. Interv. Radiol. 11, 645–654 (2000) CrossRef Duda, S.H., Wiskirchen, J., Tepe, G., Bitzer, M., Kaulich, T.W., Stoeckel, D., Claussen, C.D.: Physical properties of endovascular stents: an experimental comparison. J. Vasc. Interv. Radiol. 11, 645–654 (2000) CrossRef
20.
Zurück zum Zitat Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., Sasaki, M.: Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006) CrossRef Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., Sasaki, M.: Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater. Sci. Eng. A 419, 131–137 (2006) CrossRef
21.
Zurück zum Zitat Bobbert, F.S.L., Janbaz, S., Zadpoor, A.A.: Towards deployable meta-implants. J. Mater. Chem. B 6, 3449–3455 (2018) CrossRef Bobbert, F.S.L., Janbaz, S., Zadpoor, A.A.: Towards deployable meta-implants. J. Mater. Chem. B 6, 3449–3455 (2018) CrossRef
22.
Zurück zum Zitat Edmondson, B.J., Bowen, L.A., Grames, C.L., Magleby, S.P., Howell, L.L., Bateman, T.C.: Oriceps: origami-inspired forceps. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, p. V001T01A027. ASME, Utah (2013) Edmondson, B.J., Bowen, L.A., Grames, C.L., Magleby, S.P., Howell, L.L., Bateman, T.C.: Oriceps: origami-inspired forceps. In: ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, p. V001T01A027. ASME, Utah (2013)
23.
Zurück zum Zitat Miyashita, S., Guitron, S., Li, S., Rus, D.: Robotic metamorphosis by origami exoskeletons. Sci. Robot. 2, eaao4369 (2017) CrossRef Miyashita, S., Guitron, S., Li, S., Rus, D.: Robotic metamorphosis by origami exoskeletons. Sci. Robot. 2, eaao4369 (2017) CrossRef
24.
Zurück zum Zitat Lee, D.Y., Kim, J.S., Kim, S.R., Koh, J.S., Cho, K.J.: The deformable wheel robot using magic-ball origami structure. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A040. ASME, Portland (2013) Lee, D.Y., Kim, J.S., Kim, S.R., Koh, J.S., Cho, K.J.: The deformable wheel robot using magic-ball origami structure. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A040. ASME, Portland (2013)
25.
Zurück zum Zitat Banerjee, H., Pusalkar, N., Ren, H.: Single-motor controlled tendon-driven peristaltic soft origami robot. J. Mech. Robot. 10, 064501 (2018) CrossRef Banerjee, H., Pusalkar, N., Ren, H.: Single-motor controlled tendon-driven peristaltic soft origami robot. J. Mech. Robot. 10, 064501 (2018) CrossRef
27.
Zurück zum Zitat Zhang, X., Chen, Y.: Mobile assemblies of Bennett linkages from four-crease origami patterns. Proc. Math. Phys. Eng. Sci. 474, 20170621 (2018) MathSciNetMATH Zhang, X., Chen, Y.: Mobile assemblies of Bennett linkages from four-crease origami patterns. Proc. Math. Phys. Eng. Sci. 474, 20170621 (2018) MathSciNetMATH
28.
Zurück zum Zitat Chen, Y., You, Z., Tarnai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42, 2287–2301 (2005) MATHCrossRef Chen, Y., You, Z., Tarnai, T.: Threefold-symmetric Bricard linkages for deployable structures. Int. J. Solids Struct. 42, 2287–2301 (2005) MATHCrossRef
29.
Zurück zum Zitat Chen, Y., You, Z.: An extended Myard linkage and its derived 6R linkage. J. Mech. Des. 130, 052301 (2008) Chen, Y., You, Z.: An extended Myard linkage and its derived 6R linkage. J. Mech. Des. 130, 052301 (2008)
30.
Zurück zum Zitat Chen, Y., You, Z.: Two-fold symmetrical 6R foldable frame and its bifurcations. Int. J. Solids Struct. 46, 4504–4514 (2009) MATHCrossRef Chen, Y., You, Z.: Two-fold symmetrical 6R foldable frame and its bifurcations. Int. J. Solids Struct. 46, 4504–4514 (2009) MATHCrossRef
31.
Zurück zum Zitat Huang, H., Li, B., Zhu, J., Qi, X.: A new family of Bricard-derived deployable mechanisms. J. Mech. Robot. 8, 034503 (2016) CrossRef Huang, H., Li, B., Zhu, J., Qi, X.: A new family of Bricard-derived deployable mechanisms. J. Mech. Robot. 8, 034503 (2016) CrossRef
32.
Zurück zum Zitat Cao, W.A., Yang, D., Ding, H.: A new family of deployable mechanisms derived from two-layer and two-loop spatial linkages with five revolute pair coupling chains. J. Mech. Robot. 9, 061016 (2017) CrossRef Cao, W.A., Yang, D., Ding, H.: A new family of deployable mechanisms derived from two-layer and two-loop spatial linkages with five revolute pair coupling chains. J. Mech. Robot. 9, 061016 (2017) CrossRef
33.
Zurück zum Zitat Gattas, J.M., Wu, W., You, Z.: Miura-base rigid origami: parameterizations of first-level derivative and piecewise geometries. J. Mech. Des. 135, 111011 (2013) Gattas, J.M., Wu, W., You, Z.: Miura-base rigid origami: parameterizations of first-level derivative and piecewise geometries. J. Mech. Des. 135, 111011 (2013)
34.
Zurück zum Zitat Liu, S., Chen, Y., Lu, G.: The rigid origami patterns for flat surface. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A039. ASME, Portland (2013) Liu, S., Chen, Y., Lu, G.: The rigid origami patterns for flat surface. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V06BT07A039. ASME, Portland (2013)
35.
Zurück zum Zitat Chen, Y., Lv, W., Li, J., You, Z.: An extended family of rigidly foldable origami tubes. J. Mech. Robot. 9, 021002 (2017) CrossRef Chen, Y., Lv, W., Li, J., You, Z.: An extended family of rigidly foldable origami tubes. J. Mech. Robot. 9, 021002 (2017) CrossRef
36.
Zurück zum Zitat Feng, H.J., Peng, R., Ma, J.Y., Chen, Y.: Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. J. Mech. Robot. 10, 051003 (2018) CrossRef Feng, H.J., Peng, R., Ma, J.Y., Chen, Y.: Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. J. Mech. Robot. 10, 051003 (2018) CrossRef
37.
Zurück zum Zitat Wang, R., Sun, J., Dai, J.S.: Design analysis and type synthesis of a petal-inspired space deployable-foldable mechanism. Mech. Mach. Theory 141, 151–170 (2019) CrossRef Wang, R., Sun, J., Dai, J.S.: Design analysis and type synthesis of a petal-inspired space deployable-foldable mechanism. Mech. Mach. Theory 141, 151–170 (2019) CrossRef
38.
Zurück zum Zitat You, Z., Chen, Y.: Motion Structures: Deployable Structural Assemblies of Mechanisms. Spon Press, New York (2014) You, Z., Chen, Y.: Motion Structures: Deployable Structural Assemblies of Mechanisms. Spon Press, New York (2014)
39.
Zurück zum Zitat Han, B., Xu, Y., Yao, J., Zheng, D., Guo, X., Zhao, Y.: Configuration synthesis of hoop truss deployable mechanisms for space antenna based on screw theory. AIP Adv. 9, 085201 (2019) ADSCrossRef Han, B., Xu, Y., Yao, J., Zheng, D., Guo, X., Zhao, Y.: Configuration synthesis of hoop truss deployable mechanisms for space antenna based on screw theory. AIP Adv. 9, 085201 (2019) ADSCrossRef
40.
Zurück zum Zitat Han, B., Xu, Y., Yao, J., Zheng, D., Guo, L., Zhao, Y.: Type synthesis of deployable mechanisms for ring truss antenna based on constraint-synthesis method. Chin. J. Aeronaut. 33, 2445–2460 (2020) CrossRef Han, B., Xu, Y., Yao, J., Zheng, D., Guo, L., Zhao, Y.: Type synthesis of deployable mechanisms for ring truss antenna based on constraint-synthesis method. Chin. J. Aeronaut. 33, 2445–2460 (2020) CrossRef
41.
Zurück zum Zitat Liu, S., Lv, W., Chen, Y., Lu, G.: Deployable prismatic structures with rigid origami patterns. J. Mech. Robot. 8, 031002 (2016) CrossRef Liu, S., Lv, W., Chen, Y., Lu, G.: Deployable prismatic structures with rigid origami patterns. J. Mech. Robot. 8, 031002 (2016) CrossRef
42.
Zurück zum Zitat Ario, I., Nakazawa, M., Tanaka, Y., Tanikura, I., Ono, S.: Development of a prototype deployable bridge based on origami skill. Autom. Constr. 32, 104–111 (2013) CrossRef Ario, I., Nakazawa, M., Tanaka, Y., Tanikura, I., Ono, S.: Development of a prototype deployable bridge based on origami skill. Autom. Constr. 32, 104–111 (2013) CrossRef
44.
Zurück zum Zitat You, Z., Pellegrino, S.: Cable-stiffened pantographic deployable structures part I-triangular mast. AIAA J. 34, 813–820 (1996) ADSCrossRef You, Z., Pellegrino, S.: Cable-stiffened pantographic deployable structures part I-triangular mast. AIAA J. 34, 813–820 (1996) ADSCrossRef
45.
Zurück zum Zitat Kim, T.H., Suh, J.E., Han, J.H.: Deployable truss structure with flat-form storability using scissor-like elements. Mech. Mach. Theory 159, 104252 (2021) CrossRef Kim, T.H., Suh, J.E., Han, J.H.: Deployable truss structure with flat-form storability using scissor-like elements. Mech. Mach. Theory 159, 104252 (2021) CrossRef
46.
Zurück zum Zitat Lu, S., Zlatanov, D., Ding, X., Molfino, R.: A new family of deployable mechanisms based on the Hoekens linkage. Mech. Mach. Theory 73, 130–153 (2014) CrossRef Lu, S., Zlatanov, D., Ding, X., Molfino, R.: A new family of deployable mechanisms based on the Hoekens linkage. Mech. Mach. Theory 73, 130–153 (2014) CrossRef
47.
Zurück zum Zitat Zhao, L., Wang, H., Chen, G., Huang, S.: Sequentially assembled reconfigurable extended joints: self-lockable deployable structure. J. Aerosp. Eng. 31, 04018103 (2018) CrossRef Zhao, L., Wang, H., Chen, G., Huang, S.: Sequentially assembled reconfigurable extended joints: self-lockable deployable structure. J. Aerosp. Eng. 31, 04018103 (2018) CrossRef
48.
Zurück zum Zitat Choi, J., Lee, D., Hwang, K., Kim, B.: Design, fabrication, and evaluation of a passive deployment mechanism for deployable space telescope. Adv. Mech. Eng. 11, 1–14 (2019) CrossRef Choi, J., Lee, D., Hwang, K., Kim, B.: Design, fabrication, and evaluation of a passive deployment mechanism for deployable space telescope. Adv. Mech. Eng. 11, 1–14 (2019) CrossRef
49.
Zurück zum Zitat Mousanezhad, D., Kamrava, S., Vaziri, A.: Origami-based building blocks for modular construction of foldable structures. Sci. Rep. 7, 1–8 (2017) CrossRef Mousanezhad, D., Kamrava, S., Vaziri, A.: Origami-based building blocks for modular construction of foldable structures. Sci. Rep. 7, 1–8 (2017) CrossRef
50.
Zurück zum Zitat Filipov, E.T., Tachi, T., Paulino, G.H.: Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. USA 112, 12321–12326 (2015) ADSCrossRef Filipov, E.T., Tachi, T., Paulino, G.H.: Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. USA 112, 12321–12326 (2015) ADSCrossRef
51.
Zurück zum Zitat Dai, J.S., Rees Jones, J.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121, 375–382 (1999) Dai, J.S., Rees Jones, J.: Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121, 375–382 (1999)
52.
Zurück zum Zitat Wang, K., Chen, Y.: Folding a patterned cylinder by rigid origami. In: Wang, I.P., Lang, R.J., Mark, Y. (eds.) Origami, vol. 5, pp. 265–276. AK Peters/CRC Press, New York (2011) Wang, K., Chen, Y.: Folding a patterned cylinder by rigid origami. In: Wang, I.P., Lang, R.J., Mark, Y. (eds.) Origami, vol. 5, pp. 265–276. AK Peters/CRC Press, New York (2011)
53.
Zurück zum Zitat Qi, X., Huang, H., Li, B., Deng, Z.: A large ring deployable mechanism for space satellite antenna. Aerosp. Sci. Technol. 58, 498–510 (2016) CrossRef Qi, X., Huang, H., Li, B., Deng, Z.: A large ring deployable mechanism for space satellite antenna. Aerosp. Sci. Technol. 58, 498–510 (2016) CrossRef
54.
Zurück zum Zitat Tserodze, S., Prowald, J.S., Gogilashvili, V., Chkhikvadze, K.: Transformable reflector structure with V-folding rods. CEAS Space J. 8, 291–301 (2016) ADSCrossRef Tserodze, S., Prowald, J.S., Gogilashvili, V., Chkhikvadze, K.: Transformable reflector structure with V-folding rods. CEAS Space J. 8, 291–301 (2016) ADSCrossRef
55.
Zurück zum Zitat Han, B., Zheng, D., Xu, Y., Yao, J., Zhao, Y.: Kinematic characteristics and dynamics analysis of an overconstrained scissors double-hoop truss deployable antenna mechanism based on screw theory. IEEE Access 7, 140755–140768 (2019) CrossRef Han, B., Zheng, D., Xu, Y., Yao, J., Zhao, Y.: Kinematic characteristics and dynamics analysis of an overconstrained scissors double-hoop truss deployable antenna mechanism based on screw theory. IEEE Access 7, 140755–140768 (2019) CrossRef
56.
Zurück zum Zitat Tserodze, S., Prowald, J.S., Chkhikvadze, K., Nikoladze, M., Muchaidze, M.: Latest modification of the deployable space reflector structure with V-folding bars. CEAS Space J. 12, 163–169 (2020) ADSCrossRef Tserodze, S., Prowald, J.S., Chkhikvadze, K., Nikoladze, M., Muchaidze, M.: Latest modification of the deployable space reflector structure with V-folding bars. CEAS Space J. 12, 163–169 (2020) ADSCrossRef
57.
Zurück zum Zitat Zirbel, S.A., Trease, B.P., Thomson, M.W., Lang, R.J., Magleby, S.P., Howell, L.H.: Hanaflex: a large solar array for space applications. In: Micro-and Nanotechnology Sensors, Systems, and Applications VII, p. 94671C. SPIE, Maryland (2015) Zirbel, S.A., Trease, B.P., Thomson, M.W., Lang, R.J., Magleby, S.P., Howell, L.H.: Hanaflex: a large solar array for space applications. In: Micro-and Nanotechnology Sensors, Systems, and Applications VII, p. 94671C. SPIE, Maryland (2015)
58.
Zurück zum Zitat Liu, S.Y., Chen, Y.: Myard linkage and its mobile assemblies. Mech. Mach. Theory 44, 1950–1963 (2009) MATHCrossRef Liu, S.Y., Chen, Y.: Myard linkage and its mobile assemblies. Mech. Mach. Theory 44, 1950–1963 (2009) MATHCrossRef
59.
Zurück zum Zitat Huang, H., Deng, Z., Li, B.: Mobile assemblies of large deployable mechanisms. J. Space Eng. 5, 1–14 (2012) ADSCrossRef Huang, H., Deng, Z., Li, B.: Mobile assemblies of large deployable mechanisms. J. Space Eng. 5, 1–14 (2012) ADSCrossRef
60.
Zurück zum Zitat Baker, J.E.: The Bennett linkage and its associated quadric surfaces. Mech. Mach. Theory 23, 147–156 (1988) ADSCrossRef Baker, J.E.: The Bennett linkage and its associated quadric surfaces. Mech. Mach. Theory 23, 147–156 (1988) ADSCrossRef
61.
Zurück zum Zitat Baker, J.E.: The Bennett, Goldberg and Myard linkages—in perspective. Mech. Mach. Theory 14, 239–253 (1979) CrossRef Baker, J.E.: The Bennett, Goldberg and Myard linkages—in perspective. Mech. Mach. Theory 14, 239–253 (1979) CrossRef
63.
Zurück zum Zitat Feng, H., Chen, Y., Dai, J.S., Gogu, G.: Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations. Mech. Mach. Theory 116, 89–104 (2017) CrossRef Feng, H., Chen, Y., Dai, J.S., Gogu, G.: Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations. Mech. Mach. Theory 116, 89–104 (2017) CrossRef
64.
Zurück zum Zitat Yang, F., You, Z., Chen, Y.: Foldable hexagonal structures based on the threefold-symmetric Bricard linkage. J. Mech. Robot. 12, 011012 (2020) CrossRef Yang, F., You, Z., Chen, Y.: Foldable hexagonal structures based on the threefold-symmetric Bricard linkage. J. Mech. Robot. 12, 011012 (2020) CrossRef
65.
Zurück zum Zitat Gan, W., Pellegrino, S.: Closed-loop deployable structures. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1450. AIAA, Norfolk (2003) Gan, W., Pellegrino, S.: Closed-loop deployable structures. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1450. AIAA, Norfolk (2003)
66.
Zurück zum Zitat Ma, B., Huang, H.: Large deployable networks constructed by interconnected Bricard linkages. Adv. Mater. Res. 338, 723–726 (2011) CrossRef Ma, B., Huang, H.: Large deployable networks constructed by interconnected Bricard linkages. Adv. Mater. Res. 338, 723–726 (2011) CrossRef
67.
Zurück zum Zitat Song, X., Guo, H., Li, B., Liu, R., Deng, Z.: Large deployable network constructed by Altmann linkages. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 231, 341–355 (2017) CrossRef Song, X., Guo, H., Li, B., Liu, R., Deng, Z.: Large deployable network constructed by Altmann linkages. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 231, 341–355 (2017) CrossRef
68.
Zurück zum Zitat You, Z., Chen, Y.: Mobile assemblies based on the Bennett linkage. Proc. R. Soc. A, Math. Phys. Eng. Sci. 461, 1229–1245 (2005) ADSMathSciNetMATH You, Z., Chen, Y.: Mobile assemblies based on the Bennett linkage. Proc. R. Soc. A, Math. Phys. Eng. Sci. 461, 1229–1245 (2005) ADSMathSciNetMATH
69.
Zurück zum Zitat Chen, Y., You, Z.: Square deployable frames for space applications. Part 2: realization. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 221, 37–45 (2007) CrossRef Chen, Y., You, Z.: Square deployable frames for space applications. Part 2: realization. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 221, 37–45 (2007) CrossRef
70.
Zurück zum Zitat Lu, S., Zlatanov, D., Ding, X.: Approximation of cylindrical surfaces with deployable Bennett networks. J. Mech. Robot. 9, 021001 (2017) CrossRef Lu, S., Zlatanov, D., Ding, X.: Approximation of cylindrical surfaces with deployable Bennett networks. J. Mech. Robot. 9, 021001 (2017) CrossRef
71.
Zurück zum Zitat Yang, F.F., Li, J.M., Chen, Y., You, Z.: A deployable Bennett network in saddle surface. In: Proceedings of the 14th IFToMM World Congress, IFToMM, Taiwan, pp. 428–434 (2015) Yang, F.F., Li, J.M., Chen, Y., You, Z.: A deployable Bennett network in saddle surface. In: Proceedings of the 14th IFToMM World Congress, IFToMM, Taiwan, pp. 428–434 (2015)
72.
Zurück zum Zitat Song, X., Deng, Z., Guo, H., Liu, R., Li, L., Liu, R.: Networking of Bennett linkages and its application on deployable parabolic cylindrical antenna. Mech. Mach. Theory 109, 95–125 (2017) CrossRef Song, X., Deng, Z., Guo, H., Liu, R., Li, L., Liu, R.: Networking of Bennett linkages and its application on deployable parabolic cylindrical antenna. Mech. Mach. Theory 109, 95–125 (2017) CrossRef
73.
Zurück zum Zitat Alegria Mira, L., Thrall, A.P., De Temmerman, N.: Deployable scissor arch for transitional shelters. Autom. Constr. 43, 123–131 (2014) CrossRef Alegria Mira, L., Thrall, A.P., De Temmerman, N.: Deployable scissor arch for transitional shelters. Autom. Constr. 43, 123–131 (2014) CrossRef
74.
Zurück zum Zitat Zhao, J.S., Wang, J.Y., Chu, F., Feng, Z.J., Dai, J.S.: Structure synthesis and statics analysis of a foldable stair. Mech. Mach. Theory 46, 998–1015 (2011) MATHCrossRef Zhao, J.S., Wang, J.Y., Chu, F., Feng, Z.J., Dai, J.S.: Structure synthesis and statics analysis of a foldable stair. Mech. Mach. Theory 46, 998–1015 (2011) MATHCrossRef
75.
Zurück zum Zitat Akgün, Y., Gantes, C.J., Sobek, W., Korkmaz, K., Kalochairetis, K.: A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs. Eng. Struct. 33, 1365–1376 (2011) CrossRef Akgün, Y., Gantes, C.J., Sobek, W., Korkmaz, K., Kalochairetis, K.: A novel adaptive spatial scissor-hinge structural mechanism for convertible roofs. Eng. Struct. 33, 1365–1376 (2011) CrossRef
76.
Zurück zum Zitat Holland, A., Straub, J.: Development of origami-style solar panels for use in support of a Mars mission. In: Energy Harvesting and Storage: Materials, Devices, and Applications VII, p. 98650D. SPIE, Maryland (2016) Holland, A., Straub, J.: Development of origami-style solar panels for use in support of a Mars mission. In: Energy Harvesting and Storage: Materials, Devices, and Applications VII, p. 98650D. SPIE, Maryland (2016)
77.
Zurück zum Zitat Kanemitsu, T., Matsumoto, S., Namba, H., Sato, T., Tadokoro, H., Oura, T., Takagi, K., Aoki, S., Kaya, N.: Self-Deployable Antenna Using Centrifugal Force pp. 173–182. Springer Netherlands, Dordrecht (2000) Kanemitsu, T., Matsumoto, S., Namba, H., Sato, T., Tadokoro, H., Oura, T., Takagi, K., Aoki, S., Kaya, N.: Self-Deployable Antenna Using Centrifugal Force pp. 173–182. Springer Netherlands, Dordrecht (2000)
78.
Zurück zum Zitat Huang, H., Guan, F., Pan, L., Xu, Y.: Design and deploying study of a new petal-type deployable solid surface antenna. Acta Astronaut. 148, 99–110 (2018) ADSCrossRef Huang, H., Guan, F., Pan, L., Xu, Y.: Design and deploying study of a new petal-type deployable solid surface antenna. Acta Astronaut. 148, 99–110 (2018) ADSCrossRef
79.
Zurück zum Zitat Chen, Y., Peng, R., You, Z.: Origami of thick panels. Science 349, 396–400 (2015) ADSCrossRef Chen, Y., Peng, R., You, Z.: Origami of thick panels. Science 349, 396–400 (2015) ADSCrossRef
80.
Zurück zum Zitat Chen, Y., Feng, H., Ma, J., Peng, R., You, Z.: Symmetric waterbomb origami. Proc. R. Soc. A, Math. Phys. Eng. Sci. 472, 20150846 (2016) ADSMathSciNetMATH Chen, Y., Feng, H., Ma, J., Peng, R., You, Z.: Symmetric waterbomb origami. Proc. R. Soc. A, Math. Phys. Eng. Sci. 472, 20150846 (2016) ADSMathSciNetMATH
81.
Zurück zum Zitat Zhang, X., Chen, Y.: The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages. Mech. Mach. Theory 130, 585–604 (2018) CrossRef Zhang, X., Chen, Y.: The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages. Mech. Mach. Theory 130, 585–604 (2018) CrossRef
82.
Zurück zum Zitat Hoberman, C.: Connections to make foldable structures. EP20010300695 (2002) Hoberman, C.: Connections to make foldable structures. EP20010300695 (2002)
83.
Zurück zum Zitat Yang, F., Chen, Y.: One-DOF transformation between tetrahedron and truncated tetrahedron. Mech. Mach. Theory 121, 169–183 (2018) CrossRef Yang, F., Chen, Y.: One-DOF transformation between tetrahedron and truncated tetrahedron. Mech. Mach. Theory 121, 169–183 (2018) CrossRef
84.
Zurück zum Zitat Chen, Y., Yang, F., You, Z.: Transformation of polyhedrons. Int. J. Solids Struct. 138, 193–204 (2018) CrossRef Chen, Y., Yang, F., You, Z.: Transformation of polyhedrons. Int. J. Solids Struct. 138, 193–204 (2018) CrossRef
85.
Zurück zum Zitat Yang, F., You, Z., Chen, Y.: Mobile assembly of two Bennett linkages and its application to transformation between cuboctahedron and octahedron. Mech. Mach. Theory 145, 103698 (2020) CrossRef Yang, F., You, Z., Chen, Y.: Mobile assembly of two Bennett linkages and its application to transformation between cuboctahedron and octahedron. Mech. Mach. Theory 145, 103698 (2020) CrossRef
86.
Zurück zum Zitat Wei, G., Chen, Y., Dai, J.S.: Synthesis, mobility, and multifurcation of deployable polyhedral mechanisms with radially reciprocating motion. J. Mech. Des. 136, 091003 (2014) Wei, G., Chen, Y., Dai, J.S.: Synthesis, mobility, and multifurcation of deployable polyhedral mechanisms with radially reciprocating motion. J. Mech. Des. 136, 091003 (2014)
87.
Zurück zum Zitat Xiu, H.H., Wang, K.Y., Wei, G.W., Ren, L., Dai, J.S.: A Sarrus-like overconstrained eight-bar linkage and its associated Fulleroid-like platonic deployable mechanisms. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 234, 241–262 (2020) CrossRef Xiu, H.H., Wang, K.Y., Wei, G.W., Ren, L., Dai, J.S.: A Sarrus-like overconstrained eight-bar linkage and its associated Fulleroid-like platonic deployable mechanisms. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 234, 241–262 (2020) CrossRef
88.
Zurück zum Zitat Gu, Y., Chen, Y.: Origami cubes with one-Dof rigid and flat foldability. Int. J. Solids Struct. 207, 250–261 (2020) CrossRef Gu, Y., Chen, Y.: Origami cubes with one-Dof rigid and flat foldability. Int. J. Solids Struct. 207, 250–261 (2020) CrossRef
89.
Zurück zum Zitat Gu, Y., Wei, G., Chen, Y.: Thick-panel origami cube. Mech. Mach. Theory 164, 104411 (2021) CrossRef Gu, Y., Wei, G., Chen, Y.: Thick-panel origami cube. Mech. Mach. Theory 164, 104411 (2021) CrossRef
90.
Zurück zum Zitat Xu, Y., Lin, Q., Wang, X., Li, L., Cong, Q., Pan, B.: Mechanism design and dynamic analysis of a large-scale spatial deployable structure for space mission. In: Seventh International Conference on Electronics and Information Engineering, p. 1032226. SPIE, Nanjing (2017) Xu, Y., Lin, Q., Wang, X., Li, L., Cong, Q., Pan, B.: Mechanism design and dynamic analysis of a large-scale spatial deployable structure for space mission. In: Seventh International Conference on Electronics and Information Engineering, p. 1032226. SPIE, Nanjing (2017)
91.
Zurück zum Zitat Ikeya, K., Sakamoto, H., Nakanishi, H., Furuya, H., Tomura, T., Ide, R., Iijima, R., Iwasaki, Y., Ohno, K., Omoto, K., Furuya, T., Hayashi, T., Kato, M., Koide, S., Kurosaki, M., Nakatsuka, Y., Okuyama, S., Kashiyama, R., Nakamura, J., Nio, W., Tsunemitsu, T., Yamazaki, Y., Taga, K., Hohmann, B., Amamoto, T., Chubachi, T., Tamura, S., Okada, H., Watanabe, A., Kawabata, N., Hori, T., Ito, H., Kuratomi, T., Shimoda, Y., Hidaka, N., Watanabe, K., Torisaka, A., Yamazaki, M.: Significance of 3U cubesat Origamisat-1 for space demonstration of multifunctional deployable membrane. Acta Astronaut. 173, 363–377 (2020) ADSCrossRef Ikeya, K., Sakamoto, H., Nakanishi, H., Furuya, H., Tomura, T., Ide, R., Iijima, R., Iwasaki, Y., Ohno, K., Omoto, K., Furuya, T., Hayashi, T., Kato, M., Koide, S., Kurosaki, M., Nakatsuka, Y., Okuyama, S., Kashiyama, R., Nakamura, J., Nio, W., Tsunemitsu, T., Yamazaki, Y., Taga, K., Hohmann, B., Amamoto, T., Chubachi, T., Tamura, S., Okada, H., Watanabe, A., Kawabata, N., Hori, T., Ito, H., Kuratomi, T., Shimoda, Y., Hidaka, N., Watanabe, K., Torisaka, A., Yamazaki, M.: Significance of 3U cubesat Origamisat-1 for space demonstration of multifunctional deployable membrane. Acta Astronaut. 173, 363–377 (2020) ADSCrossRef
92.
Zurück zum Zitat Block, J., Straubel, M., Wiedemann, M.: Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astronaut. 68, 984–992 (2011) ADSCrossRef Block, J., Straubel, M., Wiedemann, M.: Ultralight deployable booms for solar sails and other large gossamer structures in space. Acta Astronaut. 68, 984–992 (2011) ADSCrossRef
93.
Zurück zum Zitat Block, J., Bäger, A., Behrens, J., Delovski, T., Hauer, L.C., Schütze, M., Schütze, R., Spröwitz, T.: A self-deploying and self-stabilizing helical antenna for small satellites. Acta Astronaut. 86, 88–94 (2013) ADSCrossRef Block, J., Bäger, A., Behrens, J., Delovski, T., Hauer, L.C., Schütze, M., Schütze, R., Spröwitz, T.: A self-deploying and self-stabilizing helical antenna for small satellites. Acta Astronaut. 86, 88–94 (2013) ADSCrossRef
94.
Zurück zum Zitat Sproewitz, T., Reershemius, S., Hauer, L.C., Fexer, S., Schütze, M., Suhr, B.: Development, testing and in-orbit verification of a large CFRP helical antenna on the AIsat mission. In: 2020 IEEE Aerospace Conference, pp. 1–9. IEEE, MT (2020) Sproewitz, T., Reershemius, S., Hauer, L.C., Fexer, S., Schütze, M., Suhr, B.: Development, testing and in-orbit verification of a large CFRP helical antenna on the AIsat mission. In: 2020 IEEE Aerospace Conference, pp. 1–9. IEEE, MT (2020)
95.
Zurück zum Zitat Crawford, R.: Strength and efficiency of deployable booms for space applications. In: The 12th Structures, Structural Dynamics and Materials Conference, pp. 1–13. AIAA, CA (1971) Crawford, R.: Strength and efficiency of deployable booms for space applications. In: The 12th Structures, Structural Dynamics and Materials Conference, pp. 1–13. AIAA, CA (1971)
96.
Zurück zum Zitat Li, H., Yu, Z., Guo, S., Cai, G.: Investigation of joint clearances in a large-scale flexible solar array system. Multibody Syst. Dyn. 44, 277–292 (2018) MathSciNetCrossRef Li, H., Yu, Z., Guo, S., Cai, G.: Investigation of joint clearances in a large-scale flexible solar array system. Multibody Syst. Dyn. 44, 277–292 (2018) MathSciNetCrossRef
97.
Zurück zum Zitat Mao, H., Ganga, P.L., Ghiozzi, M., Ivchenko, N., Tibert, G.: Deployment of bistable self-deployable tape spring booms using a gravity offloading system. J. Aerosp. Eng. 30, 04017007 (2017) CrossRef Mao, H., Ganga, P.L., Ghiozzi, M., Ivchenko, N., Tibert, G.: Deployment of bistable self-deployable tape spring booms using a gravity offloading system. J. Aerosp. Eng. 30, 04017007 (2017) CrossRef
98.
Zurück zum Zitat Fujioka, E., Yokozeki, T., Watanabe, A., Aoki, T.: Analysis on temperature-dependent deployment behavior of bi-stable composite rods. Adv. Compos. Mater. 28, 245–257 (2019) CrossRef Fujioka, E., Yokozeki, T., Watanabe, A., Aoki, T.: Analysis on temperature-dependent deployment behavior of bi-stable composite rods. Adv. Compos. Mater. 28, 245–257 (2019) CrossRef
99.
Zurück zum Zitat Chu, Z., Lei, Y., Li, D.: Dynamics and robust adaptive control of a deployable boom for a space probe. Acta Astronaut. 97, 138–150 (2014) ADSCrossRef Chu, Z., Lei, Y., Li, D.: Dynamics and robust adaptive control of a deployable boom for a space probe. Acta Astronaut. 97, 138–150 (2014) ADSCrossRef
100.
Zurück zum Zitat Kresling, B.: Natural twist buckling in shells: from the hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical. In: Miura-ori Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, pp. 12–32. IASS-IACM, Ithaca (2008) Kresling, B.: Natural twist buckling in shells: from the hawkmoth’s bellows to the deployable Kresling-pattern and cylindrical. In: Miura-ori Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, pp. 12–32. IASS-IACM, Ithaca (2008)
101.
Zurück zum Zitat Senda, K., Ohta, S., Igarashi, Y., Watanabe, A., Hori, T., Ito, H., Tsunoda, H., Watanabe, K.: Deploy experiment of inflatable tube using work hardening. In: The 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1808. AIAA, Rhode Island (2006) Senda, K., Ohta, S., Igarashi, Y., Watanabe, A., Hori, T., Ito, H., Tsunoda, H., Watanabe, K.: Deploy experiment of inflatable tube using work hardening. In: The 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1808. AIAA, Rhode Island (2006)
102.
Zurück zum Zitat Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: packing and rigidization. J. Spacecr. Rockets 51, 762–778 (2014) ADSCrossRef Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: packing and rigidization. J. Spacecr. Rockets 51, 762–778 (2014) ADSCrossRef
103.
Zurück zum Zitat Pagano, A., Yan, T., Chien, B., Wissa, A., Tawfick, S.: A crawling robot driven by multi-stable origami. Smart Mater. Struct. 26, 094007 (2017) ADSCrossRef Pagano, A., Yan, T., Chien, B., Wissa, A., Tawfick, S.: A crawling robot driven by multi-stable origami. Smart Mater. Struct. 26, 094007 (2017) ADSCrossRef
104.
Zurück zum Zitat Bhovad, P., Kaufmann, J., Li, S.: Peristaltic locomotion without digital controllers: exploiting multi-stability in origami to coordinate robotic motion. Extreme Mech. Lett. 32, 100552 (2019) CrossRef Bhovad, P., Kaufmann, J., Li, S.: Peristaltic locomotion without digital controllers: exploiting multi-stability in origami to coordinate robotic motion. Extreme Mech. Lett. 32, 100552 (2019) CrossRef
105.
Zurück zum Zitat Morgan, J., Magleby, S.P., Howell, L.L.: An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des. 138, 052301 (2016) Morgan, J., Magleby, S.P., Howell, L.L.: An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des. 138, 052301 (2016)
106.
Zurück zum Zitat Miura, K., Miura, K.: Triangles and quadrangles in space. In: Symposium of the International Association for Shell and Spatial Structures, pp. 27–38. IASS, Valencia (2009) Miura, K., Miura, K.: Triangles and quadrangles in space. In: Symposium of the International Association for Shell and Spatial Structures, pp. 27–38. IASS, Valencia (2009)
107.
Zurück zum Zitat Guest, S.D., Pellegrino, S.: Inextensional wrapping of flat membranes. In: Proceedings of the First International Seminar on Structural Morphology, Montpellier, pp. 203–215 (1992) Guest, S.D., Pellegrino, S.: Inextensional wrapping of flat membranes. In: Proceedings of the First International Seminar on Structural Morphology, Montpellier, pp. 203–215 (1992)
108.
Zurück zum Zitat Pellegrino, S., Vincent, J.F.: How to fold a membrane. In: Pellegrino, S. (ed.) Deployable Structures, pp. 59–75. Springer, New York (2001) CrossRef Pellegrino, S., Vincent, J.F.: How to fold a membrane. In: Pellegrino, S. (ed.) Deployable Structures, pp. 59–75. Springer, New York (2001) CrossRef
109.
Zurück zum Zitat Lang, R.J.: Origami in Action: Paper Toys that Fly, Flag, Gobble and Inflate. Macmillan, London (1997) Lang, R.J.: Origami in Action: Paper Toys that Fly, Flag, Gobble and Inflate. Macmillan, London (1997)
110.
Zurück zum Zitat Miura, K., Pellegrino, S.: Forms and Concepts for Lightweight Structures. Cambridge University Press, Cambridge (2020) CrossRef Miura, K., Pellegrino, S.: Forms and Concepts for Lightweight Structures. Cambridge University Press, Cambridge (2020) CrossRef
111.
Zurück zum Zitat Nojima, T.: Origami modeling of functional structures based on organic patterns. Presentation Manuscript at Vipsi Tokyo (1996) Nojima, T.: Origami modeling of functional structures based on organic patterns. Presentation Manuscript at Vipsi Tokyo (1996)
112.
Zurück zum Zitat Yao, S., Liu, X., Georgakopoulos, S.V.: Study and design of Nojima origami conical spiral antenna. In: IEEE International Symposium on Antennas & Propagation, pp. 1431–1432. IEEE, Fajardo (2016) Yao, S., Liu, X., Georgakopoulos, S.V.: Study and design of Nojima origami conical spiral antenna. In: IEEE International Symposium on Antennas & Propagation, pp. 1431–1432. IEEE, Fajardo (2016)
113.
Zurück zum Zitat Miyazaki, Y.: Deployable techniques for small satellites. Proc. IEEE 106, 471–483 (2018) CrossRef Miyazaki, Y.: Deployable techniques for small satellites. Proc. IEEE 106, 471–483 (2018) CrossRef
114.
Zurück zum Zitat Miyazaki, Y., Fukunaga, M., Kousaka, D.: Membrane structure supported by self-deployable truss for space applications. In: 2018 AIAA Spacecraft Structures Conference, p. 1201. AIAA, Florida (2018) Miyazaki, Y., Fukunaga, M., Kousaka, D.: Membrane structure supported by self-deployable truss for space applications. In: 2018 AIAA Spacecraft Structures Conference, p. 1201. AIAA, Florida (2018)
115.
Zurück zum Zitat Arya, M., Lee, N., Pellegrino, S.: Wrapping thick membranes with slipping folds. In: 2nd AIAA Spacecraft Structures Conference, p. 0682. AIAA, Kissimmee (2015) Arya, M., Lee, N., Pellegrino, S.: Wrapping thick membranes with slipping folds. In: 2nd AIAA Spacecraft Structures Conference, p. 0682. AIAA, Kissimmee (2015)
116.
Zurück zum Zitat Arya, M., Lee, N., Pellegrino, S.: Ultralight structures for space solar power satellites. In: 3rd AIAA Spacecraft Structures Conference, p. 1950. AIAA, San Diego (2016) Arya, M., Lee, N., Pellegrino, S.: Ultralight structures for space solar power satellites. In: 3rd AIAA Spacecraft Structures Conference, p. 1950. AIAA, San Diego (2016)
117.
Zurück zum Zitat Sosa, E.M., Thompson, G.J., Barbero, E.J.: Experimental investigation of initial deployment of inflatable structures for sealing of rail tunnels. Tunn. Undergr. Space Technol. 69, 37–51 (2017) CrossRef Sosa, E.M., Thompson, G.J., Barbero, E.J.: Experimental investigation of initial deployment of inflatable structures for sealing of rail tunnels. Tunn. Undergr. Space Technol. 69, 37–51 (2017) CrossRef
118.
Zurück zum Zitat Litteken, D.A.: Inflatable technology: using flexible materials to make large structures. In: Proc. SPIE 10966, Electroactive Polymer Actuators and Devices (EAPAD) XXI, p. 1096603. SPIE, Denver (2019) Litteken, D.A.: Inflatable technology: using flexible materials to make large structures. In: Proc. SPIE 10966, Electroactive Polymer Actuators and Devices (EAPAD) XXI, p. 1096603. SPIE, Denver (2019)
119.
Zurück zum Zitat Yang, H., Guo, H.W., Wang, Y., Liu, R.Q., Li, M.: Design and experiment of triangular prism mast with tape-spring hyperelastic hinges. Chin. J. Mech. Eng. 31, 1–10 (2018) CrossRef Yang, H., Guo, H.W., Wang, Y., Liu, R.Q., Li, M.: Design and experiment of triangular prism mast with tape-spring hyperelastic hinges. Chin. J. Mech. Eng. 31, 1–10 (2018) CrossRef
120.
Zurück zum Zitat Tibert, G., Pellegrino, S.: Deployable tensegrity masts. In: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1978. AIAA, Norfolk (2003) Tibert, G., Pellegrino, S.: Deployable tensegrity masts. In: 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1978. AIAA, Norfolk (2003)
121.
Zurück zum Zitat Wang, W., Rodrigue, H., Ahn, S.H.: Deployable soft composite structures. Sci. Rep. 6, 20869 (2016) ADSCrossRef Wang, W., Rodrigue, H., Ahn, S.H.: Deployable soft composite structures. Sci. Rep. 6, 20869 (2016) ADSCrossRef
122.
Zurück zum Zitat Tan, G.E.B., Pellegrino, S.: Nonlinear vibration of cable-stiffened pantographic deployable structures. J. Sound Vib. 314, 783–802 (2008) ADSCrossRef Tan, G.E.B., Pellegrino, S.: Nonlinear vibration of cable-stiffened pantographic deployable structures. J. Sound Vib. 314, 783–802 (2008) ADSCrossRef
123.
Zurück zum Zitat Wu, M., Zhang, T., Xiang, P., Guan, F.: Single-layer deployable truss structure driven by elastic components. J. Aerosp. Eng. 32, 04018144 (2019) CrossRef Wu, M., Zhang, T., Xiang, P., Guan, F.: Single-layer deployable truss structure driven by elastic components. J. Aerosp. Eng. 32, 04018144 (2019) CrossRef
124.
Zurück zum Zitat Jeon, S.K., Footdale, J.N.: Scaling and optimization of a modular origami solar array. In: 2018 AIAA Spacecraft Structures Conference, p. 2204. AISS, Kissimmee (2018) Jeon, S.K., Footdale, J.N.: Scaling and optimization of a modular origami solar array. In: 2018 AIAA Spacecraft Structures Conference, p. 2204. AISS, Kissimmee (2018)
125.
Zurück zum Zitat Guo, W., Li, Y., Li, Y.-Z., Tian, S., Wang, S.: Thermal-structural analysis of large deployable space antenna under extreme heat loads. J. Therm. Stresses 39, 887–905 (2016) CrossRef Guo, W., Li, Y., Li, Y.-Z., Tian, S., Wang, S.: Thermal-structural analysis of large deployable space antenna under extreme heat loads. J. Therm. Stresses 39, 887–905 (2016) CrossRef
126.
Zurück zum Zitat Datashvili, L., Baier, H., Wehrle, E., Kuhn, T., Hoffmann, J.: Large shell-membrane space reflectors. In: The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 2504. AIAA, Orlando (2010) Datashvili, L., Baier, H., Wehrle, E., Kuhn, T., Hoffmann, J.: Large shell-membrane space reflectors. In: The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 2504. AIAA, Orlando (2010)
128.
Zurück zum Zitat Mobrem, M., Kuehn, S., Spier, C., Slimko, E.: Design and performance of AstroMesh reflector onboard soil moisture active passive spacecraft. In: 2012 IEEE Aerospace Conference, pp. 1–10. IEEE, Big Sky (2012) Mobrem, M., Kuehn, S., Spier, C., Slimko, E.: Design and performance of AstroMesh reflector onboard soil moisture active passive spacecraft. In: 2012 IEEE Aerospace Conference, pp. 1–10. IEEE, Big Sky (2012)
129.
Zurück zum Zitat Meguro, A., Tsujihata, A., Hamamoto, N., Homma, M.: Technology status of the 13 m aperture deployment antenna reflectors for engineering test satellite VIII. Acta Astronaut. 47, 147–152 (2000) ADSCrossRef Meguro, A., Tsujihata, A., Hamamoto, N., Homma, M.: Technology status of the 13 m aperture deployment antenna reflectors for engineering test satellite VIII. Acta Astronaut. 47, 147–152 (2000) ADSCrossRef
130.
Zurück zum Zitat Morterolle, S., Maurin, B., Quirant, J., Dupuy, C.: Numerical form-finding of geotensoid tension truss for mesh reflector. Acta Astronaut. 76, 154–163 (2012) ADSCrossRef Morterolle, S., Maurin, B., Quirant, J., Dupuy, C.: Numerical form-finding of geotensoid tension truss for mesh reflector. Acta Astronaut. 76, 154–163 (2012) ADSCrossRef
131.
Zurück zum Zitat Yang, G., Duan, B., Zhang, Y., Yang, D.: Uniform-tension form-finding design for asymmetric cable-mesh deployable reflector antennas. Adv. Mech. Eng. 8, 1687814016672367 (2016) CrossRef Yang, G., Duan, B., Zhang, Y., Yang, D.: Uniform-tension form-finding design for asymmetric cable-mesh deployable reflector antennas. Adv. Mech. Eng. 8, 1687814016672367 (2016) CrossRef
132.
Zurück zum Zitat Santiago-Prowald, J., Baier, H.: Advances in deployable structures and surfaces for large apertures in space. CEAS Space J. 5, 89–115 (2013) ADSCrossRef Santiago-Prowald, J., Baier, H.: Advances in deployable structures and surfaces for large apertures in space. CEAS Space J. 5, 89–115 (2013) ADSCrossRef
133.
Zurück zum Zitat Tang, Y., Shi, Z., Li, T., Wang, Z.: Double-layer cable-net structures for deployable umbrella reflectors. J. Aerosp. Eng. 32, 04019068 (2019) CrossRef Tang, Y., Shi, Z., Li, T., Wang, Z.: Double-layer cable-net structures for deployable umbrella reflectors. J. Aerosp. Eng. 32, 04019068 (2019) CrossRef
134.
Zurück zum Zitat Hinkle, J., Dixit, A., Lin, J., Whitley, K., Watson, J., Valle, G.: Design development and testing for an expandable lunar habitat. In: AIAA SPACE 2008 Conference & Exposition, p. 7634. AIAA, San Diego (2008) Hinkle, J., Dixit, A., Lin, J., Whitley, K., Watson, J., Valle, G.: Design development and testing for an expandable lunar habitat. In: AIAA SPACE 2008 Conference & Exposition, p. 7634. AIAA, San Diego (2008)
135.
Zurück zum Zitat Hong, Y., Yao, W., Xu, Y.: Structural design and impact analysis of deployable habitat modules. Int. J. Aerosp. Eng. 2018, 3252104 (2018) Hong, Y., Yao, W., Xu, Y.: Structural design and impact analysis of deployable habitat modules. Int. J. Aerosp. Eng. 2018, 3252104 (2018)
136.
Zurück zum Zitat Dronadula, R., Benaroya, H.: Hybrid lunar inflatable structure. Acta Astronaut. 179, 42–55 (2021) ADSCrossRef Dronadula, R., Benaroya, H.: Hybrid lunar inflatable structure. Acta Astronaut. 179, 42–55 (2021) ADSCrossRef
138.
Zurück zum Zitat Li, B., Qi, X., Huang, H., Xu, W.: Modeling and analysis of deployment dynamics for a novel ring mechanism. Acta Astronaut. 120, 59–74 (2016) ADSCrossRef Li, B., Qi, X., Huang, H., Xu, W.: Modeling and analysis of deployment dynamics for a novel ring mechanism. Acta Astronaut. 120, 59–74 (2016) ADSCrossRef
139.
Zurück zum Zitat Chang, W., Cao, D., Lian, M.: Simulation and analysis of tape spring for deployed space structures. In: Young Scientists Forum 2017, p. 1071022. SPIE, Shanghai (2018) Chang, W., Cao, D., Lian, M.: Simulation and analysis of tape spring for deployed space structures. In: Young Scientists Forum 2017, p. 1071022. SPIE, Shanghai (2018)
140.
Zurück zum Zitat Bettini, W., Quirant, J., Averseng, J., Maurin, B.: Self-deployable geometries for space applications. J. Aerosp. Eng. 32, 04018138 (2019) CrossRef Bettini, W., Quirant, J., Averseng, J., Maurin, B.: Self-deployable geometries for space applications. J. Aerosp. Eng. 32, 04018138 (2019) CrossRef
141.
Zurück zum Zitat Chu, Z., Hu, J., Yan, S., Zhou, M.: Experiment on the retraction/deployment of an active-passive composited driving deployable boom for space probes. Mech. Mach. Theory 92, 436–446 (2015) CrossRef Chu, Z., Hu, J., Yan, S., Zhou, M.: Experiment on the retraction/deployment of an active-passive composited driving deployable boom for space probes. Mech. Mach. Theory 92, 436–446 (2015) CrossRef
142.
Zurück zum Zitat Allred, R.E., Hoyt, A., Mcelroy, P.M., Scarborough, S., Cadogan, D.P.: UV rigidizable carbon-reinforced isogrid inflatable booms. In: The 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1202. AIAA, Denver (2013) Allred, R.E., Hoyt, A., Mcelroy, P.M., Scarborough, S., Cadogan, D.P.: UV rigidizable carbon-reinforced isogrid inflatable booms. In: The 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1202. AIAA, Denver (2013)
143.
Zurück zum Zitat Gantes, C.: A design methodology for deployable structures. Massachusetts Institute of Technology (1991) Gantes, C.: A design methodology for deployable structures. Massachusetts Institute of Technology (1991)
144.
Zurück zum Zitat Gantes, C.J.: Design strategies for controlling structural instabilities. Int. J. Space Struct. 15, 167–188 (2000) CrossRef Gantes, C.J.: Design strategies for controlling structural instabilities. Int. J. Space Struct. 15, 167–188 (2000) CrossRef
145.
Zurück zum Zitat Huang, S.G., Schimmels, J.M.: The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel. IEEE Trans. Robot. Autom. 14, 466–475 (1998) CrossRef Huang, S.G., Schimmels, J.M.: The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel. IEEE Trans. Robot. Autom. 14, 466–475 (1998) CrossRef
146.
Zurück zum Zitat Raskin, I., Roorda, J.: Nonlinear analysis of uniform pantographic columns in compression. J. Eng. Mech. 125, 1344–1348 (1999) CrossRef Raskin, I., Roorda, J.: Nonlinear analysis of uniform pantographic columns in compression. J. Eng. Mech. 125, 1344–1348 (1999) CrossRef
147.
Zurück zum Zitat Ge, D.M., Chen, W.J., Fu, G.Y., Dong, S.L.: Buckling theoretical analysis of coilable hingeless extendible/retractable space mast. Chin. J. Comput. Mech. 24, 615–619 (2007) Ge, D.M., Chen, W.J., Fu, G.Y., Dong, S.L.: Buckling theoretical analysis of coilable hingeless extendible/retractable space mast. Chin. J. Comput. Mech. 24, 615–619 (2007)
148.
Zurück zum Zitat Jin, Y., Liu, T., Lyu, R., Ji, B., Cui, Q.: Theoretical analysis and experimental investigation on buckling of fastmast deployable structures. Int. J. Struct. Stab. Dyn. 15, 1450075 (2015) MathSciNetMATHCrossRef Jin, Y., Liu, T., Lyu, R., Ji, B., Cui, Q.: Theoretical analysis and experimental investigation on buckling of fastmast deployable structures. Int. J. Struct. Stab. Dyn. 15, 1450075 (2015) MathSciNetMATHCrossRef
149.
Zurück zum Zitat Li, B., Wang, S.M., Zhi, C.J., Xue, X.Z., Makis, V.: Analytical and numerical study of the buckling of planar linear array deployable structures based on scissor-like element under its own weight. Mech. Syst. Signal Process. 83, 474–488 (2017) ADSCrossRef Li, B., Wang, S.M., Zhi, C.J., Xue, X.Z., Makis, V.: Analytical and numerical study of the buckling of planar linear array deployable structures based on scissor-like element under its own weight. Mech. Syst. Signal Process. 83, 474–488 (2017) ADSCrossRef
150.
Zurück zum Zitat Song, Y., Ho Chi, O., Qing, Z.: A study of new deployable structure. Adv. Mater. Res. 1049, 1083–1089 (2014) CrossRef Song, Y., Ho Chi, O., Qing, Z.: A study of new deployable structure. Adv. Mater. Res. 1049, 1083–1089 (2014) CrossRef
151.
Zurück zum Zitat Vu, K.K., Liew, J.Y., Krishnapillai, A.: Commutative algebra in structural analysis of deployable tension-strut structures. J. Int. Assoc. Shell Spat. Struct. 46, 173–178 (2005) Vu, K.K., Liew, J.Y., Krishnapillai, A.: Commutative algebra in structural analysis of deployable tension-strut structures. J. Int. Assoc. Shell Spat. Struct. 46, 173–178 (2005)
152.
Zurück zum Zitat Zhao, B., Hu, J., Chen, W., Chen, J., Qiu, Z., Jing, Z.: Computational method for in-situ finite element modeling of inflatable membrane structures based on geometrical shape measurement using photogrammetry. Comput. Struct. 224, 106105 (2019) CrossRef Zhao, B., Hu, J., Chen, W., Chen, J., Qiu, Z., Jing, Z.: Computational method for in-situ finite element modeling of inflatable membrane structures based on geometrical shape measurement using photogrammetry. Comput. Struct. 224, 106105 (2019) CrossRef
153.
Zurück zum Zitat Ye, H., Li, B., Shi, X., Zhang, Y.: Quasi-static folding mechanical behavior analysis and optimization design for composite tube hinge. J. Mech. Eng. 56, 172–180 (2020) Ye, H., Li, B., Shi, X., Zhang, Y.: Quasi-static folding mechanical behavior analysis and optimization design for composite tube hinge. J. Mech. Eng. 56, 172–180 (2020)
154.
Zurück zum Zitat Cai, J., Ma, R., Deng, X., Feng, J.: Static behavior of deployable cable-strut structures. J. Constr. Steel Res. 119, 63–75 (2016) CrossRef Cai, J., Ma, R., Deng, X., Feng, J.: Static behavior of deployable cable-strut structures. J. Constr. Steel Res. 119, 63–75 (2016) CrossRef
155.
Zurück zum Zitat Teixeira, A.M.A.J., Pfeil, M.S., Battista, R.C.: Structural evaluation of a GFRP truss girder for a deployable bridge. Compos. Struct. 110, 29–38 (2014) CrossRef Teixeira, A.M.A.J., Pfeil, M.S., Battista, R.C.: Structural evaluation of a GFRP truss girder for a deployable bridge. Compos. Struct. 110, 29–38 (2014) CrossRef
156.
Zurück zum Zitat Zhang, D., Yuan, J., Li, F., Lv, Y., Zhao, Q., Gao, Y., Mo, C., Yang, J.: Experimental characterization of static behavior of a new GFRP-metal space truss deployable bridge: comparative case study. J. Bridge Eng. 26, 05020011 (2021) CrossRef Zhang, D., Yuan, J., Li, F., Lv, Y., Zhao, Q., Gao, Y., Mo, C., Yang, J.: Experimental characterization of static behavior of a new GFRP-metal space truss deployable bridge: comparative case study. J. Bridge Eng. 26, 05020011 (2021) CrossRef
157.
Zurück zum Zitat Mao, H., Zhang, D., Chen, L., Zhao, Q., Su, X., Yuan, J.: Flexural behaviour of a new lightweight glass fibre-reinforced polymer-metal string bridge with a box-truss composite girder. Adv. Struct. Eng. 23, 104–117 (2020) CrossRef Mao, H., Zhang, D., Chen, L., Zhao, Q., Su, X., Yuan, J.: Flexural behaviour of a new lightweight glass fibre-reinforced polymer-metal string bridge with a box-truss composite girder. Adv. Struct. Eng. 23, 104–117 (2020) CrossRef
158.
Zurück zum Zitat Shi, C., Guo, H., Liu, R., Deng, Z.: Configuration optimization and structure design of the double-layer hoop deployable antenna mechanism. J. Astronaut. 37, 869–878 (2016) Shi, C., Guo, H., Liu, R., Deng, Z.: Configuration optimization and structure design of the double-layer hoop deployable antenna mechanism. J. Astronaut. 37, 869–878 (2016)
159.
Zurück zum Zitat Martínez-Martín, F.J., Thrall, A.P.: Honeycomb core sandwich panels for origami-inspired deployable shelters: multi-objective optimization for minimum weight and maximum energy efficiency. Eng. Struct. 69, 158–167 (2014) CrossRef Martínez-Martín, F.J., Thrall, A.P.: Honeycomb core sandwich panels for origami-inspired deployable shelters: multi-objective optimization for minimum weight and maximum energy efficiency. Eng. Struct. 69, 158–167 (2014) CrossRef
160.
Zurück zum Zitat Kaveh, A., Talatahari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 65, 1558–1568 (2009) CrossRef Kaveh, A., Talatahari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 65, 1558–1568 (2009) CrossRef
161.
Zurück zum Zitat Thrall, A.P., Adriaenssens, S., Paya-Zaforteza, I., Zoli, T.P.: Linkage-based movable bridges: design methodology and three novel forms. Eng. Struct. 37, 214–223 (2012) CrossRef Thrall, A.P., Adriaenssens, S., Paya-Zaforteza, I., Zoli, T.P.: Linkage-based movable bridges: design methodology and three novel forms. Eng. Struct. 37, 214–223 (2012) CrossRef
162.
Zurück zum Zitat Arnouts, L.I.W., Massart, T.J., De Temmerman, N., Berke, P.Z.: Multi-objective optimisation of deployable bistable scissor structures. Autom. Constr. 114, 103154 (2020) CrossRef Arnouts, L.I.W., Massart, T.J., De Temmerman, N., Berke, P.Z.: Multi-objective optimisation of deployable bistable scissor structures. Autom. Constr. 114, 103154 (2020) CrossRef
163.
Zurück zum Zitat Thrall, A.P., Zhu, M., Guest, J.K., Paya-Zaforteza, I., Adriaenssens, S.: Structural optimization of deploying structures composed of linkages. J. Comput. Civ. Eng. 28, 04014010 (2014) CrossRef Thrall, A.P., Zhu, M., Guest, J.K., Paya-Zaforteza, I., Adriaenssens, S.: Structural optimization of deploying structures composed of linkages. J. Comput. Civ. Eng. 28, 04014010 (2014) CrossRef
164.
Zurück zum Zitat Kaveh, A., Shojaee, S.: Optimal design of scissor-link foldable structures using ant colony optimization algorithm. Comput.-Aided Civ. Infrastruct. Eng. 22, 56–64 (2007) CrossRef Kaveh, A., Shojaee, S.: Optimal design of scissor-link foldable structures using ant colony optimization algorithm. Comput.-Aided Civ. Infrastruct. Eng. 22, 56–64 (2007) CrossRef
165.
Zurück zum Zitat You, Z.: Sensitivity analysis based on the force method for deployable cable-stiffened structures. Eng. Optim. 29, 429–441 (1997) CrossRef You, Z.: Sensitivity analysis based on the force method for deployable cable-stiffened structures. Eng. Optim. 29, 429–441 (1997) CrossRef
166.
Zurück zum Zitat Ye, H., Zhang, Y., Yang, Q., Xiao, Y., Grandhi, R.V., Fischer, C.C.: Optimal design of a three tape-spring hinge deployable space structure using an experimentally validated physics-based model. Struct. Multidiscip. Optim. 56, 973–989 (2017) CrossRef Ye, H., Zhang, Y., Yang, Q., Xiao, Y., Grandhi, R.V., Fischer, C.C.: Optimal design of a three tape-spring hinge deployable space structure using an experimentally validated physics-based model. Struct. Multidiscip. Optim. 56, 973–989 (2017) CrossRef
167.
Zurück zum Zitat Song, Z., Chen, C., Jiang, S., Chen, J., Liu, T., Deng, W., Lin, F.: Optimization analysis of microgravity experimental facility for the deployable structures based on force balance method. Microgravity Sci. Technol. 32, 773–785 (2020) ADSCrossRef Song, Z., Chen, C., Jiang, S., Chen, J., Liu, T., Deng, W., Lin, F.: Optimization analysis of microgravity experimental facility for the deployable structures based on force balance method. Microgravity Sci. Technol. 32, 773–785 (2020) ADSCrossRef
168.
Zurück zum Zitat Koumar, A., Tysmans, T., Coelho, R.F., De Temmerman, N.: An automated structural optimisation methodology for scissor structures using a genetic algorithm. Appl. Comput. Intell. Soft Comput. 2017, 6843574 (2017) Koumar, A., Tysmans, T., Coelho, R.F., De Temmerman, N.: An automated structural optimisation methodology for scissor structures using a genetic algorithm. Appl. Comput. Intell. Soft Comput. 2017, 6843574 (2017)
169.
Zurück zum Zitat Haftka, R.T., Adelman, H.M.: Selection of actuator locations for static shape control of large space structures by heuristic integer programing. Comput. Struct. 20, 575–582 (1985) CrossRef Haftka, R.T., Adelman, H.M.: Selection of actuator locations for static shape control of large space structures by heuristic integer programing. Comput. Struct. 20, 575–582 (1985) CrossRef
170.
Zurück zum Zitat Mitsugi, J., Yasaka, T., Miura, K.: Shape control of the tension truss antenna. AIAA J. 28, 316–322 (1990) ADSCrossRef Mitsugi, J., Yasaka, T., Miura, K.: Shape control of the tension truss antenna. AIAA J. 28, 316–322 (1990) ADSCrossRef
171.
Zurück zum Zitat Tanaka, H., Natori, M.C.: Shape control of space antennas consisting of cable networks. Acta Astronaut. 55, 519–527 (2004) ADSCrossRef Tanaka, H., Natori, M.C.: Shape control of space antennas consisting of cable networks. Acta Astronaut. 55, 519–527 (2004) ADSCrossRef
172.
Zurück zum Zitat Zong, Y., Hu, N., Duan, B., Yang, G., Cao, H., Xu, W.: Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures. Acta Astronaut. 120, 182–191 (2016) ADSCrossRef Zong, Y., Hu, N., Duan, B., Yang, G., Cao, H., Xu, W.: Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures. Acta Astronaut. 120, 182–191 (2016) ADSCrossRef
173.
Zurück zum Zitat Maji, A.K., Starnes, M.A.: Shape measurement and control of deployable membrane structures. Exp. Mech. 40, 154–159 (2000) CrossRef Maji, A.K., Starnes, M.A.: Shape measurement and control of deployable membrane structures. Exp. Mech. 40, 154–159 (2000) CrossRef
174.
Zurück zum Zitat Ukita, N., Saito, M., Ezawa, H., Ikenoue, B., Ishizaki, H., Iwashita, H., Yamaguchi, N., Hayakawa, T.: Design and performance of the ALMA-J prototype antenna. In: Ground-Based Telescopes, pp. 1085–1093. SPIE, Glasgow (2004) CrossRef Ukita, N., Saito, M., Ezawa, H., Ikenoue, B., Ishizaki, H., Iwashita, H., Yamaguchi, N., Hayakawa, T.: Design and performance of the ALMA-J prototype antenna. In: Ground-Based Telescopes, pp. 1085–1093. SPIE, Glasgow (2004) CrossRef
175.
Zurück zum Zitat Wiktowy, M., O’Grady, M., Atkins, G., Singhal, R.: Photogrammetric distortion measurements of antennas in a thermal-vacuum environment. Can. Aeronaut. Space J. 49, 65–71 (2003) ADSCrossRef Wiktowy, M., O’Grady, M., Atkins, G., Singhal, R.: Photogrammetric distortion measurements of antennas in a thermal-vacuum environment. Can. Aeronaut. Space J. 49, 65–71 (2003) ADSCrossRef
176.
Zurück zum Zitat Yang, G., Duan, B., Du, J., Zhang, Y.: Shape pre-adjustment of deployable mesh antennas considering space thermal loads. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 232, 143–155 (2018) CrossRef Yang, G., Duan, B., Du, J., Zhang, Y.: Shape pre-adjustment of deployable mesh antennas considering space thermal loads. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 232, 143–155 (2018) CrossRef
177.
Zurück zum Zitat Nie, R., He, B., Yan, S., Ma, X.: Design optimization of mesh antennas for on-orbit thermal effects. Int. J. Mech. Sci. 175, 105547 (2020) CrossRef Nie, R., He, B., Yan, S., Ma, X.: Design optimization of mesh antennas for on-orbit thermal effects. Int. J. Mech. Sci. 175, 105547 (2020) CrossRef
178.
Zurück zum Zitat John, M.: Hedgepeth: accuracy potentials for large space antenna reflectors with passive structure. J. Spacecr. Rockets 19, 211 (1982) CrossRef John, M.: Hedgepeth: accuracy potentials for large space antenna reflectors with passive structure. J. Spacecr. Rockets 19, 211 (1982) CrossRef
179.
Zurück zum Zitat Meguro, A., Harada, S., Watanabe, M.: Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut. 53, 899–908 (2003) ADSCrossRef Meguro, A., Harada, S., Watanabe, M.: Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut. 53, 899–908 (2003) ADSCrossRef
180.
Zurück zum Zitat Mobrem, M.: Methods of analyzing surface accuracy of large antenna structures due to manufacturing tolerances. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1453. AIAA, Norfolk (2013) Mobrem, M.: Methods of analyzing surface accuracy of large antenna structures due to manufacturing tolerances. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1453. AIAA, Norfolk (2013)
181.
Zurück zum Zitat Tibert, G.: Deployable tensegrity structures for space applications. Royal Institute of Technology (2002) Tibert, G.: Deployable tensegrity structures for space applications. Royal Institute of Technology (2002)
182.
Zurück zum Zitat Hedgepeth, J.M.: Influence of fabrication tolerances on the surface accuracy of large antenna structures. AIAA J. 20, 680–686 (1982) ADSCrossRef Hedgepeth, J.M.: Influence of fabrication tolerances on the surface accuracy of large antenna structures. AIAA J. 20, 680–686 (1982) ADSCrossRef
183.
Zurück zum Zitat Li, X., Ding, X., Chirikjian, G.S.: Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances. Mech. Mach. Theory 91, 69–85 (2015) CrossRef Li, X., Ding, X., Chirikjian, G.S.: Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances. Mech. Mach. Theory 91, 69–85 (2015) CrossRef
184.
Zurück zum Zitat Nie, R., He, B., Hodges, D.H., Ma, X.: Integrated form finding method for mesh reflector antennas considering the flexible truss and hinges. Aerosp. Sci. Technol. 84, 926–937 (2019) CrossRef Nie, R., He, B., Hodges, D.H., Ma, X.: Integrated form finding method for mesh reflector antennas considering the flexible truss and hinges. Aerosp. Sci. Technol. 84, 926–937 (2019) CrossRef
185.
Zurück zum Zitat Ponomarev, V.S., Gerasimov, A.V., Ponomarev, S.V.: Thermomechanical analysis of large deployable space reflector antenna. In: Conference on Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment, p. 01059. MATEC Web of Conferences, Tomsk (2015) Ponomarev, V.S., Gerasimov, A.V., Ponomarev, S.V.: Thermomechanical analysis of large deployable space reflector antenna. In: Conference on Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment, p. 01059. MATEC Web of Conferences, Tomsk (2015)
186.
Zurück zum Zitat Fang, H., Sunada, E., Chaubell, J., Estebanfernandez, D., Thomson, M., Nicaise, F.: Thermal deformation and RF performance analyses for the SWOT large deployable Ka-band reflectarray. In: The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 2502. AIAA, Orlando (2010) Fang, H., Sunada, E., Chaubell, J., Estebanfernandez, D., Thomson, M., Nicaise, F.: Thermal deformation and RF performance analyses for the SWOT large deployable Ka-band reflectarray. In: The 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 2502. AIAA, Orlando (2010)
187.
Zurück zum Zitat Lu, G., Zhou, J., Cai, G., Fang, G., Lv, L., Peng, F.: Studies of thermal deformation and shape control of a space planar phased array antenna. Aerosp. Sci. Technol. 93, 105311 (2019) CrossRef Lu, G., Zhou, J., Cai, G., Fang, G., Lv, L., Peng, F.: Studies of thermal deformation and shape control of a space planar phased array antenna. Aerosp. Sci. Technol. 93, 105311 (2019) CrossRef
188.
Zurück zum Zitat Wu, M., Zhang, Z., Guan, F.: Analysis and measurement of flatness of a single-layer deployable truss structure driven by elastic components. Manned Spacefl. 23, 529–535 (2017) Wu, M., Zhang, Z., Guan, F.: Analysis and measurement of flatness of a single-layer deployable truss structure driven by elastic components. Manned Spacefl. 23, 529–535 (2017)
189.
Zurück zum Zitat Zhao, Q., Guo, J., Yu, D., Hong, J., Chen, F.: An enhanced method of resizing support links for a planar closed-loop overconstrained deployable structure considering kinematic reliability and surface accuracy. Aerosp. Sci. Technol. 104, 105988 (2020) CrossRef Zhao, Q., Guo, J., Yu, D., Hong, J., Chen, F.: An enhanced method of resizing support links for a planar closed-loop overconstrained deployable structure considering kinematic reliability and surface accuracy. Aerosp. Sci. Technol. 104, 105988 (2020) CrossRef
190.
Zurück zum Zitat Yang, Y., Luo, J., Zhang, W., Xie, S., Sun, Y., Li, H.: Accuracy analysis of a multi-closed-loop deployable mechanism. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 230, 611–621 (2016) CrossRef Yang, Y., Luo, J., Zhang, W., Xie, S., Sun, Y., Li, H.: Accuracy analysis of a multi-closed-loop deployable mechanism. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 230, 611–621 (2016) CrossRef
191.
Zurück zum Zitat Veenendaal, D., Block, P.: An overview and comparison of structural form finding methods for general networks. Int. J. Solids Struct. 49, 3741–3753 (2012) CrossRef Veenendaal, D., Block, P.: An overview and comparison of structural form finding methods for general networks. Int. J. Solids Struct. 49, 3741–3753 (2012) CrossRef
192.
Zurück zum Zitat Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 18, 209–223 (2003) CrossRef Tibert, A.G., Pellegrino, S.: Review of form-finding methods for tensegrity structures. Int. J. Space Struct. 18, 209–223 (2003) CrossRef
193.
Zurück zum Zitat Siev, A., Eidelman, J.: Stress analysis of prestressed suspended roofs. J. Struct. Div. 90, 103–121 (1964) CrossRef Siev, A., Eidelman, J.: Stress analysis of prestressed suspended roofs. J. Struct. Div. 90, 103–121 (1964) CrossRef
194.
Zurück zum Zitat Argyris, J.H., Angelopoulos, T., Bichat, B.: A general method for the shape finding of lightweight tension structures. Comput. Methods Appl. Mech. Eng. 3, 135–149 (1974) ADSCrossRef Argyris, J.H., Angelopoulos, T., Bichat, B.: A general method for the shape finding of lightweight tension structures. Comput. Methods Appl. Mech. Eng. 3, 135–149 (1974) ADSCrossRef
195.
Zurück zum Zitat Linkwitz, K., Schek, H.J.: Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen. Ing.-Arch. 40, 145–158 (1971) CrossRef Linkwitz, K., Schek, H.J.: Einige bemerkungen zur berechnung von vorgespannten seilnetzkonstruktionen. Ing.-Arch. 40, 145–158 (1971) CrossRef
196.
Zurück zum Zitat Harber, R.B.: Initial equilibrium solution methods for cable reinforced membranes part I-formulations. Comput. Methods Appl. Mech. Eng. 30, 263–284 (1982) ADSCrossRef Harber, R.B.: Initial equilibrium solution methods for cable reinforced membranes part I-formulations. Comput. Methods Appl. Mech. Eng. 30, 263–284 (1982) ADSCrossRef
197.
Zurück zum Zitat Bletzinger, K.U., Ramm, E.: A general finite element approach to the form finding of tensile structures by the updated reference strategy. Int. J. Space Struct. 14, 131–145 (1999) CrossRef Bletzinger, K.U., Ramm, E.: A general finite element approach to the form finding of tensile structures by the updated reference strategy. Int. J. Space Struct. 14, 131–145 (1999) CrossRef
198.
Zurück zum Zitat Sanchez, J., Serna, M.A., Morer, P.: A multi-step force-density method and surface-fitting approach for the preliminary shape design of tensile structures. Eng. Struct. 29, 1966–1976 (2007) CrossRef Sanchez, J., Serna, M.A., Morer, P.: A multi-step force-density method and surface-fitting approach for the preliminary shape design of tensile structures. Eng. Struct. 29, 1966–1976 (2007) CrossRef
199.
Zurück zum Zitat Pauletti, R.M.O., Pimenta, P.M.: The natural force density method for the shape finding of taut structures. Comput. Methods Appl. Mech. Eng. 197, 4419–4428 (2008) ADSMATHCrossRef Pauletti, R.M.O., Pimenta, P.M.: The natural force density method for the shape finding of taut structures. Comput. Methods Appl. Mech. Eng. 197, 4419–4428 (2008) ADSMATHCrossRef
200.
Zurück zum Zitat Barnes, M.R.: Form Finding and Analysis of Tension Space Structures by Dynamic Relaxation. City University London, London (1977) Barnes, M.R.: Form Finding and Analysis of Tension Space Structures by Dynamic Relaxation. City University London, London (1977)
201.
Zurück zum Zitat Kilian, A., Ochsendorf, J.: Particle-spring systems for structural form finding. J. Int. Assoc. Shell Spat. Struct. 46, 77–84 (2005) Kilian, A., Ochsendorf, J.: Particle-spring systems for structural form finding. J. Int. Assoc. Shell Spat. Struct. 46, 77–84 (2005)
202.
Zurück zum Zitat Inoyama, D., Sanders, B.P., Joo, J.J.: Topology synthesis of distributed actuation systems for morphing wing structures. J. Aircr. 44, 1205–1213 (2007) CrossRef Inoyama, D., Sanders, B.P., Joo, J.J.: Topology synthesis of distributed actuation systems for morphing wing structures. J. Aircr. 44, 1205–1213 (2007) CrossRef
203.
Zurück zum Zitat Inoyama, D., Sanders, B.P., Joo, J.J.: Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J. Aircr. 45, 1853–1862 (2008) CrossRef Inoyama, D., Sanders, B.P., Joo, J.J.: Topology optimization approach for the determination of the multiple-configuration morphing wing structure. J. Aircr. 45, 1853–1862 (2008) CrossRef
204.
Zurück zum Zitat Wu, J., Li, J., Yan, S.: Design of deployable bistable structures for morphing skin and its structural optimization. Eng. Optim. 46, 745–762 (2014) CrossRef Wu, J., Li, J., Yan, S.: Design of deployable bistable structures for morphing skin and its structural optimization. Eng. Optim. 46, 745–762 (2014) CrossRef
205.
Zurück zum Zitat Bletzinger, K.U., Wuchner, R., Daoud, F., Camprubi, N.: Computational methods for form finding and optimization of shells and membranes. Comput. Methods Appl. Mech. Eng. 194, 3438–3452 (2005) ADSMathSciNetMATHCrossRef Bletzinger, K.U., Wuchner, R., Daoud, F., Camprubi, N.: Computational methods for form finding and optimization of shells and membranes. Comput. Methods Appl. Mech. Eng. 194, 3438–3452 (2005) ADSMathSciNetMATHCrossRef
206.
Zurück zum Zitat Lewis, W.J.: Tension Structures: Form and Behavior. Thomas Telford, London (2006) Lewis, W.J.: Tension Structures: Form and Behavior. Thomas Telford, London (2006)
207.
Zurück zum Zitat Tibert, G.: Optimal design of tension truss antennas. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1629. AIAA, Norfolk (2003) Tibert, G.: Optimal design of tension truss antennas. In: The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, p. 1629. AIAA, Norfolk (2003)
208.
Zurück zum Zitat Yang, D., Liu, J., Zhang, Y., Zhang, S.: Optimal surface profile design of deployable mesh reflectors via a force density strategy. Acta Astronaut. 130, 137–146 (2017) ADSCrossRef Yang, D., Liu, J., Zhang, Y., Zhang, S.: Optimal surface profile design of deployable mesh reflectors via a force density strategy. Acta Astronaut. 130, 137–146 (2017) ADSCrossRef
209.
Zurück zum Zitat Liu, R., Guo, H., Liu, R., Wang, H., Tang, D., Song, X.: Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables. Acta Astronaut. 140, 66–77 (2017) ADSCrossRef Liu, R., Guo, H., Liu, R., Wang, H., Tang, D., Song, X.: Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables. Acta Astronaut. 140, 66–77 (2017) ADSCrossRef
210.
Zurück zum Zitat Ma, X., Song, Y., Li, Z., Li, T., Wang, Z., Deng, H.: Mesh reflector antennas: form finding analysis review. In: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p. 1576. AIAA, Boston (2013) Ma, X., Song, Y., Li, Z., Li, T., Wang, Z., Deng, H.: Mesh reflector antennas: form finding analysis review. In: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p. 1576. AIAA, Boston (2013)
211.
Zurück zum Zitat Li, T., Jiang, J., Deng, H., Lin, Z., Wang, Z.: Form-finding methods for deployable mesh reflector antennas. Chin. J. Aeronaut. 26, 1276–1282 (2013) CrossRef Li, T., Jiang, J., Deng, H., Lin, Z., Wang, Z.: Form-finding methods for deployable mesh reflector antennas. Chin. J. Aeronaut. 26, 1276–1282 (2013) CrossRef
212.
Zurück zum Zitat Liu, W., Li, D.X., Yu, X.Z., Jiang, J.P.: Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports. Acta Mech. Sin. 30, 198–205 (2014) ADSMATHCrossRef Liu, W., Li, D.X., Yu, X.Z., Jiang, J.P.: Exact mesh shape design of large cable-network antenna reflectors with flexible ring truss supports. Acta Mech. Sin. 30, 198–205 (2014) ADSMATHCrossRef
213.
Zurück zum Zitat Lu, C., Zhu, H., Li, S.: Initial form-finding design of deployable tensegrity structures with dynamic relaxation method. J. Intell. Fuzzy Syst. 33, 2861–2868 (2017) CrossRef Lu, C., Zhu, H., Li, S.: Initial form-finding design of deployable tensegrity structures with dynamic relaxation method. J. Intell. Fuzzy Syst. 33, 2861–2868 (2017) CrossRef
214.
Zurück zum Zitat Nie, R., He, B., Hodges, D.H., Ma, X.: Form finding and design optimization of cable network structures with flexible frames. Comput. Struct. 220, 81–91 (2019) CrossRef Nie, R., He, B., Hodges, D.H., Ma, X.: Form finding and design optimization of cable network structures with flexible frames. Comput. Struct. 220, 81–91 (2019) CrossRef
215.
Zurück zum Zitat Li, T., Deng, H., Tang, Y., Jiang, J., Ma, X.: Accuracy analysis and form-finding design of uncertain mesh reflectors based on interval force density method. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 231, 2163–2173 (2017) CrossRef Li, T., Deng, H., Tang, Y., Jiang, J., Ma, X.: Accuracy analysis and form-finding design of uncertain mesh reflectors based on interval force density method. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 231, 2163–2173 (2017) CrossRef
216.
Zurück zum Zitat Nie, R., He, B., Yan, S., Ma, X.: Optimization design method for the cable network of mesh reflector antennas considering space thermal effects. Aerosp. Sci. Technol. 94, 105380 (2019) CrossRef Nie, R., He, B., Yan, S., Ma, X.: Optimization design method for the cable network of mesh reflector antennas considering space thermal effects. Aerosp. Sci. Technol. 94, 105380 (2019) CrossRef
217.
Zurück zum Zitat Nie, R., He, B., Yan, S., Ma, X.: Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects. Eng. Struct. 208, 110253 (2020) CrossRef Nie, R., He, B., Yan, S., Ma, X.: Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects. Eng. Struct. 208, 110253 (2020) CrossRef
218.
Zurück zum Zitat Du, J., Gu, Y., Bao, H., Wang, C., Chen, X.: Shape adjustment optimization and experiment of cable-membrane reflectors. Acta Astronaut. 146, 192–201 (2018) ADSCrossRef Du, J., Gu, Y., Bao, H., Wang, C., Chen, X.: Shape adjustment optimization and experiment of cable-membrane reflectors. Acta Astronaut. 146, 192–201 (2018) ADSCrossRef
219.
Zurück zum Zitat Du, J., Zong, Y., Bao, H.: Shape adjustment of cable mesh antennas using sequential quadratic programming. Aerosp. Sci. Technol. 30, 26–32 (2013) CrossRef Du, J., Zong, Y., Bao, H.: Shape adjustment of cable mesh antennas using sequential quadratic programming. Aerosp. Sci. Technol. 30, 26–32 (2013) CrossRef
220.
Zurück zum Zitat Yoon, H.S., Washington, G.: An optimal method of shape control for deformable structures with an application to a mechanically reconfigurable reflector antenna. Smart Mater. Struct. 19, 105004 (2010) ADSCrossRef Yoon, H.S., Washington, G.: An optimal method of shape control for deformable structures with an application to a mechanically reconfigurable reflector antenna. Smart Mater. Struct. 19, 105004 (2010) ADSCrossRef
221.
Zurück zum Zitat Zhang, S., Du, J., Yang, D., Zhang, Y., Li, S.: A combined shape control procedure of cable mesh reflector antennas with optimality criterion and integrated structural electromagnetic concept. Struct. Multidiscip. Optim. 55, 289–295 (2017) MathSciNetCrossRef Zhang, S., Du, J., Yang, D., Zhang, Y., Li, S.: A combined shape control procedure of cable mesh reflector antennas with optimality criterion and integrated structural electromagnetic concept. Struct. Multidiscip. Optim. 55, 289–295 (2017) MathSciNetCrossRef
222.
Zurück zum Zitat Tabata, M., Natori, M.C.: Active shape control of a deployable space antenna reflector. J. Intell. Mater. Syst. Struct. 7, 235–240 (1996) CrossRef Tabata, M., Natori, M.C.: Active shape control of a deployable space antenna reflector. J. Intell. Mater. Syst. Struct. 7, 235–240 (1996) CrossRef
223.
Zurück zum Zitat Tanaka, H.: Surface error estimation and correction of a space antenna based on antenna gain analyses. Acta Astronaut. 68, 1062–1069 (2011) ADSCrossRef Tanaka, H.: Surface error estimation and correction of a space antenna based on antenna gain analyses. Acta Astronaut. 68, 1062–1069 (2011) ADSCrossRef
224.
Zurück zum Zitat Wang, Z., Li, T., Deng, H.: Form-finding analysis and active shape adjustment of cable net reflectors with PZT actuators. J. Aerosp. Eng. 27, 575–586 (2014) CrossRef Wang, Z., Li, T., Deng, H.: Form-finding analysis and active shape adjustment of cable net reflectors with PZT actuators. J. Aerosp. Eng. 27, 575–586 (2014) CrossRef
225.
Zurück zum Zitat Wang, Z., Li, T., Cao, Y.: Active shape adjustment of cable net structures with PZT actuators. Aerosp. Sci. Technol. 26, 160–168 (2013) CrossRef Wang, Z., Li, T., Cao, Y.: Active shape adjustment of cable net structures with PZT actuators. Aerosp. Sci. Technol. 26, 160–168 (2013) CrossRef
226.
Zurück zum Zitat Xun, G., Peng, H., Wu, S., Wu, Z.: Active shape adjustment of large cable-mesh reflectors using novel fast model predictive control. J. Aerosp. Eng. 31, 04018038 (2018) CrossRef Xun, G., Peng, H., Wu, S., Wu, Z.: Active shape adjustment of large cable-mesh reflectors using novel fast model predictive control. J. Aerosp. Eng. 31, 04018038 (2018) CrossRef
227.
Zurück zum Zitat Zuo, Y., Li, Z., Jin, G., Xie, P.: Spontaneously deployable structure for space diffractive telescope. Optoelectron. Lett. 13, 245–249 (2017) ADSCrossRef Zuo, Y., Li, Z., Jin, G., Xie, P.: Spontaneously deployable structure for space diffractive telescope. Optoelectron. Lett. 13, 245–249 (2017) ADSCrossRef
228.
Zurück zum Zitat Zheng, T., Fei, Z., Rui, X., Yan, L.: A novel space large deployable paraboloid structure with power and communication integration. Int. J. Antennas Propag. 2019, 3980947 (2019) CrossRef Zheng, T., Fei, Z., Rui, X., Yan, L.: A novel space large deployable paraboloid structure with power and communication integration. Int. J. Antennas Propag. 2019, 3980947 (2019) CrossRef
229.
Zurück zum Zitat Zhang, H., Zhou, C., Xie, X., Li, T.: Analysis and simulation of a new type of radial deployable structures. Adv. Mater. Res. 753, 1128–1132 (2013) Zhang, H., Zhou, C., Xie, X., Li, T.: Analysis and simulation of a new type of radial deployable structures. Adv. Mater. Res. 753, 1128–1132 (2013)
230.
Zurück zum Zitat Zareei, A., Deng, B., Bertoldi, K.: Harnessing transition waves to realize deployable structures. Proc. Natl. Acad. Sci. 117, 4015–4020 (2020) ADSMathSciNetCrossRef Zareei, A., Deng, B., Bertoldi, K.: Harnessing transition waves to realize deployable structures. Proc. Natl. Acad. Sci. 117, 4015–4020 (2020) ADSMathSciNetCrossRef
231.
Zurück zum Zitat Choi, J., Lee, D., Hwang, K., Kim, B.: A mechanism for a deployable optical structure of a small satellite. Int. J. Precis. Eng. Manuf. 16, 2537–2543 (2015) CrossRef Choi, J., Lee, D., Hwang, K., Kim, B.: A mechanism for a deployable optical structure of a small satellite. Int. J. Precis. Eng. Manuf. 16, 2537–2543 (2015) CrossRef
232.
Zurück zum Zitat Leng, J., Yu, K., Sun, J., Liu, Y.: Deployable morphing structure based on shape memory polymer. Aircr. Eng. Aerosp. Technol. 87, 218–223 (2015) CrossRef Leng, J., Yu, K., Sun, J., Liu, Y.: Deployable morphing structure based on shape memory polymer. Aircr. Eng. Aerosp. Technol. 87, 218–223 (2015) CrossRef
233.
Zurück zum Zitat Li, F., Liu, L., Lan, X., Zhou, X., Bian, W., Liu, Y., Leng, J.: Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite. Int. J. Smart Nano Mater. 7, 106–118 (2016) ADSCrossRef Li, F., Liu, L., Lan, X., Zhou, X., Bian, W., Liu, Y., Leng, J.: Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite. Int. J. Smart Nano Mater. 7, 106–118 (2016) ADSCrossRef
234.
Zurück zum Zitat Minori, A.F., He, Q., Glick, P.E., Adibnazari, I., Stopol, A., Cai, S., Tolley, M.T.: Reversible actuation for self-folding modular machines using liquid crystal elastomer. Smart Mater. Struct. 29, 105003 (2020) ADSCrossRef Minori, A.F., He, Q., Glick, P.E., Adibnazari, I., Stopol, A., Cai, S., Tolley, M.T.: Reversible actuation for self-folding modular machines using liquid crystal elastomer. Smart Mater. Struct. 29, 105003 (2020) ADSCrossRef
235.
Zurück zum Zitat Santo, L., Bellisario, D., Iorio, L., Quadrini, F.: Shape memory composite structures for self-deployable solar sails. Astrodynamics 3, 247–255 (2019) CrossRef Santo, L., Bellisario, D., Iorio, L., Quadrini, F.: Shape memory composite structures for self-deployable solar sails. Astrodynamics 3, 247–255 (2019) CrossRef
236.
Zurück zum Zitat Wang, W., Li, C., Rodrigue, H., Yuan, F., Han, M.W., Cho, M., Ahn, S.H.: Kirigami/origami-based soft deployable reflector for optical beam steering. Adv. Funct. Mater. 27, 1604214 (2017) CrossRef Wang, W., Li, C., Rodrigue, H., Yuan, F., Han, M.W., Cho, M., Ahn, S.H.: Kirigami/origami-based soft deployable reflector for optical beam steering. Adv. Funct. Mater. 27, 1604214 (2017) CrossRef
237.
Zurück zum Zitat Sun, Y., Wang, S., Mills, J.K., Zhi, C.: Kinematics and dynamics of deployable structures with scissor-like-elements based on screw theory. Chin. J. Mech. Eng. 27, 655–662 (2014) CrossRef Sun, Y., Wang, S., Mills, J.K., Zhi, C.: Kinematics and dynamics of deployable structures with scissor-like-elements based on screw theory. Chin. J. Mech. Eng. 27, 655–662 (2014) CrossRef
238.
Zurück zum Zitat Wang, D., Liu, R., Wang, Y., Guo, H., Cong, Q., Zhang, C.: Deployment analysis of a planar deployable support truss structure. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 1287–1292. IEEE, Takamatsu (2013) CrossRef Wang, D., Liu, R., Wang, Y., Guo, H., Cong, Q., Zhang, C.: Deployment analysis of a planar deployable support truss structure. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 1287–1292. IEEE, Takamatsu (2013) CrossRef
239.
Zurück zum Zitat Suh, J., Jeong, S., Han, J.: Conceptual design and dynamic analysis of bistable deployable structure. In: Active and Passive Smart Structures and Integrated Systems XII, p. 105950J. SPIE, Denver (2018) Suh, J., Jeong, S., Han, J.: Conceptual design and dynamic analysis of bistable deployable structure. In: Active and Passive Smart Structures and Integrated Systems XII, p. 105950J. SPIE, Denver (2018)
240.
Zurück zum Zitat Peng, Y., Zhao, Z., Zhou, M., He, J., Yang, J., Xiao, Y.: Flexible multibody model and the dynamics of the deployment of mesh antennas. J. Guid. Control Dyn. 40, 1499–1506 (2017) ADSCrossRef Peng, Y., Zhao, Z., Zhou, M., He, J., Yang, J., Xiao, Y.: Flexible multibody model and the dynamics of the deployment of mesh antennas. J. Guid. Control Dyn. 40, 1499–1506 (2017) ADSCrossRef
241.
Zurück zum Zitat Wang, Y., Guo, H., Yang, H., Liu, R., Deng, Z.: Deployment analysis and optimization of a flexible deployable structure for large synthetic aperture radar antennas. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 230, 615–627 (2016) CrossRef Wang, Y., Guo, H., Yang, H., Liu, R., Deng, Z.: Deployment analysis and optimization of a flexible deployable structure for large synthetic aperture radar antennas. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 230, 615–627 (2016) CrossRef
242.
Zurück zum Zitat Zhang, Y., Li, N., Yang, G., Ru, W.: Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure. Acta Astronaut. 131, 182–189 (2017) ADSCrossRef Zhang, Y., Li, N., Yang, G., Ru, W.: Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure. Acta Astronaut. 131, 182–189 (2017) ADSCrossRef
243.
Zurück zum Zitat Peng, Q., Wang, S., Zhi, C., Li, B.: A new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements. Chin. J. Mech. Eng. 32, 1–10 (2019) CrossRef Peng, Q., Wang, S., Zhi, C., Li, B.: A new flexible multibody dynamics analysis methodology of deployable structures with scissor-like elements. Chin. J. Mech. Eng. 32, 1–10 (2019) CrossRef
244.
Zurück zum Zitat Hachkowski, M.R., Peterson, L.D., Lake, M.S.: Friction model of a revolute joint for a precision deployable spacecraft structure. J. Spacecr. Rockets 36, 591–598 (1999) ADSCrossRef Hachkowski, M.R., Peterson, L.D., Lake, M.S.: Friction model of a revolute joint for a precision deployable spacecraft structure. J. Spacecr. Rockets 36, 591–598 (1999) ADSCrossRef
245.
Zurück zum Zitat Dewalque, F., Rochus, P., Bruls, O.: Importance of structural damping in the dynamic analysis of compliant deployable structures. Acta Astronaut. 111, 323–333 (2015) ADSCrossRef Dewalque, F., Rochus, P., Bruls, O.: Importance of structural damping in the dynamic analysis of compliant deployable structures. Acta Astronaut. 111, 323–333 (2015) ADSCrossRef
246.
Zurück zum Zitat Li, B., Wang, S., Yuan, R., Xue, X., Zhi, C.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with joint clearance using a new mixed contact force model. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 230, 3161–3174 (2016) CrossRef Li, B., Wang, S., Yuan, R., Xue, X., Zhi, C.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with joint clearance using a new mixed contact force model. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 230, 3161–3174 (2016) CrossRef
247.
Zurück zum Zitat Li, B., Wang, S., Makis, V., Xue, X.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with differently located revolute clearance joints. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 232, 1759–1777 (2018) CrossRef Li, B., Wang, S., Makis, V., Xue, X.: Dynamic characteristics of planar linear array deployable structure based on scissor-like element with differently located revolute clearance joints. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 232, 1759–1777 (2018) CrossRef
248.
Zurück zum Zitat Ma, X., Li, T.: Wave analysis of planar deployable structures with revolute clearance joints based on spectral element method. Int. J. Appl. Mech. 10, 1850090 (2018) CrossRef Ma, X., Li, T.: Wave analysis of planar deployable structures with revolute clearance joints based on spectral element method. Int. J. Appl. Mech. 10, 1850090 (2018) CrossRef
249.
Zurück zum Zitat Dewalque, F., Schwartz, C., Denoel, V., Croisier, J.L., Forthomme, B., Bruls, O.: Experimental and numerical investigation of the nonlinear dynamics of compliant mechanisms for deployable structures. Mech. Syst. Signal Process. 101, 1–25 (2018) ADSCrossRef Dewalque, F., Schwartz, C., Denoel, V., Croisier, J.L., Forthomme, B., Bruls, O.: Experimental and numerical investigation of the nonlinear dynamics of compliant mechanisms for deployable structures. Mech. Syst. Signal Process. 101, 1–25 (2018) ADSCrossRef
250.
Zurück zum Zitat Salama, M., Kuo, C.P., Lou, M.: Simulation of deployment dynamics of inflatable structures. AIAA J. 38, 2277–2283 (2000) ADSCrossRef Salama, M., Kuo, C.P., Lou, M.: Simulation of deployment dynamics of inflatable structures. AIAA J. 38, 2277–2283 (2000) ADSCrossRef
251.
Zurück zum Zitat Haug, E., Protard, J.B., Milcent, G., Herren, A., Brunner, O.: The numerical simulation of the inflation process of space rigidized antenna structures. ESA SP 2, 861–869 (1991) ADS Haug, E., Protard, J.B., Milcent, G., Herren, A., Brunner, O.: The numerical simulation of the inflation process of space rigidized antenna structures. ESA SP 2, 861–869 (1991) ADS
252.
Zurück zum Zitat Lian, W., Bhalsod, D., Olovsson, L.: Benchmark study on the airbag particle method for out-of-position applications. In: 10th International LS-DYNA Users Conference, pp. 11–21. LSTC, Dearborn (2008) Lian, W., Bhalsod, D., Olovsson, L.: Benchmark study on the airbag particle method for out-of-position applications. In: 10th International LS-DYNA Users Conference, pp. 11–21. LSTC, Dearborn (2008)
253.
Zurück zum Zitat Hirth, A., Haufe, A., Olovsson, L.: Airbag simulation with LS-DYNA: past-present-future. In: The 6th European LS-DYNA Conference, pp. 23–45. LSTC, Gothenburg (2007) Hirth, A., Haufe, A., Olovsson, L.: Airbag simulation with LS-DYNA: past-present-future. In: The 6th European LS-DYNA Conference, pp. 23–45. LSTC, Gothenburg (2007)
254.
Zurück zum Zitat Marklund, P.O., Nilsson, L.: Simulation of airbag inflation processes using a coupled fluid structure approach. Comput. Mech. 29, 289–297 (2002) MATHCrossRef Marklund, P.O., Nilsson, L.: Simulation of airbag inflation processes using a coupled fluid structure approach. Comput. Mech. 29, 289–297 (2002) MATHCrossRef
255.
Zurück zum Zitat Glaser, R., Caccese, V., Shahinpoor, M.: Comparative finite element and experimental analysis of a quasi-static inflation of a thin deployable membrane space structure. Finite Elem. Anal. Des. 138, 48–65 (2018) CrossRef Glaser, R., Caccese, V., Shahinpoor, M.: Comparative finite element and experimental analysis of a quasi-static inflation of a thin deployable membrane space structure. Finite Elem. Anal. Des. 138, 48–65 (2018) CrossRef
256.
Zurück zum Zitat Mitsugi, J., Ando, K., Senbokuya, Y., Meguro, A.: Deployment analysis of large space antenna using flexible multibody dynamics simulation. Acta Astronaut. 47, 19–26 (2000) ADSCrossRef Mitsugi, J., Ando, K., Senbokuya, Y., Meguro, A.: Deployment analysis of large space antenna using flexible multibody dynamics simulation. Acta Astronaut. 47, 19–26 (2000) ADSCrossRef
257.
Zurück zum Zitat Zhang, Y., Ru, W., Yang, G., Li, N.: Deployment analysis considering the cable-net tension effect for deployable antennas. Aerosp. Sci. Technol. 48, 193–202 (2016) CrossRef Zhang, Y., Ru, W., Yang, G., Li, N.: Deployment analysis considering the cable-net tension effect for deployable antennas. Aerosp. Sci. Technol. 48, 193–202 (2016) CrossRef
258.
Zurück zum Zitat Nie, R., He, B., Zhang, L., Fang, Y.: Deployment analysis for space cable net structures with varying topologies and parameters. Aerosp. Sci. Technol. 68, 1–10 (2017) CrossRef Nie, R., He, B., Zhang, L., Fang, Y.: Deployment analysis for space cable net structures with varying topologies and parameters. Aerosp. Sci. Technol. 68, 1–10 (2017) CrossRef
259.
Zurück zum Zitat Peng, Q.a., Wang, S., Zhi, C.: The design and simulation of a new time-controlled spring driven hinge for deployable structures. Mech. Mach. Sci. 408, 761–772 (2017) Peng, Q.a., Wang, S., Zhi, C.: The design and simulation of a new time-controlled spring driven hinge for deployable structures. Mech. Mach. Sci. 408, 761–772 (2017)
260.
Zurück zum Zitat Chu, Z., Deng, Z., Qi, X., Li, B.: Modeling and analysis of a large deployable antenna structure. Acta Astronaut. 95, 51–60 (2014) ADSCrossRef Chu, Z., Deng, Z., Qi, X., Li, B.: Modeling and analysis of a large deployable antenna structure. Acta Astronaut. 95, 51–60 (2014) ADSCrossRef
261.
Zurück zum Zitat Peng, H., Fei, L., Kan, Z., Liu, P.: Symplectic instantaneous optimal control of deployable structures driven by sliding cable actuators. J. Guid. Control Dyn. 43, 1114–1128 (2020) ADSCrossRef Peng, H., Fei, L., Kan, Z., Liu, P.: Symplectic instantaneous optimal control of deployable structures driven by sliding cable actuators. J. Guid. Control Dyn. 43, 1114–1128 (2020) ADSCrossRef
262.
Zurück zum Zitat Noor, A.K.: Continuum modeling for repetitive lattice structures. Appl. Mech. Rev. 41, 285–296 (1988) ADSCrossRef Noor, A.K.: Continuum modeling for repetitive lattice structures. Appl. Mech. Rev. 41, 285–296 (1988) ADSCrossRef
263.
Zurück zum Zitat Salehian, A., Inman, D.J.: Dynamic analysis of a lattice structure by homogenization: experimental validation. J. Sound Vib. 316, 180–197 (2008) ADSCrossRef Salehian, A., Inman, D.J.: Dynamic analysis of a lattice structure by homogenization: experimental validation. J. Sound Vib. 316, 180–197 (2008) ADSCrossRef
264.
Zurück zum Zitat Guo, H., Liu, R., Deng, Z.: Dynamic analysis and nonlinear identification of space deployable structure. J. Cent. South Univ. 20, 1204–1213 (2013) CrossRef Guo, H., Liu, R., Deng, Z.: Dynamic analysis and nonlinear identification of space deployable structure. J. Cent. South Univ. 20, 1204–1213 (2013) CrossRef
265.
Zurück zum Zitat Glassman, T., Warwick, S., Lo, A., Casement, S.: Starshade starlight-suppression performance with a deployable structure. In: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, p. 990425. SPIE, Edinburgh (2016) Glassman, T., Warwick, S., Lo, A., Casement, S.: Starshade starlight-suppression performance with a deployable structure. In: Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, p. 990425. SPIE, Edinburgh (2016)
266.
Zurück zum Zitat Li, F., Liu, L., Lan, X., Wang, T., Li, X., Chen, F., Bian, W., Liu, Y., Leng, J.: Modal analyses of deployable truss structures based on shape memory polymer composites. Int. J. Appl. Mech. 8, 1640009 (2016) CrossRef Li, F., Liu, L., Lan, X., Wang, T., Li, X., Chen, F., Bian, W., Liu, Y., Leng, J.: Modal analyses of deployable truss structures based on shape memory polymer composites. Int. J. Appl. Mech. 8, 1640009 (2016) CrossRef
267.
Zurück zum Zitat Zhao, C., Li, C., Zhou, N., Liao, H.: Self-deployable structure designed for space telescope for microsatellite application. In: 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials, p. 96850B. SPIE, Suzhou(2016) Zhao, C., Li, C., Zhou, N., Liao, H.: Self-deployable structure designed for space telescope for microsatellite application. In: 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Design, Manufacturing, and Testing of Micro- and Nano-Optical Devices and Systems; and Smart Structures and Materials, p. 96850B. SPIE, Suzhou(2016)
268.
Zurück zum Zitat Guo, H., Zhang, J., Liu, R., Deng, Z.: Effects of joint on dynamics of space deployable structure. Chin. J. Mech. Eng. 26, 861–872 (2013) CrossRef Guo, H., Zhang, J., Liu, R., Deng, Z.: Effects of joint on dynamics of space deployable structure. Chin. J. Mech. Eng. 26, 861–872 (2013) CrossRef
269.
Zurück zum Zitat Song, Z., Yang, X., Huang, H., Li, B.: Dynamic analysis of planar mechanisms with revolute clearance joints based on two evaluation indices. Mech. Based Des. Struct. Mach. 44, 231–249 (2016) CrossRef Song, Z., Yang, X., Huang, H., Li, B.: Dynamic analysis of planar mechanisms with revolute clearance joints based on two evaluation indices. Mech. Based Des. Struct. Mach. 44, 231–249 (2016) CrossRef
270.
Zurück zum Zitat Shen, Z., Li, H., Liu, X., Hu, G.: Thermal shock induced dynamics of a spacecraft with a flexible deploying boom. Acta Astronaut. 141, 123–131 (2017) ADSCrossRef Shen, Z., Li, H., Liu, X., Hu, G.: Thermal shock induced dynamics of a spacecraft with a flexible deploying boom. Acta Astronaut. 141, 123–131 (2017) ADSCrossRef
271.
Zurück zum Zitat Shen, Z., Hu, G.: Thermally induced dynamics of a spinning spacecraft with an axial flexible boom. J. Spacecr. Rockets 52, 1503–1507 (2015) ADSCrossRef Shen, Z., Hu, G.: Thermally induced dynamics of a spinning spacecraft with an axial flexible boom. J. Spacecr. Rockets 52, 1503–1507 (2015) ADSCrossRef
272.
Zurück zum Zitat Boley, B.A.: Thermally induced vibrations of beams. J. Aeronaut. Sci. 23, 179–181 (1956) MATH Boley, B.A.: Thermally induced vibrations of beams. J. Aeronaut. Sci. 23, 179–181 (1956) MATH
273.
Zurück zum Zitat Thornton, E.A., Kim, Y.A.: Thermally induced bending vibrations of a flexible rolled-up solar array. J. Spacecr. Rockets 30, 438–448 (1993) ADSCrossRef Thornton, E.A., Kim, Y.A.: Thermally induced bending vibrations of a flexible rolled-up solar array. J. Spacecr. Rockets 30, 438–448 (1993) ADSCrossRef
274.
Zurück zum Zitat Liu, R., Guo, H., Liu, R., Wang, H., Tang, D., Deng, Z.: Structural design and optimization of large cable-rib tension deployable antenna structure with dynamic constraint. Acta Astronaut. 151, 160–172 (2018) ADSCrossRef Liu, R., Guo, H., Liu, R., Wang, H., Tang, D., Deng, Z.: Structural design and optimization of large cable-rib tension deployable antenna structure with dynamic constraint. Acta Astronaut. 151, 160–172 (2018) ADSCrossRef
275.
Zurück zum Zitat Mroz, A., Holnicki-Szulc, J., Biczyk, J.: Prestress accumulation-release technique for damping of impact-born vibrations: application to self-deployable structures. Math. Probl. Eng. 2015, 720236 (2015) CrossRef Mroz, A., Holnicki-Szulc, J., Biczyk, J.: Prestress accumulation-release technique for damping of impact-born vibrations: application to self-deployable structures. Math. Probl. Eng. 2015, 720236 (2015) CrossRef
276.
Zurück zum Zitat Bullock, S.J., Peterson, L.D.: Nanometer regularity in the mechanics of a precision deployable spacecraft structure joint. J. Spacecr. Rockets 36, 758–764 (1999) ADSCrossRef Bullock, S.J., Peterson, L.D.: Nanometer regularity in the mechanics of a precision deployable spacecraft structure joint. J. Spacecr. Rockets 36, 758–764 (1999) ADSCrossRef
277.
Zurück zum Zitat Moon, F.C., Li, G.X.: Experimental study of chaotic vibrations in a pin-jointed space truss structure. AIAA J. 28, 915–921 (2012) ADSCrossRef Moon, F.C., Li, G.X.: Experimental study of chaotic vibrations in a pin-jointed space truss structure. AIAA J. 28, 915–921 (2012) ADSCrossRef
278.
Zurück zum Zitat Siriguleng, B., Zhang, W., Liu, T., Liu, Y.Z.: Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure. Eng. Struct. 207, 109932 (2020) CrossRef Siriguleng, B., Zhang, W., Liu, T., Liu, Y.Z.: Vibration modal experiments and modal interactions of a large space deployable antenna with carbon fiber material and ring-truss structure. Eng. Struct. 207, 109932 (2020) CrossRef
279.
Zurück zum Zitat Wei, J., Ma, R., Liu, Y., Yu, J., Eriksson, A., Tan, H.: Modal analysis and identification of deployable membrane structures. Acta Astronaut. 152, 811–822 (2018) ADSCrossRef Wei, J., Ma, R., Liu, Y., Yu, J., Eriksson, A., Tan, H.: Modal analysis and identification of deployable membrane structures. Acta Astronaut. 152, 811–822 (2018) ADSCrossRef
280.
Zurück zum Zitat Warren, P.A., Peterson, L.D., Hinkle, J.D.: Submicron mechanical stability of a prototype deployable space telescope support structure. J. Spacecr. Rockets 36, 765–771 (1999) ADSCrossRef Warren, P.A., Peterson, L.D., Hinkle, J.D.: Submicron mechanical stability of a prototype deployable space telescope support structure. J. Spacecr. Rockets 36, 765–771 (1999) ADSCrossRef
281.
Zurück zum Zitat Moser, R.L., Erwin, R.S., Schrader, K.N., Bell, K.D., Griffin, S.F., Powers, M.K.: Experimental control of microdynamic events observed during the testing of a large deployable optical structure. In: UV, Optical, and IR Space Telescopes and Instruments, pp. 715–726. SPIE, Munich (2000) CrossRef Moser, R.L., Erwin, R.S., Schrader, K.N., Bell, K.D., Griffin, S.F., Powers, M.K.: Experimental control of microdynamic events observed during the testing of a large deployable optical structure. In: UV, Optical, and IR Space Telescopes and Instruments, pp. 715–726. SPIE, Munich (2000) CrossRef
282.
Zurück zum Zitat Ingham, M.D., Crawley, E.F.: Microdynamic characterization of modal parameters for a deployable space structure. AIAA J. 39, 331–338 (2001) ADSCrossRef Ingham, M.D., Crawley, E.F.: Microdynamic characterization of modal parameters for a deployable space structure. AIAA J. 39, 331–338 (2001) ADSCrossRef
283.
Zurück zum Zitat Xun, J., Yan, S.: A revised Hilbert-Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure. Mech. Syst. Signal Process. 22, 1705–1723 (2008) ADSCrossRef Xun, J., Yan, S.: A revised Hilbert-Huang transformation based on the neural networks and its application in vibration signal analysis of a deployable structure. Mech. Syst. Signal Process. 22, 1705–1723 (2008) ADSCrossRef
284.
Zurück zum Zitat Liu, T., Yan, S., Zhang, W.: Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform. Mech. Syst. Signal Process. 75, 228–244 (2016) ADSCrossRef Liu, T., Yan, S., Zhang, W.: Time-frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform. Mech. Syst. Signal Process. 75, 228–244 (2016) ADSCrossRef
285.
Zurück zum Zitat Liu, T., Huang, J., Yan, S., Guo, F.: Extraction and analysis of transient signals of a deployable structure vibration based on the sparse decomposition with mixed norms. Aerosp. Sci. Technol. 105, 106064 (2020) CrossRef Liu, T., Huang, J., Yan, S., Guo, F.: Extraction and analysis of transient signals of a deployable structure vibration based on the sparse decomposition with mixed norms. Aerosp. Sci. Technol. 105, 106064 (2020) CrossRef
Metadaten
Titel
Deployable Structures: Structural Design and Static/Dynamic Analysis
verfasst von
Xiao Zhang
Rui Nie
Yan Chen
Baiyan He
Publikationsdatum
27.10.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 2/2021
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-021-09860-6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.