Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

26.08.2021

Design and Implementation of a Wireless Medical Robot for Communication Within Hazardous Environments

verfasst von: Nashat Maher, G. A. Elsheikh, A. N. Ouda, W. R. Anis, Tamer Emara

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The huge spreading of COVID-19 viral outbreak to several countries motivates many of the research institutions everywhere in numerous disciplines to try decreasing the spread rate of this pandemic. Among these researches are the robotics with different payloads and sensory devices with wireless communications to remotely track patients’ diagnosis and their treatment. That is, it reduces direct contact between the patients and the medical team members. Thus, this paper is devoted to design and implement a prototype of wireless medical robot (MR) that can communicate between patients and medical consultants. The prototype includes the modelling of a four-wheeled MR using systems' identification methodology, from which the model is utilized in control design and analysis. The required controller is designed using the proportional-integral-derivative (PID) and Fuzzy logic (FLC) techniques. The MR is equipped onboard with some medical sensors and a camera to acquire vital signs and physical parameters of patients. The MR model is obtained via an experimental test with input/output signals in open-loop configuration as single–input–single–output from which the estimation and validation results demonstrate that the identified model possess about 89% of the output variation/dynamics. This model is used for controllers' design with PID and FLC, the response of which is good for heading angle tracking. Concerning the medical measurements, more than two thousand real recorded Photo-plethysmography (PPG) signals and Blood Pressure (BP) are used to find the appropriate BP estimation model. Towards this objective, some experiments are designed and conducted to measure the PPG signal. Finally, the BP is estimated with mean absolute error of about 4.7 mmHg in systolic and 4.8 mmHg in diastolic using Artificial Neural Network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
10.
Zurück zum Zitat Garg, A., Tai, K., & Panda, B. N. (2017). System identification: Survey on modeling methods and models. Garg, A., Tai, K., & Panda, B. N. (2017). System identification: Survey on modeling methods and models.
11.
Zurück zum Zitat Mendes, E. P., & Medeiros, A. A. D. (2010). Identification of quasi-linear dynamic model with dead zone for mobile robot with differential drive. In Proceedings - 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, LARS 2010 (pp. 132–137). https://doi.org/10.1109/LARS.2010.36 Mendes, E. P., & Medeiros, A. A. D. (2010). Identification of quasi-linear dynamic model with dead zone for mobile robot with differential drive. In Proceedings - 2010 Latin American Robotics Symposium and Intelligent Robotics Meeting, LARS 2010 (pp. 132–137). https://​doi.​org/​10.​1109/​LARS.​2010.​36
14.
15.
Zurück zum Zitat Pedrycz, W. (1995). Fuzzy sets engineering. CRC Press.MATH Pedrycz, W. (1995). Fuzzy sets engineering. CRC Press.MATH
20.
Zurück zum Zitat L’Her, E., N’Guyen, Q. T., Pateau, V., Bodenes, L., & Lellouche, F. (2019). Photoplethysmographic determination of the respiratory rate in acutely ill patients: Validation of a new algorithm and implementation into a biomedical device. Annals of Intensive Care, 9(1), 11. https://doi.org/10.1186/s13613-019-0485-zCrossRef L’Her, E., N’Guyen, Q. T., Pateau, V., Bodenes, L., & Lellouche, F. (2019). Photoplethysmographic determination of the respiratory rate in acutely ill patients: Validation of a new algorithm and implementation into a biomedical device. Annals of Intensive Care, 9(1), 11. https://​doi.​org/​10.​1186/​s13613-019-0485-zCrossRef
23.
Zurück zum Zitat Huang, P. (2016). The analysis of youngster with fever by using instantaneous pulse rate variability. The Eighth International Conference on eHealth, Telemedicine, and Social Medicine, (c), 63–67. Huang, P. (2016). The analysis of youngster with fever by using instantaneous pulse rate variability. The Eighth International Conference on eHealth, Telemedicine, and Social Medicine, (c), 63–67.
27.
Zurück zum Zitat Lennart, L. (1999). System identification: Theory for the User (2nd ed.). Prentice Hall.MATH Lennart, L. (1999). System identification: Theory for the User (2nd ed.). Prentice Hall.MATH
29.
Zurück zum Zitat Ljung, L. (2016). System Identification Toolbox TM Getting Started Guide Lennart Ljung R 2016 a How to Contact MathWorks. System Identification Toolbox TM Getting Started Guide. Ljung, L. (2016). System Identification Toolbox TM Getting Started Guide Lennart Ljung R 2016 a How to Contact MathWorks. System Identification Toolbox TM Getting Started Guide.
Metadaten
Titel
Design and Implementation of a Wireless Medical Robot for Communication Within Hazardous Environments
verfasst von
Nashat Maher
G. A. Elsheikh
A. N. Ouda
W. R. Anis
Tamer Emara
Publikationsdatum
26.08.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08954-7

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt