Skip to main content
Erschienen in: Journal of Computational Electronics 3/2019

11.05.2019

Design and performance analysis of low-power SRAM based on electrostatically doped tunnel CNTFETs

verfasst von: Shashi Bala, Mamta Khosla

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An electrostatically doped (ED) tunnel carbon nanotube field-effect transistor (CNTFET)-based six-transistor (6T) static random-access memory (SRAM) cell is designed and simulated in HSPICE. The performance of the ED tunnel CNTFET 6T SRAM cell is analyzed based on various figures of merit (FOMs), viz. the read/write noise margin, power dissipation, and read/write delay. Simulation results for the ED tunnel CNTFET-based 6T SRAM are compared with those for a conventional CNTFET-based 6T SRAM cell, revealing that the former shows improved FOMs without losing stability. The read noise margin is improved by 9.2% and 7.5% at VDD of 0.9 V and 0.5 V, while the write noise margin is improved by 16% and 14% at VDD of 0.9 V and 0.5 V, respectively. The power dissipation is reduced by 9 pW at VDD of 0.9 V and by 4 pW at VDD of 0.5 V. The results demonstrate the stability of the proposed ED tunnel CNTFET SRAM for low-power applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Subramanyam, J.B.V., Syed Basha, S.: Design of low leakage power SRAM using multithreshold technique. In: Intelligent Systems and Control (ISCO), 2016 10th International Conference on. IEEE (2016) Subramanyam, J.B.V., Syed Basha, S.: Design of low leakage power SRAM using multithreshold technique. In: Intelligent Systems and Control (ISCO), 2016 10th International Conference on. IEEE (2016)
2.
Zurück zum Zitat Chen, X., Peh, L.-S.: Leakage power modeling and optimization in interconnection networks. In: Low Power Electronics and Design, 2003. ISLPED’03. Proceedings of the 2003 International Symposium on. IEEE (2003) Chen, X., Peh, L.-S.: Leakage power modeling and optimization in interconnection networks. In: Low Power Electronics and Design, 2003. ISLPED’03. Proceedings of the 2003 International Symposium on. IEEE (2003)
3.
Zurück zum Zitat Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple techniques for reducing leakage power. In: Computer Architecture, 2002. Proceedings. 29th Annual International Symposium on. IEEE (2002) Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple techniques for reducing leakage power. In: Computer Architecture, 2002. Proceedings. 29th Annual International Symposium on. IEEE (2002)
4.
Zurück zum Zitat Kanda, K., Sadaaki, H., Sakurai, T.: 90% write powersaving SRAM using sense-amplifying memory cell. IEEE J. Solid-State Circuits 39(6), 927–933 (2004)CrossRef Kanda, K., Sadaaki, H., Sakurai, T.: 90% write powersaving SRAM using sense-amplifying memory cell. IEEE J. Solid-State Circuits 39(6), 927–933 (2004)CrossRef
5.
Zurück zum Zitat Yamaoka, M., Maeda, N., Shinozaki, Y., Shimazaki, Y., Nii, K., Shimada, S., Yanagisawa, K., Kawahara, T.: Low-power embedded SRAM modules with expanded margins for writing. In: Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International. IEEE (2005) Yamaoka, M., Maeda, N., Shinozaki, Y., Shimazaki, Y., Nii, K., Shimada, S., Yanagisawa, K., Kawahara, T.: Low-power embedded SRAM modules with expanded margins for writing. In: Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International. IEEE (2005)
6.
Zurück zum Zitat Li, H., Huang, P., Gao, B., Chen, B., Liu, X., Kang, J.: A SPICE model of resistive random access memory for large-scale memory array simulation. IEEE Electron Device Lett. 35(2), 211–213 (2014)CrossRef Li, H., Huang, P., Gao, B., Chen, B., Liu, X., Kang, J.: A SPICE model of resistive random access memory for large-scale memory array simulation. IEEE Electron Device Lett. 35(2), 211–213 (2014)CrossRef
7.
Zurück zum Zitat Frégonèse, S., Maneux, C., Zimmer, T.: Implementation of tunneling phenomena in a CNTFET compact model. IEEE Trans. Electron Devices 56(10), 2224–2231 (2009)CrossRef Frégonèse, S., Maneux, C., Zimmer, T.: Implementation of tunneling phenomena in a CNTFET compact model. IEEE Trans. Electron Devices 56(10), 2224–2231 (2009)CrossRef
8.
Zurück zum Zitat Bala, S., Khosla, M.: Design and analysis of electrostatic doped tunnel CNTFET for various process parameters variation. J. Superlattices Microstruct. 124, 160–167 (2018)CrossRef Bala, S., Khosla, M.: Design and analysis of electrostatic doped tunnel CNTFET for various process parameters variation. J. Superlattices Microstruct. 124, 160–167 (2018)CrossRef
9.
Zurück zum Zitat Bandaru, P.R.: Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7(4–5), 1239–1267 (2007)CrossRef Bandaru, P.R.: Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7(4–5), 1239–1267 (2007)CrossRef
10.
Zurück zum Zitat Kumar, S., Raj, B.: Compact channel potential analytical modeling of DG-TFET based on evanescent-mode approach. J. Comput. Electron. 14(3), 820–827 (2015)CrossRef Kumar, S., Raj, B.: Compact channel potential analytical modeling of DG-TFET based on evanescent-mode approach. J. Comput. Electron. 14(3), 820–827 (2015)CrossRef
11.
Zurück zum Zitat Lukić, B., Seo, J.W., Bacsa, R.R., Delpeux, S., Béguin, F., Bister, G., Fonseca, A., Nagy, J.B., Kis, A., Jeney, S., Kulik, A.J.: Catalytically grown carbon nanotubes of small diameter have a high Young’s modulus. Nano Lett. 5(10), 2074–2077 (2005)CrossRef Lukić, B., Seo, J.W., Bacsa, R.R., Delpeux, S., Béguin, F., Bister, G., Fonseca, A., Nagy, J.B., Kis, A., Jeney, S., Kulik, A.J.: Catalytically grown carbon nanotubes of small diameter have a high Young’s modulus. Nano Lett. 5(10), 2074–2077 (2005)CrossRef
12.
Zurück zum Zitat Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)CrossRef Appenzeller, J., Lin, Y.M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005)CrossRef
13.
Zurück zum Zitat Lin, Y.M., Appenzeller, J., Knoch, J., Avouris, Ph: High performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005)CrossRef Lin, Y.M., Appenzeller, J., Knoch, J., Avouris, Ph: High performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005)CrossRef
14.
Zurück zum Zitat Upadhyay, P., Kar, R., Mandal, D., Ghoshal, S.P., Yalla, N.: A design of highly stable and low-power SRAM cell. In: Advances in Computer Communication and Computational Sciences, pp. 281-289. Springer, Singapore (2019) Upadhyay, P., Kar, R., Mandal, D., Ghoshal, S.P., Yalla, N.: A design of highly stable and low-power SRAM cell. In: Advances in Computer Communication and Computational Sciences, pp. 281-289. Springer, Singapore (2019)
15.
Zurück zum Zitat Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016)CrossRef Raad, B.R., Sharma, D., Kondekar, P., Nigam, K., Yadav, D.S.: Drain work function engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal, design, and investigation. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016)CrossRef
16.
Zurück zum Zitat Singh, S., Kondekar, P.N.: A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices Microstruct. 88(12), 695–703 (2015)CrossRef Singh, S., Kondekar, P.N.: A novel dynamically configurable electrostatically doped silicon nanowire impact ionization MOS. Superlattices Microstruct. 88(12), 695–703 (2015)CrossRef
17.
Zurück zum Zitat Gupta, G., Rajasekharan, B., Hueting, R.J.: Electrostatic doping in semiconductor devices. IEEE Trans. Electron Devices 64(8), 3044–3055 (2017)CrossRef Gupta, G., Rajasekharan, B., Hueting, R.J.: Electrostatic doping in semiconductor devices. IEEE Trans. Electron Devices 64(8), 3044–3055 (2017)CrossRef
18.
Zurück zum Zitat Pushkarna, A., Raghavan, S., Mahmoodi, H.: Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies. In: Proceedings of 23rd IEEE International SOC Conference, pp. 339–342 (2010) Pushkarna, A., Raghavan, S., Mahmoodi, H.: Comparison of performance parameters of SRAM designs in 16 nm CMOS and CNTFET technologies. In: Proceedings of 23rd IEEE International SOC Conference, pp. 339–342 (2010)
19.
Zurück zum Zitat Lin, S., Kim, Y., Lombardi, F.: A new SRAM cell design using CNTFETs. In: Proceedings of the International SoC Design Conference, pp 168–171 (2008) Lin, S., Kim, Y., Lombardi, F.: A new SRAM cell design using CNTFETs. In: Proceedings of the International SoC Design Conference, pp 168–171 (2008)
20.
Zurück zum Zitat Kumar, G.S., Singh, A., Raj, B.: Design and analysis of a gate-all-around CNTFET-based SRAM cell. J. Comput. Electron. 17(1), 138–145 (2018)CrossRef Kumar, G.S., Singh, A., Raj, B.: Design and analysis of a gate-all-around CNTFET-based SRAM cell. J. Comput. Electron. 17(1), 138–145 (2018)CrossRef
21.
Zurück zum Zitat Kitagata, D., Sugahara, S.: Design and energy-efficient architectures for nonvolatile static random access memory using magnetic tunnel junctions. Jpn. J. Appl. Phys. 58(SB), SBBB1–SBBB12 (2019)CrossRef Kitagata, D., Sugahara, S.: Design and energy-efficient architectures for nonvolatile static random access memory using magnetic tunnel junctions. Jpn. J. Appl. Phys. 58(SB), SBBB1–SBBB12 (2019)CrossRef
23.
Zurück zum Zitat Bala, S., Khosla, M.: Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design. J. Comput. Electron. 17(4), 1528–1535 (2018)CrossRef Bala, S., Khosla, M.: Electrostatically doped tunnel CNTFET model for low-power VLSI circuit design. J. Comput. Electron. 17(4), 1528–1535 (2018)CrossRef
24.
Zurück zum Zitat Singh, J., Ramakrishnan, K., Mookerjea, S., Datta, S., Vijaykrishnan, N., Pradhan, D.: A novel Si-tunnel FET based SRAM design for ultra low-power 0.3 V VDD applications. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference, pp. 181–186. IEEE Press (2010) Singh, J., Ramakrishnan, K., Mookerjea, S., Datta, S., Vijaykrishnan, N., Pradhan, D.: A novel Si-tunnel FET based SRAM design for ultra low-power 0.3 V VDD applications. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference, pp. 181–186. IEEE Press (2010)
25.
Zurück zum Zitat Raj, B., Saxena, A.K., Dasgupta, S.: Nanoscale FinFET based SRAM cell design: analysis of performance metric, process variation, underlapped FinFET, and temperature effect. IEEE Circuits Syst. Mag. 11(3), 38–50 (2011)CrossRef Raj, B., Saxena, A.K., Dasgupta, S.: Nanoscale FinFET based SRAM cell design: analysis of performance metric, process variation, underlapped FinFET, and temperature effect. IEEE Circuits Syst. Mag. 11(3), 38–50 (2011)CrossRef
Metadaten
Titel
Design and performance analysis of low-power SRAM based on electrostatically doped tunnel CNTFETs
verfasst von
Shashi Bala
Mamta Khosla
Publikationsdatum
11.05.2019
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2019
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01345-z

Weitere Artikel der Ausgabe 3/2019

Journal of Computational Electronics 3/2019 Zur Ausgabe

Neuer Inhalt