Skip to main content
Erschienen in: Microsystem Technologies 10/2018

08.02.2018 | Technical Paper

Design and realization of high performance logarithmic converters using non-uniform multi-regions constant adder correction schemes

verfasst von: Chao-Tsung Kuo

Erschienen in: Microsystem Technologies | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes high performance logarithmic converters that use non-uniform multi-regions constant adder correction schemes. Instead of a conventional shift-and-add method, the novel hardware structure presented in this paper uses a constant adder correction circuit that only uses adders. The proposed logarithmic converters can achieve lower approximation error range, smaller hardware area and shorter delay time, which are superior to those of methods previously reported in the literature. The approximation error ranges of the proposed logarithmic converters were 0.0548, 0.0446, 0.032 and 0.0249 for the 3-region, 5-region, 7-region and 9-region constant adder correction logarithmic conversion, respectively. Meanwhile, the proposed converters could achieve 25.63%, 42.47%, 64.43% and 53.23% area delay product savings for the 3-region, 5-region, 7-region and 9-region constant adder correction circuit, respectively. All very large scale integration (VLSI) realization is synthesized using the TSMC 0.18 μm CMOS technology. In addition, the hardware structure of the proposed logarithmic converters is quite simple, with a lower approximation error, fast enough and ROM-free due to the proposed converters only using adders compared to the previously reported shift-and-add based methods. The proposed work can easily realize VLSI digital circuits and is fit for use in embedded digital signal processing and cloud computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abed KH, Siferd RE (2003) CMOS VLSI implementation of a low-power logarithmic converter. IEEE Trans Comput 52(11):1421–1433CrossRef Abed KH, Siferd RE (2003) CMOS VLSI implementation of a low-power logarithmic converter. IEEE Trans Comput 52(11):1421–1433CrossRef
Zurück zum Zitat Caro DD, Petra N, Strollo AGM (2011) Efficient logarithmic converters for digital signal processing applications. IEEE Trans Circuits Syst II Express Briefs 58(10):667–671CrossRef Caro DD, Petra N, Strollo AGM (2011) Efficient logarithmic converters for digital signal processing applications. IEEE Trans Circuits Syst II Express Briefs 58(10):667–671CrossRef
Zurück zum Zitat Caro DD, Genovese M, Napoli E, Petra N, Strollo AGM (2014) Accurate fixed-point logarithmic converters. IEEE Trans Circuits Syst II Express Briefs 61(7):526–530CrossRef Caro DD, Genovese M, Napoli E, Petra N, Strollo AGM (2014) Accurate fixed-point logarithmic converters. IEEE Trans Circuits Syst II Express Briefs 61(7):526–530CrossRef
Zurück zum Zitat Chaudhary M, Lee P (2014) Two-stage logarithmic converter with reduced memory requirements. IET Comput Digital Techn 8(1):23–29CrossRef Chaudhary M, Lee P (2014) Two-stage logarithmic converter with reduced memory requirements. IET Comput Digital Techn 8(1):23–29CrossRef
Zurück zum Zitat Chaudhary M, Lee P (2015) An improved two-step binary logarithmic converter for FPGAs. IEEE Trans Circuits Systems II Express Briefs 62(5):476–480CrossRef Chaudhary M, Lee P (2015) An improved two-step binary logarithmic converter for FPGAs. IEEE Trans Circuits Systems II Express Briefs 62(5):476–480CrossRef
Zurück zum Zitat Combet M, Zonneveld HV, Verbeek L (1965) Computation of the base two logarithm of binary numbers. IEEE Trans Electron Comput 14(6):863–867CrossRef Combet M, Zonneveld HV, Verbeek L (1965) Computation of the base two logarithm of binary numbers. IEEE Trans Electron Comput 14(6):863–867CrossRef
Zurück zum Zitat Gutierrez R, Valls J (2011) Low cost hardware implementation of logarithm approximation. IEEE Trans Very Large Scale Integration Syst 19(12):2326–2330CrossRef Gutierrez R, Valls J (2011) Low cost hardware implementation of logarithm approximation. IEEE Trans Very Large Scale Integration Syst 19(12):2326–2330CrossRef
Zurück zum Zitat Hall EL, Lynch DD, Dwyer SJ (1970) Generation of products and quotients using approximate binary logarithms for digital filtering applications. IEEE Trans Comput C-19(2):97–105CrossRef Hall EL, Lynch DD, Dwyer SJ (1970) Generation of products and quotients using approximate binary logarithms for digital filtering applications. IEEE Trans Comput C-19(2):97–105CrossRef
Zurück zum Zitat Johansson K, Gustafsson O, Wanhammar L (2008) Implementation of elementary functions for logarithmic number systems. IET Comput Digital Techn 2(4):295–304CrossRef Johansson K, Gustafsson O, Wanhammar L (2008) Implementation of elementary functions for logarithmic number systems. IET Comput Digital Techn 2(4):295–304CrossRef
Zurück zum Zitat Jr Mitchell JN (1962) Computer multiplication and division using binary logarithms. IRE Trans Electron Comput EC-11(4):512–517MathSciNetCrossRef Jr Mitchell JN (1962) Computer multiplication and division using binary logarithms. IRE Trans Electron Comput EC-11(4):512–517MathSciNetCrossRef
Zurück zum Zitat Juang TB, Chen SH, Cheng HJ (2009) A lower error and ROM-free logarithmic converter for digital signal processing applications. IEEE Trans Circuits Systems- II Express Briefs 56(12):931–935CrossRef Juang TB, Chen SH, Cheng HJ (2009) A lower error and ROM-free logarithmic converter for digital signal processing applications. IEEE Trans Circuits Systems- II Express Briefs 56(12):931–935CrossRef
Zurück zum Zitat Kim H, Nam BG, Sohn JH, Woo JH, Yoo HJ (2006) A 231-MHz, 2.18Mw 32-bit logarithmic arithmetic unit for fixed-point 3-D graphics system. IEEE J Solid State Circuits 41(11):2373–2381CrossRef Kim H, Nam BG, Sohn JH, Woo JH, Yoo HJ (2006) A 231-MHz, 2.18Mw 32-bit logarithmic arithmetic unit for fixed-point 3-D graphics system. IEEE J Solid State Circuits 41(11):2373–2381CrossRef
Zurück zum Zitat Liu CW, Ou SH, Chang KC, Lin TC, Chen SK (2016) A low-error, cost-efficient design procedure for evaluating logarithms to be used in a logarithmic arithmetic processor. IEEE Trans Comput 65(4):1158–1164MathSciNetCrossRef Liu CW, Ou SH, Chang KC, Lin TC, Chen SK (2016) A low-error, cost-efficient design procedure for evaluating logarithms to be used in a logarithmic arithmetic processor. IEEE Trans Comput 65(4):1158–1164MathSciNetCrossRef
Zurück zum Zitat Nam BG, Yoo HJ (2009) An embedded stream processor core based on logarithmic arithmetic for a low-power 3-D graphics SoC. IEEE J Solid State Circuits 44(5):1554–1570CrossRef Nam BG, Yoo HJ (2009) An embedded stream processor core based on logarithmic arithmetic for a low-power 3-D graphics SoC. IEEE J Solid State Circuits 44(5):1554–1570CrossRef
Zurück zum Zitat Nam BG, Kim HJ, Yoo HJ (2008) Power and area-efficient unified computation of vector and elementary functions for handheld 3D graphics systems. IEEE Trans Comput 57(4):490–504MathSciNetCrossRef Nam BG, Kim HJ, Yoo HJ (2008) Power and area-efficient unified computation of vector and elementary functions for handheld 3D graphics systems. IEEE Trans Comput 57(4):490–504MathSciNetCrossRef
Zurück zum Zitat Paul S, Jayakumar N, Khatri SP (2009) A fast hardware approach for approximate, efficient logarithm and antilogarithm computations. IEEE Trans Very Large Scale Integration Syst 17(2):269–277CrossRef Paul S, Jayakumar N, Khatri SP (2009) A fast hardware approach for approximate, efficient logarithm and antilogarithm computations. IEEE Trans Very Large Scale Integration Syst 17(2):269–277CrossRef
Zurück zum Zitat Pineiro JA, Ercegovac MD, Bruguera JD (2004) Algorithm and architecture for logarithm, exponential, and powering computation. IEEE Trans Comput 53(9):1085–1096CrossRef Pineiro JA, Ercegovac MD, Bruguera JD (2004) Algorithm and architecture for logarithm, exponential, and powering computation. IEEE Trans Comput 53(9):1085–1096CrossRef
Zurück zum Zitat SanGregory SL, Brother C, Gallagher D, Siferd R (1999) A fast, low-power logarithm approximation with CMOS VLSI implementation. Proc IEEE Midwest Symp Circuits Syst (MWSCAS) 1:388–391 SanGregory SL, Brother C, Gallagher D, Siferd R (1999) A fast, low-power logarithm approximation with CMOS VLSI implementation. Proc IEEE Midwest Symp Circuits Syst (MWSCAS) 1:388–391
Metadaten
Titel
Design and realization of high performance logarithmic converters using non-uniform multi-regions constant adder correction schemes
verfasst von
Chao-Tsung Kuo
Publikationsdatum
08.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3745-1

Weitere Artikel der Ausgabe 10/2018

Microsystem Technologies 10/2018 Zur Ausgabe

Neuer Inhalt