Skip to main content
Erschienen in: Optical and Quantum Electronics 11/2016

01.11.2016

Design criteria for silicon nanostructures in silicon based triple junction solar cell

verfasst von: Hamid Heidarzadeh, Ali Rostami, Mahboubeh Dolatyari, Ghassem Rostami

Erschienen in: Optical and Quantum Electronics | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstracts

This study aims to design a novel triple-junction solar cell consisting a monolithically interconnected silicon (Si) bottom cell, quantum dots (QDs) based middle cell, and 3C-SiC top cell. The first set of efficiency limits is calculated based on the detailed balance principle. Maximum conversion efficiencies of 55, 52 and 51 % are obtained for 3C-SiC/Si–QD/Si under blackbody, AM0, and AM1.5D radiations, respectively. The maximum efficiencies are occurred in the middle cell band gap of 1.58, 1.55 and 1.6 eV for blackbody, AM0 and AM1.5D radiations, respectively. The special attention is given to the quantum dot layer to obtain a more realistic representation of such materials. Silicon quantum dots with effective band gap embedded in silicon carbide which is manageable with changing in the size of quantum dots. It is investigated with 3D Schrodinger solution. Electronic band gap for arrays of silicon quantum dots in silicon carbide is calculated. Finally, current–voltage and power-voltage characteristics of 3C-SiC/Si–QD/Si tandem solar cell for 2, 2.5, 3, 3.5, 4 and 4.5 nm QDs in diameter is simulated under one sun AM0 spectrum. The results show maximum power is achieved for 3 nm QDs. Introduced tandem solar cell is expected to improve performance of silicon based tandem solar cell.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bremner, S.P., Corkish, R., Honsberg, C.B.: Detailed balance efficiency limits with quasi-Fermi level variations [QW solar cell]. IEEE Trans. Electron. Devices 46, 1932–1939 (1999)ADSCrossRef Bremner, S.P., Corkish, R., Honsberg, C.B.: Detailed balance efficiency limits with quasi-Fermi level variations [QW solar cell]. IEEE Trans. Electron. Devices 46, 1932–1939 (1999)ADSCrossRef
Zurück zum Zitat Bremner, S., Levy, M., Honsberg, C.B.: Analysis of tandem solar cell efficiencies under AM1. 5G spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16, 225–233 (2008)CrossRef Bremner, S., Levy, M., Honsberg, C.B.: Analysis of tandem solar cell efficiencies under AM1. 5G spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16, 225–233 (2008)CrossRef
Zurück zum Zitat Cho, E.-C., Park, S., Hao, X., Song, D., Conibeer, G., Park, S.-C., et al.: Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19, 245201 (2008)ADSCrossRef Cho, E.-C., Park, S., Hao, X., Song, D., Conibeer, G., Park, S.-C., et al.: Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19, 245201 (2008)ADSCrossRef
Zurück zum Zitat Conibeer, G., Green, M., Cho, E.-C., König, D., Cho, Y.-H., Fangsuwannarak, T., et al.: Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748–6756 (2008)ADSCrossRef Conibeer, G., Green, M., Cho, E.-C., König, D., Cho, Y.-H., Fangsuwannarak, T., et al.: Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748–6756 (2008)ADSCrossRef
Zurück zum Zitat Conibeer, G., Green, M.A., König, D., Perez-Wurfl, I., Huang, S., Hao, X., et al.: Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Prog. Photovolt. Res. Appl. 19, 813–824 (2011)CrossRef Conibeer, G., Green, M.A., König, D., Perez-Wurfl, I., Huang, S., Hao, X., et al.: Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Prog. Photovolt. Res. Appl. 19, 813–824 (2011)CrossRef
Zurück zum Zitat Conibeer, G., Perez-Wurfl, I., Hao, X., Di, D., Lin, D.: Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 7, 1–6 (2012)CrossRef Conibeer, G., Perez-Wurfl, I., Hao, X., Di, D., Lin, D.: Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 7, 1–6 (2012)CrossRef
Zurück zum Zitat Cotal, H., Fetzer, C., Boisvert, J., Kinsey, G., King, R., Hebert, P., Yoon, H., Karam, N.: III–V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2009)CrossRef Cotal, H., Fetzer, C., Boisvert, J., Kinsey, G., King, R., Hebert, P., Yoon, H., Karam, N.: III–V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2009)CrossRef
Zurück zum Zitat Di, D., Xu, H., Perez-Wurfl, I., Green, M.A., Conibeer, G.: Improved nanocrystal formation, quantum confinement and carrier transport properties of doped Si quantum dot superlattices for third generation photovoltaics. Prog. Photovolt. Res. Appl. 21, 569–577 (2013) Di, D., Xu, H., Perez-Wurfl, I., Green, M.A., Conibeer, G.: Improved nanocrystal formation, quantum confinement and carrier transport properties of doped Si quantum dot superlattices for third generation photovoltaics. Prog. Photovolt. Res. Appl. 21, 569–577 (2013)
Zurück zum Zitat Green, M.A.: Third Generation Photovoltaics: Advanced Solar Energy Conversion, vol. 12. Springer, Berlin (2006) Green, M.A.: Third Generation Photovoltaics: Advanced Solar Energy Conversion, vol. 12. Springer, Berlin (2006)
Zurück zum Zitat Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 39). Prog. Photovolt. Res. Appl. 20, 12–20 (2012)CrossRef Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 39). Prog. Photovolt. Res. Appl. 20, 12–20 (2012)CrossRef
Zurück zum Zitat Hao, X., Cho, E.-C., Scardera, G., Shen, Y., Bellet-Amalric, E., Bellet, D., et al.: Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells. Sol. Energy Mater. Sol. Cells 93, 1524–1530 (2009)CrossRef Hao, X., Cho, E.-C., Scardera, G., Shen, Y., Bellet-Amalric, E., Bellet, D., et al.: Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells. Sol. Energy Mater. Sol. Cells 93, 1524–1530 (2009)CrossRef
Zurück zum Zitat Harrison, P.: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, Hoboken (2005)CrossRef Harrison, P.: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, Hoboken (2005)CrossRef
Zurück zum Zitat Heidarzadeh, H., Baghban, H., Rasooli, H., Dolatyari, M., Rostami, A.: A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C–SiC/Si. Opt.-Int. J. Light Electron. Opt. 125, 1292–1296 (2014a)CrossRef Heidarzadeh, H., Baghban, H., Rasooli, H., Dolatyari, M., Rostami, A.: A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C–SiC/Si. Opt.-Int. J. Light Electron. Opt. 125, 1292–1296 (2014a)CrossRef
Zurück zum Zitat Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Performance analysis of ultra-thin silicon based tunnel junctions for tandem solar cell applications. In: International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), pp. 125–130, (2014b) Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Performance analysis of ultra-thin silicon based tunnel junctions for tandem solar cell applications. In: International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013), pp. 125–130, (2014b)
Zurück zum Zitat Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Efficiency analysis and electronic structures of 3C-SiC and 6H-SiC with 3d elements impurities as intermediate band photovoltaics. J. Photon. Energy 4, 042098 (2014c)ADSCrossRef Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: Efficiency analysis and electronic structures of 3C-SiC and 6H-SiC with 3d elements impurities as intermediate band photovoltaics. J. Photon. Energy 4, 042098 (2014c)ADSCrossRef
Zurück zum Zitat Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: A new proposal for simultaneous multicolor detection based on quantum dots and selective energy contacts. IEEE Trans. Electron Devices 62(7), 2231–2237 (2015)ADSCrossRef Heidarzadeh, H., Rostami, A., Dolatyari, M., Rostami, G.: A new proposal for simultaneous multicolor detection based on quantum dots and selective energy contacts. IEEE Trans. Electron Devices 62(7), 2231–2237 (2015)ADSCrossRef
Zurück zum Zitat Hu, W., Igarashi, M., Lee, M.-Y., Li, Y., Samukawa, S.: Realistic quantum design of silicon quantum dot intermediate band solar cells. Nanotechnology 24, 265401 (2013)ADSCrossRef Hu, W., Igarashi, M., Lee, M.-Y., Li, Y., Samukawa, S.: Realistic quantum design of silicon quantum dot intermediate band solar cells. Nanotechnology 24, 265401 (2013)ADSCrossRef
Zurück zum Zitat Huang, B.-R., Yang, Y.-K., Yang, W.-L.: Efficiency improvement of silicon nanostructure-based solar cells. Nanotechnology 25, 035401 (2014)ADSCrossRef Huang, B.-R., Yang, Y.-K., Yang, W.-L.: Efficiency improvement of silicon nanostructure-based solar cells. Nanotechnology 25, 035401 (2014)ADSCrossRef
Zurück zum Zitat Jiang, C.-W., Green, M.A.: Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006)ADSCrossRef Jiang, C.-W., Green, M.A.: Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006)ADSCrossRef
Zurück zum Zitat Kamat, P.V., Christians, J.A., Radich, J.G.: Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir 30(20), 5716–5725 (2014)CrossRef Kamat, P.V., Christians, J.A., Radich, J.G.: Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir 30(20), 5716–5725 (2014)CrossRef
Zurück zum Zitat Kayes, B.M., Nie, H., Twist, R., Spruytte, S.G., Reinhardt, F., Kizilyalli, I.C. et al.: 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Photovoltaic Specialists Conference (PVSC), 37th IEEE, 2011, pp. 000004–000008 2011 Kayes, B.M., Nie, H., Twist, R., Spruytte, S.G., Reinhardt, F., Kizilyalli, I.C. et al.: 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Photovoltaic Specialists Conference (PVSC), 37th IEEE, 2011, pp. 000004–000008 2011
Zurück zum Zitat King, R., Law, D., Edmondson, K., Fetzer, C., Kinsey, G., Yoon, H., Sherif, R., Karam, N.: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516–183900 (2007)ADSCrossRef King, R., Law, D., Edmondson, K., Fetzer, C., Kinsey, G., Yoon, H., Sherif, R., Karam, N.: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516–183900 (2007)ADSCrossRef
Zurück zum Zitat Levy, M.Y., Honsberg, C.: Nanostructured absorbers for multiple transition solar cells. IEEE Trans. Electron. Devices 55, 706–711 (2008)ADSCrossRef Levy, M.Y., Honsberg, C.: Nanostructured absorbers for multiple transition solar cells. IEEE Trans. Electron. Devices 55, 706–711 (2008)ADSCrossRef
Zurück zum Zitat Luque, A., Linares, P.G., Antolín, E., Canovas, E., Farmer, C.D., Stanley, C.R., et al.: Multiple levels in intermediate band solar cells. Appl. Phys. Lett. 96, 013501 (2010)ADSCrossRef Luque, A., Linares, P.G., Antolín, E., Canovas, E., Farmer, C.D., Stanley, C.R., et al.: Multiple levels in intermediate band solar cells. Appl. Phys. Lett. 96, 013501 (2010)ADSCrossRef
Zurück zum Zitat Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., et al.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4(6), 1433–1435 (2014)CrossRef Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., et al.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4(6), 1433–1435 (2014)CrossRef
Zurück zum Zitat Sadoogi, N., Saghai, H.R., Rostami, A., Fard, H.G.: Electron transport in array of centered defect quantum dots. Physica E 41, 269–277 (2008)ADSCrossRef Sadoogi, N., Saghai, H.R., Rostami, A., Fard, H.G.: Electron transport in array of centered defect quantum dots. Physica E 41, 269–277 (2008)ADSCrossRef
Zurück zum Zitat Saghai, H.R., Sadoogi, N., Rostami, A., Baghban, H.: Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD). Opt. Commun. 282, 3499–3508 (2009)ADSCrossRef Saghai, H.R., Sadoogi, N., Rostami, A., Baghban, H.: Ultra-high detectivity room temperature THZ-IR photodetector based on resonant tunneling spherical centered defect quantum dot (RT-SCDQD). Opt. Commun. 282, 3499–3508 (2009)ADSCrossRef
Zurück zum Zitat Sfina, N., Zeiri, N., Abdi-Ben Nasrallah, S., Said, M.: A multi-color CdS/ZnSe quantum well photodetector for mid-and long-wavelength infrared detection. Mater. Sci. Semicond. Process. 19, 83–88 (2014)CrossRef Sfina, N., Zeiri, N., Abdi-Ben Nasrallah, S., Said, M.: A multi-color CdS/ZnSe quantum well photodetector for mid-and long-wavelength infrared detection. Mater. Sci. Semicond. Process. 19, 83–88 (2014)CrossRef
Zurück zum Zitat Soga, T.: Nanostructured Materials for Solar Energy Conversion. Elsevier, Amsterdam (2006) Soga, T.: Nanostructured Materials for Solar Energy Conversion. Elsevier, Amsterdam (2006)
Zurück zum Zitat Takamoto, T., Ikeda, E., Kurita, H., Ohmori, M.: Over 30 % efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 70, 381–383 (1997)ADSCrossRef Takamoto, T., Ikeda, E., Kurita, H., Ohmori, M.: Over 30 % efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 70, 381–383 (1997)ADSCrossRef
Zurück zum Zitat Zang, Z., Nakamura, A., Temmyo, J.: Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21, 11448–11456 (2013)ADSCrossRef Zang, Z., Nakamura, A., Temmyo, J.: Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21, 11448–11456 (2013)ADSCrossRef
Metadaten
Titel
Design criteria for silicon nanostructures in silicon based triple junction solar cell
verfasst von
Hamid Heidarzadeh
Ali Rostami
Mahboubeh Dolatyari
Ghassem Rostami
Publikationsdatum
01.11.2016
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 11/2016
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-016-0774-9

Weitere Artikel der Ausgabe 11/2016

Optical and Quantum Electronics 11/2016 Zur Ausgabe

Neuer Inhalt