Skip to main content

2013 | OriginalPaper | Buchkapitel

11. Design, Fabrication, and Applications of DNA Nanomachines

verfasst von : Chen Song, Zhen-Gang Wang, Baoquan Ding

Erschienen in: DNA Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we outline the shared principles of design and fabrication of DNA nanomachines that are established and newly developed. Various functional DNA nanomachines and their applications are also discussed.
The DNA structures that act as building blocks of DNA nanomachines are introduced briefly. The molecular recognition mechanisms and dynamical properties of these building blocks are described for the elucidation of the design principles of DNA nanomachines. According to the driving mechanisms, the DNA nanomachines are divided into two categories. One category is buffer-dependent DNA nanomachines, which are triggered by changes in the environment, such as metal ions, pH, and protons. The other category is DNA strands-fueled nanomachines, in which the moving forces are generated through the hybridization of carefully designed DNA strands. A variety of DNA-based nanomachines with different functions have been constructed, such as tweezers, rotors, and walkers. Generating highly sensitive and selective response to their fuels (or stimuli), DNA nanomachines can be functionalized for various applications. The buffer-dependent DNA nanomachines have been successfully used as sensors. The specificity of DNA nanomachines is utilized for template synthesis to organize chemicals into close proximity and to control the synthesis process precisely. The switchability of DNA nanomachines is employed for carrying small molecules, nucleic strands, proteins, or even metal nanoparticles. The motions of the DNA nanomachines can also be used to control the loading and release of the nanoscale objects, as well as to transport and assemble the cargos. The immobilized DNA machines on solid phase succeed in generating signal-triggered responsive surface. Finally, we highlight some challenges and prospective.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Seeman NC (1982) Nucleic-acid junctions and lattices. J Theor Biol 99(2):237–247CrossRef Seeman NC (1982) Nucleic-acid junctions and lattices. J Theor Biol 99(2):237–247CrossRef
2.
Zurück zum Zitat Seeman NC, Kallenbach NR (1994) DNA branched junctions. Annu Rev Bioph Biom 23:53–86CrossRef Seeman NC, Kallenbach NR (1994) DNA branched junctions. Annu Rev Bioph Biom 23:53–86CrossRef
3.
Zurück zum Zitat Seeman NC (1998) Nucleic acid nanostructures and topology. Angew Chem Int Ed 37(23):3220–3238CrossRef Seeman NC (1998) Nucleic acid nanostructures and topology. Angew Chem Int Ed 37(23):3220–3238CrossRef
4.
Zurück zum Zitat Seeman NC (2001) DNA nicks and nodes and nanotechnology. Nano Lett 1(1):22–26CrossRef Seeman NC (2001) DNA nicks and nodes and nanotechnology. Nano Lett 1(1):22–26CrossRef
5.
Zurück zum Zitat Seeman NC (2003) At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. Chem Biol 10(12):1151–1159CrossRef Seeman NC (2003) At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. Chem Biol 10(12):1151–1159CrossRef
6.
Zurück zum Zitat Gueron M, Leroy JL (2000) The i-motif in nucleic acids. Curr Opin Struct Biol 10(3):326–331CrossRef Gueron M, Leroy JL (2000) The i-motif in nucleic acids. Curr Opin Struct Biol 10(3):326–331CrossRef
7.
Zurück zum Zitat Snoussi K, Nonin-Lecomte S, Leroy JL (2001) The RNA i-motif. J Mol Biol 309(1):139–153CrossRef Snoussi K, Nonin-Lecomte S, Leroy JL (2001) The RNA i-motif. J Mol Biol 309(1):139–153CrossRef
8.
Zurück zum Zitat Phan AT, Kuryavyi V, Patel DJ (2006) DNA architecture: from G to Z. Curr Opin Struct Biol 16(3):288–298CrossRef Phan AT, Kuryavyi V, Patel DJ (2006) DNA architecture: from G to Z. Curr Opin Struct Biol 16(3):288–298CrossRef
9.
Zurück zum Zitat Lilley DMJ (2000) Structures of helical junctions in nucleic acids. Q Rev Biophys 33(2):109–159CrossRef Lilley DMJ (2000) Structures of helical junctions in nucleic acids. Q Rev Biophys 33(2):109–159CrossRef
10.
Zurück zum Zitat Seeman NC (2010) Structural DNA, nanotechnology: growing along with Nano Letters. Nano Lett 10(6):1971–1978CrossRef Seeman NC (2010) Structural DNA, nanotechnology: growing along with Nano Letters. Nano Lett 10(6):1971–1978CrossRef
11.
Zurück zum Zitat Rothemund PWK (2006) Folding DNA, to create nanoscale shapes and patterns. Nature 440(7082):297–302CrossRef Rothemund PWK (2006) Folding DNA, to create nanoscale shapes and patterns. Nature 440(7082):297–302CrossRef
12.
Zurück zum Zitat Qian LL, Wang Y, Zhang Z, Zhao J, Pan D, Zhang Y et al (2006) Analogic China map constructed by DNA. Chin Sci Bull 51(24):2973–2976CrossRef Qian LL, Wang Y, Zhang Z, Zhao J, Pan D, Zhang Y et al (2006) Analogic China map constructed by DNA. Chin Sci Bull 51(24):2973–2976CrossRef
13.
Zurück zum Zitat Ding BQ, Wu H, Xu W, Zhao ZA, Liu Y, Yu HB et al (2010) Interconnecting gold islands with DNA origami nanotubes. Nano Lett 10(12):5065–5069CrossRef Ding BQ, Wu H, Xu W, Zhao ZA, Liu Y, Yu HB et al (2010) Interconnecting gold islands with DNA origami nanotubes. Nano Lett 10(12):5065–5069CrossRef
14.
Zurück zum Zitat Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):73–76CrossRef Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459(7243):73–76CrossRef
15.
Zurück zum Zitat Han DR, Pal S, Liu Y, Yan H (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5(10):712–717CrossRef Han DR, Pal S, Liu Y, Yan H (2010) Folding and cutting DNA into reconfigurable topological nanostructures. Nat Nanotechnol 5(10):712–717CrossRef
16.
Zurück zum Zitat Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346CrossRef Han DR, Pal S, Nangreave J, Deng ZT, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332(6027):342–346CrossRef
17.
Zurück zum Zitat Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21(4):376–391CrossRef Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21(4):376–391CrossRef
18.
Zurück zum Zitat Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform-flow. Science 268(5207):83–87CrossRef Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform-flow. Science 268(5207):83–87CrossRef
19.
Zurück zum Zitat Rivetti C, Walker C, Bustamante C (1998) Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J Mol Biol 280(1):41–59CrossRef Rivetti C, Walker C, Bustamante C (1998) Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J Mol Biol 280(1):41–59CrossRef
20.
Zurück zum Zitat Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRef Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRef
21.
Zurück zum Zitat Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48(15):2672–2689CrossRef Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48(15):2672–2689CrossRef
22.
Zurück zum Zitat Lilley DMJ (2005) Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol 15(3):313–323CrossRef Lilley DMJ (2005) Structure, folding and mechanisms of ribozymes. Curr Opin Struct Biol 15(3):313–323CrossRef
23.
Zurück zum Zitat Silverman SK (2008) Catalytic DNA, (deoxyribozymes) for synthetic applications: current abilities and future prospects. Chem Commun 30:3467–3485CrossRef Silverman SK (2008) Catalytic DNA, (deoxyribozymes) for synthetic applications: current abilities and future prospects. Chem Commun 30:3467–3485CrossRef
24.
Zurück zum Zitat Jaschke A, Seelig B (2000) Evolution of DNA and RNA as catalysts for chemical reactions. Curr Opin Chem Biol 4(3):257–262CrossRef Jaschke A, Seelig B (2000) Evolution of DNA and RNA as catalysts for chemical reactions. Curr Opin Chem Biol 4(3):257–262CrossRef
25.
Zurück zum Zitat Yang XP, Vologodskii AV, Liu B, Kemper B, Seeman NC (1998) Torsional control of double-stranded DNA branch migration. Biopolymers 45(1):69–83CrossRef Yang XP, Vologodskii AV, Liu B, Kemper B, Seeman NC (1998) Torsional control of double-stranded DNA branch migration. Biopolymers 45(1):69–83CrossRef
26.
Zurück zum Zitat Mao CD, Sun WQ, Shen ZY, Seeman NC (1999) A nanomechanical device based on the B-Z transition of DNA. Nature 397(6715):144–146CrossRef Mao CD, Sun WQ, Shen ZY, Seeman NC (1999) A nanomechanical device based on the B-Z transition of DNA. Nature 397(6715):144–146CrossRef
27.
Zurück zum Zitat Niemeyer CM, Adler M, Lenhert S, Gao S, Fuchs H, Chi LF (2001) Nucleic acid supercoiling as a means for ionic switching of DNA-nanoparticle networks. Chembiochem 2(4):260–264CrossRef Niemeyer CM, Adler M, Lenhert S, Gao S, Fuchs H, Chi LF (2001) Nucleic acid supercoiling as a means for ionic switching of DNA-nanoparticle networks. Chembiochem 2(4):260–264CrossRef
28.
Zurück zum Zitat Buranachai C, McKinney SA, Ha T (2006) Single molecule nanometronome. Nano Lett 6(3):496–500CrossRef Buranachai C, McKinney SA, Ha T (2006) Single molecule nanometronome. Nano Lett 6(3):496–500CrossRef
29.
Zurück zum Zitat Fahlman RP, Hsing M, Sporer-Tuhten CS, Sen D (2003) Duplex pinching: a structural switch suitable for contractile DNA nanoconstructions. Nano Lett 3(8):1073–1078CrossRef Fahlman RP, Hsing M, Sporer-Tuhten CS, Sen D (2003) Duplex pinching: a structural switch suitable for contractile DNA nanoconstructions. Nano Lett 3(8):1073–1078CrossRef
30.
Zurück zum Zitat Miyoshi D, Karimata H, Wang ZM, Koumoto K, Sugimoto N (2007) Artificial G-wire switch with 2,2′-bipyridine units responsive to divalent metal ions. J Am Chem Soc 129(18):5919–5925CrossRef Miyoshi D, Karimata H, Wang ZM, Koumoto K, Sugimoto N (2007) Artificial G-wire switch with 2,2′-bipyridine units responsive to divalent metal ions. J Am Chem Soc 129(18):5919–5925CrossRef
31.
Zurück zum Zitat Liu DS, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed 42(46):5734–5736CrossRef Liu DS, Balasubramanian S (2003) A proton-fuelled DNA nanomachine. Angew Chem Int Ed 42(46):5734–5736CrossRef
32.
Zurück zum Zitat Liu HJ, Xu Y, Li FY, Yang Y, Wang WX, Song YL et al (2007) Light-driven conformational switch of i-motif DNA. Angew Chem Int Ed 46(14):2515–2517CrossRef Liu HJ, Xu Y, Li FY, Yang Y, Wang WX, Song YL et al (2007) Light-driven conformational switch of i-motif DNA. Angew Chem Int Ed 46(14):2515–2517CrossRef
33.
Zurück zum Zitat Liedl T, Simmel FC (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5(10):1894–1898CrossRef Liedl T, Simmel FC (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5(10):1894–1898CrossRef
34.
Zurück zum Zitat Wang WX, Liu HJ, Liu DS, Xu YR, Yang Y, Zhou DJ (2007) Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir 23(24):11956–11959CrossRef Wang WX, Liu HJ, Liu DS, Xu YR, Yang Y, Zhou DJ (2007) Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir 23(24):11956–11959CrossRef
35.
Zurück zum Zitat Sharma J, Chhabra R, Yan H, Liu Y (2007) pH-driven conformational switch of “i-motif” DNA for the reversible assembly of gold nanoparticles. Chem Commun 5:477–479CrossRef Sharma J, Chhabra R, Yan H, Liu Y (2007) pH-driven conformational switch of “i-motif” DNA for the reversible assembly of gold nanoparticles. Chem Commun 5:477–479CrossRef
36.
Zurück zum Zitat Chen C, Song GT, Ren JS, Qu XG (2008) A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation. Chem Commun 46:6149–6151CrossRef Chen C, Song GT, Ren JS, Qu XG (2008) A simple and sensitive colorimetric pH meter based on DNA conformational switch and gold nanoparticle aggregation. Chem Commun 46:6149–6151CrossRef
37.
Zurück zum Zitat Wang WX, Yang Y, Cheng EJ, Zhao MC, Meng HF, Liu DS et al (2009) A pH-driven, reconfigurable DNA nanotriangle. Chem Commun 7:824–826CrossRef Wang WX, Yang Y, Cheng EJ, Zhao MC, Meng HF, Liu DS et al (2009) A pH-driven, reconfigurable DNA nanotriangle. Chem Commun 7:824–826CrossRef
38.
Zurück zum Zitat Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4(5):325–330CrossRef Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4(5):325–330CrossRef
39.
Zurück zum Zitat Chen Y, Lee SH, Mao C (2004) A DNA nanomachine based on a duplex-triplex transition. Angew Chem Int Ed 43(40):5335–5338CrossRef Chen Y, Lee SH, Mao C (2004) A DNA nanomachine based on a duplex-triplex transition. Angew Chem Int Ed 43(40):5335–5338CrossRef
40.
Zurück zum Zitat Brucale M, Zuccheri G, Samori B (2005) The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 3(4):575–577CrossRef Brucale M, Zuccheri G, Samori B (2005) The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 3(4):575–577CrossRef
41.
Zurück zum Zitat Jung YH, Lee KB, Kim YG, Choi IS (2006) Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation. Angew Chem Int Ed 45(36):5960–5963CrossRef Jung YH, Lee KB, Kim YG, Choi IS (2006) Proton-fueled, reversible assembly of gold nanoparticles by controlled triplex formation. Angew Chem Int Ed 45(36):5960–5963CrossRef
42.
Zurück zum Zitat Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–608CrossRef Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–608CrossRef
43.
Zurück zum Zitat Chen Y, Mao CD (2004) Putting a brake on an autonomous DNA nanomotor. J Am Chem Soc 126(28):8626–8627CrossRef Chen Y, Mao CD (2004) Putting a brake on an autonomous DNA nanomotor. J Am Chem Soc 126(28):8626–8627CrossRef
44.
Zurück zum Zitat Chen Y, Wang MS, Mao CD (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed 43(27):3554–3557CrossRef Chen Y, Wang MS, Mao CD (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed 43(27):3554–3557CrossRef
45.
Zurück zum Zitat Dittmer WU, Simmel FC (2004) Transcriptional control of DNA-based nanomachines. Nano Lett 4(4):689–691CrossRef Dittmer WU, Simmel FC (2004) Transcriptional control of DNA-based nanomachines. Nano Lett 4(4):689–691CrossRef
46.
Zurück zum Zitat Liang XG, Nishioka H, Takenaka N, Asanuma H (2008) A DNA nanomachine powered by light irradiation. Chembiochem 9(5):702–705CrossRef Liang XG, Nishioka H, Takenaka N, Asanuma H (2008) A DNA nanomachine powered by light irradiation. Chembiochem 9(5):702–705CrossRef
47.
Zurück zum Zitat Ogura Y, Nishimura T, Tanida J (2009) Self-contained photonically-controlled DNA tweezers. Appl Phys Express 2(2):025004–025006CrossRef Ogura Y, Nishimura T, Tanida J (2009) Self-contained photonically-controlled DNA tweezers. Appl Phys Express 2(2):025004–025006CrossRef
48.
Zurück zum Zitat Elbaz J, Moshe M, Willner I (2009) Coherent activation of DNA tweezers: a “SET-RESET” logic system. Angew Chem Int Ed 48(21):3834–3837CrossRef Elbaz J, Moshe M, Willner I (2009) Coherent activation of DNA tweezers: a “SET-RESET” logic system. Angew Chem Int Ed 48(21):3834–3837CrossRef
49.
Zurück zum Zitat Elbaz J, Wang ZG, Orbach R, Willner I (2009) pH-stimulated concurrent mechanical activation of two DNA “tweezers”. a “SET-RESET” logic gate system. Nano Lett 9(12):4510–4514CrossRef Elbaz J, Wang ZG, Orbach R, Willner I (2009) pH-stimulated concurrent mechanical activation of two DNA “tweezers”. a “SET-RESET” logic gate system. Nano Lett 9(12):4510–4514CrossRef
50.
Zurück zum Zitat Wang ZG, Elbaz J, Remacle F, Levine RD, Willner I (2010) All-DNA finite-state automata with finite memory. Proc Natl Acad Sci U S A 107(51):21996–22001CrossRef Wang ZG, Elbaz J, Remacle F, Levine RD, Willner I (2010) All-DNA finite-state automata with finite memory. Proc Natl Acad Sci U S A 107(51):21996–22001CrossRef
51.
Zurück zum Zitat Marini M, Piantanida L, Musetti R, Bek A, Dong MD, Besenbacher F et al (2011) A revertible, autonomous, self-assembled DNA-origami nanoactuator. Nano Lett 11(12):5449–5454CrossRef Marini M, Piantanida L, Musetti R, Bek A, Dong MD, Besenbacher F et al (2011) A revertible, autonomous, self-assembled DNA-origami nanoactuator. Nano Lett 11(12):5449–5454CrossRef
52.
Zurück zum Zitat Yan H, Zhang XP, Shen ZY, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415(6867):62–65CrossRef Yan H, Zhang XP, Shen ZY, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415(6867):62–65CrossRef
53.
Zurück zum Zitat Chakraborty B, Sha RJ, Seeman NC (2008) A DNA-based nanomechanical device with three robust states. Proc Natl Acad Sci U S A 105(45):17245–17249CrossRef Chakraborty B, Sha RJ, Seeman NC (2008) A DNA-based nanomechanical device with three robust states. Proc Natl Acad Sci U S A 105(45):17245–17249CrossRef
54.
Zurück zum Zitat Liu C, Jonoska N, Seeman NC (2009) Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano Lett 9(7):2641–2647CrossRef Liu C, Jonoska N, Seeman NC (2009) Reciprocal DNA nanomechanical devices controlled by the same set strands. Nano Lett 9(7):2641–2647CrossRef
55.
Zurück zum Zitat Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314(5805):1583–1585CrossRef Ding B, Seeman NC (2006) Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314(5805):1583–1585CrossRef
56.
Zurück zum Zitat Gu HZ, Chao J, Xiao SJ, Seeman NC (2009) Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat Nanotechnol 4(4):245–248CrossRef Gu HZ, Chao J, Xiao SJ, Seeman NC (2009) Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nat Nanotechnol 4(4):245–248CrossRef
57.
Zurück zum Zitat Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4(7):1203–1207CrossRef Sherman WB, Seeman NC (2004) A precisely controlled DNA biped walking device. Nano Lett 4(7):1203–1207CrossRef
58.
Zurück zum Zitat Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126(35):10834–10835CrossRef Shin JS, Pierce NA (2004) A synthetic DNA walker for molecular transport. J Am Chem Soc 126(35):10834–10835CrossRef
59.
Zurück zum Zitat Tian Y, Mao CD (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc 126(37):11410–11411CrossRef Tian Y, Mao CD (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc 126(37):11410–11411CrossRef
60.
Zurück zum Zitat Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43(37):4906–4911CrossRef Yin P, Yan H, Daniell XG, Turberfield AJ, Reif JH (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43(37):4906–4911CrossRef
61.
Zurück zum Zitat Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44(28):4358–4361CrossRef Bath J, Green SJ, Turberfield AJ (2005) A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Ed 44(28):4358–4361CrossRef
62.
Zurück zum Zitat Tian Y, He Y, Chen Y, Yin P, Mao CD (2005) Molecular devices – a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44(28):4355–4358CrossRef Tian Y, He Y, Chen Y, Yin P, Mao CD (2005) Molecular devices – a DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44(28):4355–4358CrossRef
63.
Zurück zum Zitat Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey MI, Simmel FC (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90(11):118102–118105CrossRef Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey MI, Simmel FC (2003) DNA fuel for free-running nanomachines. Phys Rev Lett 90(11):118102–118105CrossRef
64.
Zurück zum Zitat Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156CrossRef Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156CrossRef
65.
Zurück zum Zitat Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322CrossRef Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322CrossRef
66.
Zurück zum Zitat Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324(5923):67–71CrossRef Omabegho T, Sha R, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324(5923):67–71CrossRef
67.
Zurück zum Zitat Green SJ, Bath J, Turberfield AJ (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101(23):238101–238104CrossRef Green SJ, Bath J, Turberfield AJ (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101(23):238101–238104CrossRef
68.
Zurück zum Zitat Pei R, Taylor SK, Stefanovic D, Rudchenko S, Mitchell TE, Stojanovic MN (2006) Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc 128(39):12693–12699CrossRef Pei R, Taylor SK, Stefanovic D, Rudchenko S, Mitchell TE, Stojanovic MN (2006) Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc 128(39):12693–12699CrossRef
69.
Zurück zum Zitat Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210CrossRef Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210CrossRef
70.
Zurück zum Zitat Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H et al (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6(3):166–169CrossRef Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H et al (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6(3):166–169CrossRef
71.
Zurück zum Zitat Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11(3):982–987CrossRef Muscat RA, Bath J, Turberfield AJ (2011) A programmable molecular robot. Nano Lett 11(3):982–987CrossRef
72.
Zurück zum Zitat Wang ZG, Elbaz J, Willner I (2012) A dynamically programmed DNA transporter. Angew Chem Int Ed 51(48):4322–4326CrossRef Wang ZG, Elbaz J, Willner I (2012) A dynamically programmed DNA transporter. Angew Chem Int Ed 51(48):4322–4326CrossRef
73.
Zurück zum Zitat Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) A virus spotlighted by an autonomous DNA machine. Angew Chem Int Ed 45(44):7384–7388CrossRef Weizmann Y, Beissenhirtz MK, Cheglakov Z, Nowarski R, Kotler M, Willner I (2006) A virus spotlighted by an autonomous DNA machine. Angew Chem Int Ed 45(44):7384–7388CrossRef
74.
Zurück zum Zitat Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc 129(13):3814–3815CrossRef Shlyahovsky B, Li D, Weizmann Y, Nowarski R, Kotler M, Willner I (2007) Spotlighting of cocaine by an autonomous aptamer-based machine. J Am Chem Soc 129(13):3814–3815CrossRef
75.
Zurück zum Zitat Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed 47(21):3927–3931CrossRef Li D, Wieckowska A, Willner I (2008) Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angew Chem Int Ed 47(21):3927–3931CrossRef
76.
Zurück zum Zitat Zhu CF, Wen YQ, Li D, Wang LH, Song SP, Fan CH et al (2009) Inhibition of the in vitro replication of DNA by an aptamer-protein complex in an autonomous DNA machine. Chem Eur J 15(44):11898–11903CrossRef Zhu CF, Wen YQ, Li D, Wang LH, Song SP, Fan CH et al (2009) Inhibition of the in vitro replication of DNA by an aptamer-protein complex in an autonomous DNA machine. Chem Eur J 15(44):11898–11903CrossRef
77.
Zurück zum Zitat Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama M (2011) Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nature Commun 2:1–8CrossRef Kuzuya A, Sakai Y, Yamazaki T, Xu Y, Komiyama M (2011) Nanomechanical DNA origami ‘single-molecule beacons’ directly imaged by atomic force microscopy. Nature Commun 2:1–8CrossRef
78.
Zurück zum Zitat Gartner ZJ, Liu DR (2001) The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J Am Chem Soc 123(28):6961–6963CrossRef Gartner ZJ, Liu DR (2001) The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J Am Chem Soc 123(28):6961–6963CrossRef
79.
Zurück zum Zitat Li XY, Liu DR (2004) DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed 43(37):4848–4870CrossRef Li XY, Liu DR (2004) DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed 43(37):4848–4870CrossRef
80.
Zurück zum Zitat McKee ML, Milnes PJ, Bath J, Stulz E, Turberfield AJ, O’Reilly RK (2010) Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. Angew Chem Int Ed 49(43):7948–7951CrossRef McKee ML, Milnes PJ, Bath J, Stulz E, Turberfield AJ, O’Reilly RK (2010) Multistep DNA-templated reactions for the synthesis of functional sequence controlled oligomers. Angew Chem Int Ed 49(43):7948–7951CrossRef
81.
Zurück zum Zitat He Y, Liu DR (2011) A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. J Am Chem Soc 133(26):9972–9975CrossRef He Y, Liu DR (2011) A sequential strand-displacement strategy enables efficient six-step DNA-templated synthesis. J Am Chem Soc 133(26):9972–9975CrossRef
82.
Zurück zum Zitat He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5(11):778–782CrossRef He Y, Liu DR (2010) Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 5(11):778–782CrossRef
83.
Zurück zum Zitat Chhabra R, Sharma J, Liu Y, Yan H (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6(5):978–983CrossRef Chhabra R, Sharma J, Liu Y, Yan H (2006) Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett 6(5):978–983CrossRef
84.
Zurück zum Zitat Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43(27):3550–3553CrossRef Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43(27):3550–3553CrossRef
85.
Zurück zum Zitat Xu Y, Hirao Y, Nishimura Y, Sugiyama H (2007) I-motif and quadruplex-based device that can control a protein release or bind and release small molecule to influence biological processes. Bioorgan Med Chem 15(3):1275–1279CrossRef Xu Y, Hirao Y, Nishimura Y, Sugiyama H (2007) I-motif and quadruplex-based device that can control a protein release or bind and release small molecule to influence biological processes. Bioorgan Med Chem 15(3):1275–1279CrossRef
86.
Zurück zum Zitat Mao YD, Liu DS, Wang ST, Luo SN, Wang WX, Yang YL et al (2007) Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Res 35(5):e33CrossRef Mao YD, Liu DS, Wang ST, Luo SN, Wang WX, Yang YL et al (2007) Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Res 35(5):e33CrossRef
87.
Zurück zum Zitat Cheng EJ, Xing YZ, Chen P, Yang Y, Sun YW, Zhou DJ et al (2009) A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Ed 48(41):7660–7663CrossRef Cheng EJ, Xing YZ, Chen P, Yang Y, Sun YW, Zhou DJ et al (2009) A pH-triggered, fast-responding DNA hydrogel. Angew Chem Int Ed 48(41):7660–7663CrossRef
88.
Zurück zum Zitat Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3(2):93–96CrossRef Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (2008) Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nanotechnol 3(2):93–96CrossRef
89.
Zurück zum Zitat Walsh AS, Yin HF, Erben CM, Wood MJA, Turberfield AJ (2011) DNA cage delivery to mammalian cells. ACS Nano 5(7):5427–5432CrossRef Walsh AS, Yin HF, Erben CM, Wood MJA, Turberfield AJ (2011) DNA cage delivery to mammalian cells. ACS Nano 5(7):5427–5432CrossRef
90.
Zurück zum Zitat Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834CrossRef Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834CrossRef
91.
Zurück zum Zitat Fu J, Yan H (2012) Controlled drug release by a nanorobot. Nat Biotechnol 30(5):407–408CrossRef Fu J, Yan H (2012) Controlled drug release by a nanorobot. Nat Biotechnol 30(5):407–408CrossRef
92.
Zurück zum Zitat Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130(25):7820–7821CrossRef Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y (2008) Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc 130(25):7820–7821CrossRef
93.
Zurück zum Zitat Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50(9):2041–2044CrossRef Zhao Z, Jacovetty EL, Liu Y, Yan H (2011) Encapsulation of gold nanoparticles in a DNA origami cage. Angew Chem Int Ed 50(9):2041–2044CrossRef
94.
Zurück zum Zitat Pilo-Pais M, Goldberg S, Samano E, LaBean TH, Finkelstein G (2011) Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett 11(8):3489–3492CrossRef Pilo-Pais M, Goldberg S, Samano E, LaBean TH, Finkelstein G (2011) Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett 11(8):3489–3492CrossRef
95.
Zurück zum Zitat Shen XB, Song C, Wang JY, Shi DW, Wang ZA, Liu N et al (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134(1):146–149CrossRef Shen XB, Song C, Wang JY, Shi DW, Wang ZA, Liu N et al (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J Am Chem Soc 134(1):146–149CrossRef
96.
Zurück zum Zitat Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465(7295):202–205CrossRef Gu HZ, Chao J, Xiao SJ, Seeman NC (2010) A proximity-based programmable DNA nanoscale assembly line. Nature 465(7295):202–205CrossRef
97.
Zurück zum Zitat Kufer SK, Puchner EM, Gumpp H, Liedl T, Gaub HE (2008) Single-molecule cut-and-paste surface assembly. Science 319(5863):594–596CrossRef Kufer SK, Puchner EM, Gumpp H, Liedl T, Gaub HE (2008) Single-molecule cut-and-paste surface assembly. Science 319(5863):594–596CrossRef
98.
Zurück zum Zitat Liedl T, Olapinski M, Simmel FC (2006) A surface-bound DNA switch driven by a chemical oscillator. Angew Chem Int Ed 45(30):5007–5010CrossRef Liedl T, Olapinski M, Simmel FC (2006) A surface-bound DNA switch driven by a chemical oscillator. Angew Chem Int Ed 45(30):5007–5010CrossRef
99.
Zurück zum Zitat Liu DS, Bruckbauer A, Abell C, Balasubramanian S, Kang DJ, Klenerman D et al (2006) A reversible pH-driven DNA nanoswitch array. J Am Chem Soc 128(6):2067–2071CrossRef Liu DS, Bruckbauer A, Abell C, Balasubramanian S, Kang DJ, Klenerman D et al (2006) A reversible pH-driven DNA nanoswitch array. J Am Chem Soc 128(6):2067–2071CrossRef
100.
Zurück zum Zitat Shu WM, Liu DS, Watari M, Riener CK, Strunz T, Welland ME et al (2005) DNA molecular motor driven micromechanical cantilever arrays. J Am Chem Soc 127(48):17054–17060CrossRef Shu WM, Liu DS, Watari M, Riener CK, Strunz T, Welland ME et al (2005) DNA molecular motor driven micromechanical cantilever arrays. J Am Chem Soc 127(48):17054–17060CrossRef
101.
Zurück zum Zitat Wang ST, Liu HJ, Liu DS, Ma XY, Fang XH, Jiang L (2007) Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew Chem Int Ed 46(21):3915–3917CrossRef Wang ST, Liu HJ, Liu DS, Ma XY, Fang XH, Jiang L (2007) Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew Chem Int Ed 46(21):3915–3917CrossRef
102.
Zurück zum Zitat Xia F, Guo W, Mao YD, Hou X, Xue JM, Xia HW et al (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130(26):8345–8350CrossRef Xia F, Guo W, Mao YD, Hou X, Xue JM, Xia HW et al (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130(26):8345–8350CrossRef
103.
Zurück zum Zitat Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y et al (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805CrossRef Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y et al (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805CrossRef
104.
Zurück zum Zitat Elbaz J, Tel-Vered R, Freeman R, Yildiz HB, Willner I (2008) Switchable motion of DNA on solid supports. Angew Chem Int Ed 48(1):133–137CrossRef Elbaz J, Tel-Vered R, Freeman R, Yildiz HB, Willner I (2008) Switchable motion of DNA on solid supports. Angew Chem Int Ed 48(1):133–137CrossRef
Metadaten
Titel
Design, Fabrication, and Applications of DNA Nanomachines
verfasst von
Chen Song
Zhen-Gang Wang
Baoquan Ding
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-36077-0_11

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.