Skip to main content
Erschienen in: Microsystem Technologies 2/2021

01.10.2018 | Technical Paper

Design of high gain, high bandwidth neural amplifier IC considering noise-power trade-off

verfasst von: N. M. Laskar, K. Guha, S. Nath, S. Chanda, K. L. Baishnab, P. K. Paul, K. S. Rao

Erschienen in: Microsystem Technologies | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Low Noise Neural amplifiers are used for amplifying low amplitude neural spikes in Neural recording systems. The need for low noise is emphasized by the presence of background noise during recording. Additionally, the need of more number of recording sites and avoiding of excessive heating has given rise to low area and power requirement. In this paper, the design of a neural amplifier IC consisting of two high performance neural amplifiers for recording action potentials/spikes are proposed. One amplifier is based on capacitive feedback topology and is noise efficient while the other one is based on open loop topology and is area as well as power efficient. Both amplifiers use a self-biased high swing cascode current mirror load based Folded Cascode Operational Transconductance Amplifier (OTA), which results in an efficient performance with a trade-off between noise and power. The use of such a current mirror load in the OTA helps in achieving a better output swing. The use of source degenerated resistors assures current scaling which results in low input referred noise. Simulations have been carried out using technology parameters of SCL 180 nm foundry. Simulation results and comparative analysis illustrate that the proposed closed loop neural amplifier reports a significant improvement in gain, CMRR and bandwidth while the proposed open loop neural amplifier reports an improvement in power dissipation as compared to most of the state of art designs. Monte Carlo analysis is performed which gives a low average standard deviation, which further validates consistency and reliability of both the proposed designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Asenov A (2010) Advanced Monte Carlo techniques in the simulation of CMOS Devices and Circuits. In: International conference on numerical methods and applications. Springer, Berlin, Heidelberg, pp 41–49 Asenov A (2010) Advanced Monte Carlo techniques in the simulation of CMOS Devices and Circuits. In: International conference on numerical methods and applications. Springer, Berlin, Heidelberg, pp 41–49
Zurück zum Zitat Assaad RS, Silva-Martinez J (2009) The recycling folded cascode: a general enhancement of the folded cascode amplifier. IEEE J Solid-State Circuits 44(9):2535–2542CrossRef Assaad RS, Silva-Martinez J (2009) The recycling folded cascode: a general enhancement of the folded cascode amplifier. IEEE J Solid-State Circuits 44(9):2535–2542CrossRef
Zurück zum Zitat Bharucha E, Sepehrian H, Gosselin B (2014) A survey of neural front end amplifiers and their requirements toward practical neural interfaces. J Low Power Electron Appl 4(4):268–291CrossRef Bharucha E, Sepehrian H, Gosselin B (2014) A survey of neural front end amplifiers and their requirements toward practical neural interfaces. J Low Power Electron Appl 4(4):268–291CrossRef
Zurück zum Zitat Chaturvedi V, Amrutur B (2011) An area-efficient noise-adaptive neural amplifier in 130 nm CMOS technology. IEEE J Emerg Sel Top Circuits Syst 1(4):536–545CrossRef Chaturvedi V, Amrutur B (2011) An area-efficient noise-adaptive neural amplifier in 130 nm CMOS technology. IEEE J Emerg Sel Top Circuits Syst 1(4):536–545CrossRef
Zurück zum Zitat Deepika G, Rao KS (2016) A low power, low noise amplifier for recording neural signals. ARPN J Eng Appl Sci 11(5):3557–3563 Deepika G, Rao KS (2016) A low power, low noise amplifier for recording neural signals. ARPN J Eng Appl Sci 11(5):3557–3563
Zurück zum Zitat Feng Y, Zhigong W, Xiaoying L (2016) A multi-channel analog IC for in vitro neural recording. J Semiconduc 37(2):025007CrossRef Feng Y, Zhigong W, Xiaoying L (2016) A multi-channel analog IC for in vitro neural recording. J Semiconduc 37(2):025007CrossRef
Zurück zum Zitat Gosselin B (2011) Recent advances in neural recording microsystems. Sensors 11(5):4572–4597CrossRef Gosselin B (2011) Recent advances in neural recording microsystems. Sensors 11(5):4572–4597CrossRef
Zurück zum Zitat Gupta M, Aggarwal B, Gupta AK (2013) A very high performance self-biased cascode current mirror for CMOS technology. Analog Integr Circuits Sig Process 75(1):67–74CrossRef Gupta M, Aggarwal B, Gupta AK (2013) A very high performance self-biased cascode current mirror for CMOS technology. Analog Integr Circuits Sig Process 75(1):67–74CrossRef
Zurück zum Zitat Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circuits 38(6):958–965CrossRef Harrison RR, Charles C (2003) A low-power low-noise CMOS amplifier for neural recording applications. IEEE J Solid-State Circuits 38(6):958–965CrossRef
Zurück zum Zitat Jaffari J (2010). Statistical yield analysis and design for nanometer VLSI. Electrical and Computer Engineering (PhD Thesis), University of Waterloo, Waterloo, Canada Jaffari J (2010). Statistical yield analysis and design for nanometer VLSI. Electrical and Computer Engineering (PhD Thesis), University of Waterloo, Waterloo, Canada
Zurück zum Zitat Kim S, Na SI, Yang Y, Kim H, Kim T, Cho JS, Kim S (2017) A 4 × 32-channel neural recording system for deep brain stimulation systems. J Semiconduc Technol Sci 17(1):129–140CrossRef Kim S, Na SI, Yang Y, Kim H, Kim T, Cho JS, Kim S (2017) A 4 × 32-channel neural recording system for deep brain stimulation systems. J Semiconduc Technol Sci 17(1):129–140CrossRef
Zurück zum Zitat Laskar NM, Guha K, Toshniwal N, Das S, Baishnab KL, Nath S, Paul PK (2017) A low noise, high gain OTA for low frequency application. In: Proceedings of 4th microelectronics conference (micro), Darjeeling, India, pp 154–159 Laskar NM, Guha K, Toshniwal N, Das S, Baishnab KL, Nath S, Paul PK (2017) A low noise, high gain OTA for low frequency application. In: Proceedings of 4th microelectronics conference (micro), Darjeeling, India, pp 154–159
Zurück zum Zitat Lopez CM, Andrei A, Mitra S, Welkenhuysen M, Eberle W, Bartic C, Gielen GG (2014) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid-State Circuits 49(1):248–261CrossRef Lopez CM, Andrei A, Mitra S, Welkenhuysen M, Eberle W, Bartic C, Gielen GG (2014) An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J Solid-State Circuits 49(1):248–261CrossRef
Zurück zum Zitat Mohseni P, Najafi K (2004) A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans Biomed Eng 51(5):832–837CrossRef Mohseni P, Najafi K (2004) A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans Biomed Eng 51(5):832–837CrossRef
Zurück zum Zitat Ng KA, Xu YP (2016) A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J Solid-State Circuits 51(3):724–737CrossRef Ng KA, Xu YP (2016) A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs with CMFB through supply rails. IEEE J Solid-State Circuits 51(3):724–737CrossRef
Zurück zum Zitat Ng KA, Greenwald E, Xu YP, Thakor NV (2016) Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Compu 54(1):45–62CrossRef Ng KA, Greenwald E, Xu YP, Thakor NV (2016) Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med Biol Eng Compu 54(1):45–62CrossRef
Zurück zum Zitat Pelgrom MJ, Duinmaijer AC, Welbers A (1989) Matching properties of MOS transistors. IEEE J Solid-State Circuits 24(5):1433–1439CrossRef Pelgrom MJ, Duinmaijer AC, Welbers A (1989) Matching properties of MOS transistors. IEEE J Solid-State Circuits 24(5):1433–1439CrossRef
Zurück zum Zitat Rai S, Holleman J, Pandey JN, Zhang F, Otis B (2009) A 500 µW neural tag with 2 µv rms afe and frequency-multiplying mics/ism fsk transmitter. In: IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, pp 212–213, 213a. https://doi.org/10.1109/ISSCC.2009.4977383 Rai S, Holleman J, Pandey JN, Zhang F, Otis B (2009) A 500 µW neural tag with 2 µv rms afe and frequency-multiplying mics/ism fsk transmitter. In: IEEE International Solid-State Circuits Conference-Digest of Technical Papers, San Francisco, CA, pp 212–213, 213a. https://​doi.​org/​10.​1109/​ISSCC.​2009.​4977383
Zurück zum Zitat Razavi B (2005) Design of analog CMOS integrated circuits. McGraw Hill Education, New Delhi Razavi B (2005) Design of analog CMOS integrated circuits. McGraw Hill Education, New Delhi
Zurück zum Zitat Ruiz-Amaya J, Rodriguez-Perez A, Delgado-Restituto M (2015) A low noise amplifier for neural spike recording interfaces. Sensors 15(10):25313–25335CrossRef Ruiz-Amaya J, Rodriguez-Perez A, Delgado-Restituto M (2015) A low noise amplifier for neural spike recording interfaces. Sensors 15(10):25313–25335CrossRef
Zurück zum Zitat Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147CrossRef Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147CrossRef
Zurück zum Zitat Zhang F, Holleman J, Otis BP (2012) Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans Biomed Circuits Syst 6(4):344–355CrossRef Zhang F, Holleman J, Otis BP (2012) Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans Biomed Circuits Syst 6(4):344–355CrossRef
Metadaten
Titel
Design of high gain, high bandwidth neural amplifier IC considering noise-power trade-off
verfasst von
N. M. Laskar
K. Guha
S. Nath
S. Chanda
K. L. Baishnab
P. K. Paul
K. S. Rao
Publikationsdatum
01.10.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4142-5

Weitere Artikel der Ausgabe 2/2021

Microsystem Technologies 2/2021 Zur Ausgabe

Neuer Inhalt