Skip to main content
Erschienen in: Microsystem Technologies 2/2021

22.09.2018 | Technical Paper

Low power and high speed design issues of CMOS  Hamming code generation and error detection circuit at 22 nm and 16 nm channel length of MOS transistor

verfasst von: Surajit Bari, Debashis De, Angsuman Sarkar

Erschienen in: Microsystem Technologies | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper represents low power and high speed design issues of Hamming code generation and error detection circuit using complementary metal oxide semiconductor (CMOS) technology. Average power consumption and input to output gate delay for both Hamming code generation and error detection circuit are analyzed at 22 nm and 16 nm channel length of Metal Oxide Semiconductor (MOS) transistor. The functionality of the circuits are clarified using Tanner SPICE (T-SPICE) software. The average power consumption and input to output gate delay of the circuits are reported considering the parameters—power supply voltage, channel width to length ratio of transistors. It has been observed that whenever power supply voltage (VDD) increases, power consumption across the circuits increases, however gate delay decreases for both the circuit for fixed channel width to length ratio of the transistors. On the other hand, for fixed value of VDD if channel width to length ratio of NMOS transistor increases gate delay decreases however average power consumption increases. The variation of average power consumption and delay has also been reported with respect to KPN ratio. KPN is the ratio of channel width to length ratio of PMOS transistor to channel width to length ratio of NMOS transistor. Average power consumption is more for higher value of KPN ratio. In contrast gate delay is less at higher value KPN ratio. In this work, the values of average power consumption and gate delay are of the order of microwatt and picosecond respectively. The average power consumption of the Hamming code generation circuit in this work at 0.8 V of VDD is 0.2 µW and 1.3 µW for 22 nm and 16 nm cannel length of MOS transistor respectively. Whereas at the VDD of 0.8 V, the average power consumption of the error detection circuit is 0.4 µW and 2.3 µW respectively for 22 nm and 16 nm cannel length. The gate delay of the Hamming code generation circuit in this work at VDD of 0.8 V is 4.7 ps and 3.3 ps for for 22 nm and 16 nm cannel length of MOS transistor respectively. Also at the VDD of 0.8 V, the gate delay of the error detection circuit has been reported in this work is 16.4 ps and 12.5 ps for 22 nm and 16 nm channel length respectively. Therefore for low power and high speed Very Large Scale Integrated (VLSI) circuit design this work is applicable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chen S-L, Villaverde JF, Lee H-Y, Chung DW-Y, Lin T-L, Tseng C-H, Lo K-A (2017) A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications. IEEE Sens J 17:3461–3469CrossRef Chen S-L, Villaverde JF, Lee H-Y, Chung DW-Y, Lin T-L, Tseng C-H, Lo K-A (2017) A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications. IEEE Sens J 17:3461–3469CrossRef
Zurück zum Zitat Floyd L, Jain RP (2006) Digital fundamentals. Pearson Education, New Delhi, India Floyd L, Jain RP (2006) Digital fundamentals. Pearson Education, New Delhi, India
Zurück zum Zitat Haykin S (2000) Communication system. Willey, Noida Haykin S (2000) Communication system. Willey, Noida
Zurück zum Zitat Kang SM, Leblebici Y (2003) CMOS Digital integrated circuits analysis and design. TMH, New Delhi Kang SM, Leblebici Y (2003) CMOS Digital integrated circuits analysis and design. TMH, New Delhi
Zurück zum Zitat Kennedy G, Davis B (2002) Electronic communication system. TMH, New Delhi Kennedy G, Davis B (2002) Electronic communication system. TMH, New Delhi
Zurück zum Zitat Konno G, Yamanashi Y, Yoshikawa N (2017) Fully functional operation of low-power 64-kb Josephson-CMOS hybrid memories. IEEE Trans Appl Supercond 27:1300607CrossRef Konno G, Yamanashi Y, Yoshikawa N (2017) Fully functional operation of low-power 64-kb Josephson-CMOS hybrid memories. IEEE Trans Appl Supercond 27:1300607CrossRef
Zurück zum Zitat Lin J-F, Sheu M-H, Hwang Y-T, Chen-Syuan Wong C-S, Tsai M-Y (2017) Low-power 19-transistor true single-phase clocking flip-flop design based on logic structure reduction schemes. IEEE Trans Very Large Scale Integr VLSI Syst 25:3033–3044CrossRef Lin J-F, Sheu M-H, Hwang Y-T, Chen-Syuan Wong C-S, Tsai M-Y (2017) Low-power 19-transistor true single-phase clocking flip-flop design based on logic structure reduction schemes. IEEE Trans Very Large Scale Integr VLSI Syst 25:3033–3044CrossRef
Zurück zum Zitat Liu S, Zheng Y (2016) A low-power and highly linear 14-bit parallel sampling TDC with power gating and DEM in 65-nm CMOS. IEEE Trans Very Large Scale Integr (VLSI) Syst 24:1083–1091CrossRef Liu S, Zheng Y (2016) A low-power and highly linear 14-bit parallel sampling TDC with power gating and DEM in 65-nm CMOS. IEEE Trans Very Large Scale Integr (VLSI) Syst 24:1083–1091CrossRef
Zurück zum Zitat Qian H, Dai S, Kang K, Wang X (2016) Efficient coding schemes for low-rate wireless personal area networks. IET Commun 10:915–921CrossRef Qian H, Dai S, Kang K, Wang X (2016) Efficient coding schemes for low-rate wireless personal area networks. IET Commun 10:915–921CrossRef
Zurück zum Zitat Rabaey J, Chandrakasan A, Nikolic B (2005) Digital integrated circuits A design perspective. Pearson, London Rabaey J, Chandrakasan A, Nikolic B (2005) Digital integrated circuits A design perspective. Pearson, London
Zurück zum Zitat Rajaei R, Mamaghani SB (2017) Ultra-low power, highly reliable, and nonvolatile hybrid MTJ/CMOS based full-adder for future VLSI design. IEEE Trans Device Mater Reliab 17:213–220CrossRef Rajaei R, Mamaghani SB (2017) Ultra-low power, highly reliable, and nonvolatile hybrid MTJ/CMOS based full-adder for future VLSI design. IEEE Trans Device Mater Reliab 17:213–220CrossRef
Zurück zum Zitat Saiz-Adalid L-J (2014) Modified hamming codes to enhance short burst error detection in semiconductor memories. In: Proceedings of tenth European dependable computing conference, IEEE, Piscataway, pp 62–65 Saiz-Adalid L-J (2014) Modified hamming codes to enhance short burst error detection in semiconductor memories. In: Proceedings of tenth European dependable computing conference, IEEE, Piscataway, pp 62–65
Zurück zum Zitat Scotti G, Bellizia D, Trifiletti A (2017) Gaetano palumbo design of low-voltage high-speed CML D-latches in nanometer CMOS technologies. IEEE Trans Very Large Scale Integr (VLSI) Syst 25:3509–3520CrossRef Scotti G, Bellizia D, Trifiletti A (2017) Gaetano palumbo design of low-voltage high-speed CML D-latches in nanometer CMOS technologies. IEEE Trans Very Large Scale Integr (VLSI) Syst 25:3509–3520CrossRef
Zurück zum Zitat Taub H, Schelling DL (2001) Principle of communication system. TMH, New Delhi Taub H, Schelling DL (2001) Principle of communication system. TMH, New Delhi
Zurück zum Zitat Zahrai SA, Zlochisti M, Dortz NL, Onabajo M (2017) A low-power high-speed hybrid ADC with merged sample-and-hold and DAC functions for efficient subranging time-interleaved operation. IEEE Trans Very Large Scale Integr (VLSI) Syst 25:3193–3206CrossRef Zahrai SA, Zlochisti M, Dortz NL, Onabajo M (2017) A low-power high-speed hybrid ADC with merged sample-and-hold and DAC functions for efficient subranging time-interleaved operation. IEEE Trans Very Large Scale Integr (VLSI) Syst 25:3193–3206CrossRef
Zurück zum Zitat Zhang Z, Yang J, Liu L, Feng P, Liu J, Wu N (2018) A 0.9–2.25-GHz Sub-0.2-mW/GHz compact low-voltage low-power hybrid digital PLL with loop bandwidth-tracking technique. IEEE Trans Very Large Scale Integr (VLSI) Syst 26:933–944CrossRef Zhang Z, Yang J, Liu L, Feng P, Liu J, Wu N (2018) A 0.9–2.25-GHz Sub-0.2-mW/GHz compact low-voltage low-power hybrid digital PLL with loop bandwidth-tracking technique. IEEE Trans Very Large Scale Integr (VLSI) Syst 26:933–944CrossRef
Metadaten
Titel
Low power and high speed design issues of CMOS  Hamming code generation and error detection circuit at 22 nm and 16 nm channel length of MOS transistor
verfasst von
Surajit Bari
Debashis De
Angsuman Sarkar
Publikationsdatum
22.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4143-4

Weitere Artikel der Ausgabe 2/2021

Microsystem Technologies 2/2021 Zur Ausgabe

Neuer Inhalt