Skip to main content
Erschienen in: Microsystem Technologies 2/2021

21.07.2018 | Technical Paper

Analysis of spring softening effect on the collapse voltage of capacitive MEMS ultrasonic transducers

verfasst von: Reshmi Maity, N. P. Maity, K. Guha, S. Baishya

Erschienen in: Microsystem Technologies | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper explained the dependency of collapse voltage on semiconductor device structural features (membrane diameter, membrane thickness and the vertical distance between the electrodes) and physical characteristics (mechanical residual stress of the silicon nitride membrane) considering the electro-mechanical model of MEMS based Capacitive micromachined ultrasonic transducer (CMUT). To have sensitivity comparable to that of piezoelectric ultrasonic transducers (UTs), CMUTs need to be biased close to the collapse voltage. Maximum efficiency is achieved in the conventional mode of operation by biasing the device close to the collapse voltage. The total acoustic output pressure is determined by the efficiency of the device. Hence a careful investigation of the same is decidedly required. Finite element method (FEM) model by PZFlex and analytical model of single element CMUT with 0.75 µm thick silicon nitride membranes suspended on 0.5 µm thick cavity were developed showing resonance frequency at 5 MHz. Through these analyses, it is observed that membrane and vacuum gap thickness are both directly proportional to collapse voltage, while radius of the membrane and also its area are inversely proportional to collapse voltage. Initially the spring softening effect of the membrane has been neglected. Later the effect has been included in the proposed model and analyzed. It has been shown that the spring softening effect cannot be neglected for accurate CMUT modeling. A capacitive micromachined ultrasound transducer can be realized with the model described in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arezoo T, Buchanan DA (2015) Design and characterization of a capacitive micromachined transducer with a deflectable bottom electrode. IEEE Electron Device Lett 36(6):612–614CrossRef Arezoo T, Buchanan DA (2015) Design and characterization of a capacitive micromachined transducer with a deflectable bottom electrode. IEEE Electron Device Lett 36(6):612–614CrossRef
Zurück zum Zitat Aydogdu E, Ozgurluk A, Atalar A, Koymen H (2014) Parametric nonlinear lumped element model for circular CMUTs in collapse mode. IEEE Trans Ultrason Ferroelectr Freq Control 61(8):1245–1260CrossRef Aydogdu E, Ozgurluk A, Atalar A, Koymen H (2014) Parametric nonlinear lumped element model for circular CMUTs in collapse mode. IEEE Trans Ultrason Ferroelectr Freq Control 61(8):1245–1260CrossRef
Zurück zum Zitat Bozkurt A, Yaralioglu GG (2016) Receive noise analysis of capacitive micromachined ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq 63(11):1980–1987CrossRef Bozkurt A, Yaralioglu GG (2016) Receive noise analysis of capacitive micromachined ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq 63(11):1980–1987CrossRef
Zurück zum Zitat Caronti A, Caliano C, Carotenuto R, Savoia A, Papalardo M, Cianci E, Foglietti V (2006) Analysis of acoustic interaction effect sand crosstalk in CMUT linear arrays for medical imaging. Microelectron J 37:770–777CrossRef Caronti A, Caliano C, Carotenuto R, Savoia A, Papalardo M, Cianci E, Foglietti V (2006) Analysis of acoustic interaction effect sand crosstalk in CMUT linear arrays for medical imaging. Microelectron J 37:770–777CrossRef
Zurück zum Zitat Chen A, Wong L, Na S, Li Z, Mcecek M, Yeow J (2016) Fabrication of a curved row-column addressed capacitive micromachined ultrasonic transducer array. IEEE J Microelectromech Syst 25(4):675–682CrossRef Chen A, Wong L, Na S, Li Z, Mcecek M, Yeow J (2016) Fabrication of a curved row-column addressed capacitive micromachined ultrasonic transducer array. IEEE J Microelectromech Syst 25(4):675–682CrossRef
Zurück zum Zitat Cheng TC, Hsu CW, Wang HC, Parvizand B, Tsai TH (2016) A low-power oscillator-based readout interface for medical ultrasonic sensors. In: 2016 International symposium on VLSI design, automation and test (VLSI-DAT). IEEE, Taiwan Cheng TC, Hsu CW, Wang HC, Parvizand B, Tsai TH (2016) A low-power oscillator-based readout interface for medical ultrasonic sensors. In: 2016 International symposium on VLSI design, automation and test (VLSI-DAT). IEEE, Taiwan
Zurück zum Zitat Cour MF, Christiansen TL, Jensen JA, Thomsen EV (2015) Electrostatic and small signal analysis of CMUTs with circular and square anisotropic plates. IEEE Trans Ultrason Ferroelectr Freq Control 62(8):1563–1579CrossRef Cour MF, Christiansen TL, Jensen JA, Thomsen EV (2015) Electrostatic and small signal analysis of CMUTs with circular and square anisotropic plates. IEEE Trans Ultrason Ferroelectr Freq Control 62(8):1563–1579CrossRef
Zurück zum Zitat Emadi TA, Buchanan DA (2013) Multiple moving membrane CMUT with enlarged membrane displacement and low pull-down voltage. IEEE Electron Device Lett 34(12):1578–1580CrossRef Emadi TA, Buchanan DA (2013) Multiple moving membrane CMUT with enlarged membrane displacement and low pull-down voltage. IEEE Electron Device Lett 34(12):1578–1580CrossRef
Zurück zum Zitat Emadi TA, Buchanan DA (2014) Design and fabrication of a novel MEMS capacitive transducer with multiple moving membrane, M3-CMUT. IEEE Trans Electron Devices 61(3):890–896CrossRef Emadi TA, Buchanan DA (2014) Design and fabrication of a novel MEMS capacitive transducer with multiple moving membrane, M3-CMUT. IEEE Trans Electron Devices 61(3):890–896CrossRef
Zurück zum Zitat Emadi TA, Buchanan DA (2015) Design and characterization of a Capacitive micromachined transducer with a deflectable bottom electrode. IEEE Electron Device Lett 36(6):612–614CrossRef Emadi TA, Buchanan DA (2015) Design and characterization of a Capacitive micromachined transducer with a deflectable bottom electrode. IEEE Electron Device Lett 36(6):612–614CrossRef
Zurück zum Zitat Haller MI, Khuri-Yakub BT (1994) A surface micromachined electrostatic ultrasonic air transducer. In: IEEE Ultrasonics symposium, pp 1241–1244 Haller MI, Khuri-Yakub BT (1994) A surface micromachined electrostatic ultrasonic air transducer. In: IEEE Ultrasonics symposium, pp 1241–1244
Zurück zum Zitat Haller MI, Khuri-Yakub BT (1996) A surface micromachined electrostatic ultrasonic air transducer. IEEE Trans Ultrason Ferroelectr Freq Control 43(1):1–6CrossRef Haller MI, Khuri-Yakub BT (1996) A surface micromachined electrostatic ultrasonic air transducer. IEEE Trans Ultrason Ferroelectr Freq Control 43(1):1–6CrossRef
Zurück zum Zitat Ladabaum I, Chin X, Soh HT, Atalar A, Khuri-Yakub BT (1998) Surface micromachined capacitive ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 45(3):678–690CrossRef Ladabaum I, Chin X, Soh HT, Atalar A, Khuri-Yakub BT (1998) Surface micromachined capacitive ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 45(3):678–690CrossRef
Zurück zum Zitat Lee SM (2011) Viscous damping effect on the CMUT device in air. J Korean Phys Soc 58(4):747–755CrossRef Lee SM (2011) Viscous damping effect on the CMUT device in air. J Korean Phys Soc 58(4):747–755CrossRef
Zurück zum Zitat Maity R, Maity NP, Baishya S (2017a) Circular membrane approximation model with the effect of the finiteness of the electrode’s diameter of MEMS capacitive micromachined ultrasonic transducers. Microsyst Technol 23(8):3513–3524CrossRef Maity R, Maity NP, Baishya S (2017a) Circular membrane approximation model with the effect of the finiteness of the electrode’s diameter of MEMS capacitive micromachined ultrasonic transducers. Microsyst Technol 23(8):3513–3524CrossRef
Zurück zum Zitat Maity R, Maity NP, Baishya S (2017b) An improved analytical and finite element method model of nanoelectromechanical system based micromachined ultrasonic transducers. Microsyst Technol 23(6):2163–2173CrossRef Maity R, Maity NP, Baishya S (2017b) An improved analytical and finite element method model of nanoelectromechanical system based micromachined ultrasonic transducers. Microsyst Technol 23(6):2163–2173CrossRef
Zurück zum Zitat Maity R, Maity NP, Guha K, Baishya S (2018) Analysis of fringing capacitance effect on the performance of micro-electromechanical-system-based micromachined ultrasonic air transducer. Micro Nano Lett 13(6):872–877CrossRef Maity R, Maity NP, Guha K, Baishya S (2018) Analysis of fringing capacitance effect on the performance of micro-electromechanical-system-based micromachined ultrasonic air transducer. Micro Nano Lett 13(6):872–877CrossRef
Zurück zum Zitat N’Djin W, Gerold B, Bailly J, Canney M, Nguyen-Dinh A, Carpentier A, Chapelon J (2017) Capacitive micromachined ultrasound transducers for interstitial high-intensity ultrasound therapies. IEEE Trans Ultrason Ferroelectr Freq Control 64(8):1245–1260CrossRef N’Djin W, Gerold B, Bailly J, Canney M, Nguyen-Dinh A, Carpentier A, Chapelon J (2017) Capacitive micromachined ultrasound transducers for interstitial high-intensity ultrasound therapies. IEEE Trans Ultrason Ferroelectr Freq Control 64(8):1245–1260CrossRef
Zurück zum Zitat Nikoozadeh A, Bayram B, Yaralioglu GG, Khuri-Yakub BT (2004) Analytical calculation of collapse voltage of CMUT membrane. In: IEEE Ultrasonics symposium, pp 256–259 Nikoozadeh A, Bayram B, Yaralioglu GG, Khuri-Yakub BT (2004) Analytical calculation of collapse voltage of CMUT membrane. In: IEEE Ultrasonics symposium, pp 256–259
Zurück zum Zitat Ronnekleiv A (2005) CMUT array modeling through free acoustic CMUT modes and analysis of the fluid CMUT interface through Fourier transform methods. IEEE Trans Ultrason Ferroelectr Freq Control 52(12):2173–2184CrossRef Ronnekleiv A (2005) CMUT array modeling through free acoustic CMUT modes and analysis of the fluid CMUT interface through Fourier transform methods. IEEE Trans Ultrason Ferroelectr Freq Control 52(12):2173–2184CrossRef
Zurück zum Zitat Roy R, Farhanieh O, Ergun A, Bozkurt A (2017) Fabrication of High-Efficiency CMUTs With Reduced Parasitic Using Embedded Metallic Layers. IEEE Sens J 17(13):4013–4020CrossRef Roy R, Farhanieh O, Ergun A, Bozkurt A (2017) Fabrication of High-Efficiency CMUTs With Reduced Parasitic Using Embedded Metallic Layers. IEEE Sens J 17(13):4013–4020CrossRef
Zurück zum Zitat Soh HT, Ladabaum I, Atalar A, Quate CF, Khuri-Yakub BT (1996) Silicon micromachined ultrasonic immersion transducers. Appl Phys Lett 69(24):3674–3676CrossRef Soh HT, Ladabaum I, Atalar A, Quate CF, Khuri-Yakub BT (1996) Silicon micromachined ultrasonic immersion transducers. Appl Phys Lett 69(24):3674–3676CrossRef
Zurück zum Zitat Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill College, New YorkMATH Timoshenko S, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill College, New YorkMATH
Zurück zum Zitat Zhang Q, Cicek PV, Allidina K, Nabki F, El-Gamal MN (2014) Surface micromachined CMUT using low temperature deposited silicon carbide membranes for above IC integration. IEEE J Microelectromech Syst 23(2):482–492CrossRef Zhang Q, Cicek PV, Allidina K, Nabki F, El-Gamal MN (2014) Surface micromachined CMUT using low temperature deposited silicon carbide membranes for above IC integration. IEEE J Microelectromech Syst 23(2):482–492CrossRef
Zurück zum Zitat Zhang X, Yamancer FY, Oralkan O (2017) Fabrication of vacuum-sealed-capacitive micromachined ultrasonic transducers with through glass via interconnects using anodic bonding. IEEE J Microelectromech Syst 26(1):226–234CrossRef Zhang X, Yamancer FY, Oralkan O (2017) Fabrication of vacuum-sealed-capacitive micromachined ultrasonic transducers with through glass via interconnects using anodic bonding. IEEE J Microelectromech Syst 26(1):226–234CrossRef
Metadaten
Titel
Analysis of spring softening effect on the collapse voltage of capacitive MEMS ultrasonic transducers
verfasst von
Reshmi Maity
N. P. Maity
K. Guha
S. Baishya
Publikationsdatum
21.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2021
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4040-x

Weitere Artikel der Ausgabe 2/2021

Microsystem Technologies 2/2021 Zur Ausgabe

Editorial

Preface

Neuer Inhalt