Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2021

11.02.2020 | Original Article

Designing a novel N-doped adsorbent with ultrahigh selectivity for CO2: waste biomass pyrolysis and two-step activation

verfasst von: Zhixiu Yang, Guojie Zhang, Xiaofei Guo, Ying Xu

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the research, N-doped cost-effective carbon dioxide adsorbents with ultrahigh selectivity are prepared using waste walnut shell pyrolysis by two-step activation and urea modification. The carbonaceous adsorbent exhibits excellent pore structure due to the catalytic degradation of H3PO4 and the etching action of KOH. The optimized sample, HAC-850-1.5, shows high CO2 adsorption 5.13 mmol/g at 0 °C. The study also indicates that nitrogen content, Vm/Vt, and porous texture characteristics play indispensable parts in impacting the CO2 adsorption of these prepared N-doped porous materials under atmospheric pressure. Furthermore, prepared carbonaceous adsorbents possess other superiorities including reasonable Qst and good recyclability and stability. It should not be overlooked that the adsorbent has a selectivity of more than 800 for CO2/N2 at low pressure, which is highly promising in CO2 adsorption through flue gas when contrasted with diverse solid adsorbents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat David E, Kopac J (2014) Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J Anal Appl Pyrol 110:322–332CrossRef David E, Kopac J (2014) Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J Anal Appl Pyrol 110:322–332CrossRef
2.
Zurück zum Zitat Dinda S (2013) Development of solid adsorbent for carbon dioxide capture from flue gas. Sep Purif Technol 109:64–71CrossRef Dinda S (2013) Development of solid adsorbent for carbon dioxide capture from flue gas. Sep Purif Technol 109:64–71CrossRef
3.
Zurück zum Zitat Ding W, Zhang X, Zhao B, Zhou W, Xu A, Chen L (2018) TG-FTIR and thermodynamic analysis of the herb residue pyrolysis with in-situ CO2 capture using CaO catalyst. J Anal Appl Pyrol 134:389–394CrossRef Ding W, Zhang X, Zhao B, Zhou W, Xu A, Chen L (2018) TG-FTIR and thermodynamic analysis of the herb residue pyrolysis with in-situ CO2 capture using CaO catalyst. J Anal Appl Pyrol 134:389–394CrossRef
4.
Zurück zum Zitat Peirce S, Russo ME, Isticato R, Lafuente RF, Salatino P, Marzocchella A (2017) Structure and activity of magnetic cross-linked enzyme aggregates of bovine carbonic anhydrase as promoters of enzymatic CO2 capture. Biochem Eng J 127:188–195CrossRef Peirce S, Russo ME, Isticato R, Lafuente RF, Salatino P, Marzocchella A (2017) Structure and activity of magnetic cross-linked enzyme aggregates of bovine carbonic anhydrase as promoters of enzymatic CO2 capture. Biochem Eng J 127:188–195CrossRef
5.
Zurück zum Zitat Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999CrossRef
6.
Zurück zum Zitat Hartlieb KJ, Peters AW, Wang TC, Deria P, Farha OK, Hupp JT, Stoddart JF (2017) Functionalised cyclodextrin-based metal-organic frameworks. Chem Commun 53:7561–7564CrossRef Hartlieb KJ, Peters AW, Wang TC, Deria P, Farha OK, Hupp JT, Stoddart JF (2017) Functionalised cyclodextrin-based metal-organic frameworks. Chem Commun 53:7561–7564CrossRef
7.
Zurück zum Zitat Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954–963CrossRef Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B (2012) Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat Commun 3:954–963CrossRef
8.
Zurück zum Zitat Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948CrossRef Farha OK, Yazaydın AÖ, Eryazici I, Malliakas CD, Hauser BG, Kanatzidis MG, Nguyen ST, Snurr RQ, Hupp JT (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948CrossRef
9.
Zurück zum Zitat Modak A, Jana S (2019) Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater 276:107–132CrossRef Modak A, Jana S (2019) Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater 276:107–132CrossRef
10.
Zurück zum Zitat Singh G, Lakhi KS, Ramadass K, Kim S, Stockdale D, Vinu A (2018) A combined strategy of acid-assisted polymerization and solid state activation to synthesize functionalized nanoporous activated biocarbons from biomass for CO2 capture. Micropor Mesopor Mater 271:23–32CrossRef Singh G, Lakhi KS, Ramadass K, Kim S, Stockdale D, Vinu A (2018) A combined strategy of acid-assisted polymerization and solid state activation to synthesize functionalized nanoporous activated biocarbons from biomass for CO2 capture. Micropor Mesopor Mater 271:23–32CrossRef
11.
Zurück zum Zitat Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323–7327CrossRef Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323–7327CrossRef
12.
Zurück zum Zitat Peirce S, Russo ME, Perfetto R, Capasso C, Rossi M, Fernandez-Lafuente R, Salatino P, Marzocchella A (2018) Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture. Biochem Eng J 138:1–11CrossRef Peirce S, Russo ME, Perfetto R, Capasso C, Rossi M, Fernandez-Lafuente R, Salatino P, Marzocchella A (2018) Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture. Biochem Eng J 138:1–11CrossRef
13.
Zurück zum Zitat De Araújo MJG, Villarroel-Rocha J, De Souza VC, Sapag K, Pergher SBC (2019) Carbon foams from sucrose employing different metallic nitrates as blowing agents: application in CO2 capture. J Anal Appl Pyrol 141:104627–104639CrossRef De Araújo MJG, Villarroel-Rocha J, De Souza VC, Sapag K, Pergher SBC (2019) Carbon foams from sucrose employing different metallic nitrates as blowing agents: application in CO2 capture. J Anal Appl Pyrol 141:104627–104639CrossRef
14.
Zurück zum Zitat Shao L, Wang S, Liu M, Huang J, Liu YN (2018) Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chem Eng J 339:509–518CrossRef Shao L, Wang S, Liu M, Huang J, Liu YN (2018) Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chem Eng J 339:509–518CrossRef
15.
Zurück zum Zitat Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10283–10285CrossRef Nandi M, Okada K, Dutta A, Bhaumik A, Maruyama J, Derks D, Uyama H (2012) Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem Commun 48:10283–10285CrossRef
16.
Zurück zum Zitat Ge C, Song J, Qin ZF, Wang JG, Fan WB (2016) Polyurethane foam-based ultra-microporous carbons for CO2 capture. ACS Appl Mat Interfaces 8:18849–18859CrossRef Ge C, Song J, Qin ZF, Wang JG, Fan WB (2016) Polyurethane foam-based ultra-microporous carbons for CO2 capture. ACS Appl Mat Interfaces 8:18849–18859CrossRef
17.
Zurück zum Zitat Zhang Z, Zhou J, Xing W, Xue Q, Yan Z, Zhuo S, Qiao SZ (2013) Critical role of small micropores in high CO2 uptake. Phys Chem Chem Phys 15:2523–2529CrossRef Zhang Z, Zhou J, Xing W, Xue Q, Yan Z, Zhuo S, Qiao SZ (2013) Critical role of small micropores in high CO2 uptake. Phys Chem Chem Phys 15:2523–2529CrossRef
18.
Zurück zum Zitat Solum MS, Pugmire RJ, Jagtoyen M, Derbyshire F (1995) Evolution of carbon structure in chemically activated wood. Carbon 33:1247–1254CrossRef Solum MS, Pugmire RJ, Jagtoyen M, Derbyshire F (1995) Evolution of carbon structure in chemically activated wood. Carbon 33:1247–1254CrossRef
19.
Zurück zum Zitat Yang Q, Zhang Z, Sun XG, Hu YS, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064CrossRef Yang Q, Zhang Z, Sun XG, Hu YS, Xing H, Dai S (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064CrossRef
20.
Zurück zum Zitat Hu X, Radosz M, Cychosz KA, Thommes M (2011) CO2–filling capacity and selectivity of carbon Nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ. Sci Technol 45:7068–7074CrossRef Hu X, Radosz M, Cychosz KA, Thommes M (2011) CO2–filling capacity and selectivity of carbon Nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environ. Sci Technol 45:7068–7074CrossRef
21.
Zurück zum Zitat Mohamed AR, Mohammadi M, Darzi GN (2010) Preparation of carbon molecular sieve from lignocellulosic biomass: a review. Renew Sust Energ Rev 141:591–1599 Mohamed AR, Mohammadi M, Darzi GN (2010) Preparation of carbon molecular sieve from lignocellulosic biomass: a review. Renew Sust Energ Rev 141:591–1599
22.
Zurück zum Zitat Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34(6):875–882CrossRef Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34(6):875–882CrossRef
23.
Zurück zum Zitat Wu M, Zha Q, Qiu J, Han X, Guo Y, Li Z (2005) Preparation of porous carbons from petroleum coke by different activation methods. Fuel 84:1992–1997CrossRef Wu M, Zha Q, Qiu J, Han X, Guo Y, Li Z (2005) Preparation of porous carbons from petroleum coke by different activation methods. Fuel 84:1992–1997CrossRef
24.
Zurück zum Zitat Li Y, Li D, Rao Y, Zhao X, Wu M (2016) Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon 105:454–462CrossRef Li Y, Li D, Rao Y, Zhao X, Wu M (2016) Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon 105:454–462CrossRef
25.
Zurück zum Zitat Li D, Ma T, Zhang R, Tian Y, Qiao Y (2015) Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 139:68–70CrossRef Li D, Ma T, Zhang R, Tian Y, Qiao Y (2015) Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char. Fuel 139:68–70CrossRef
26.
Zurück zum Zitat Li D, Li C, Tian Y, Kong L, Liu L (2015) Influences of impregnation ratio and activation time on ultramicropores of peanut shell active carbons. Mater Lett 141:340–343CrossRef Li D, Li C, Tian Y, Kong L, Liu L (2015) Influences of impregnation ratio and activation time on ultramicropores of peanut shell active carbons. Mater Lett 141:340–343CrossRef
27.
Zurück zum Zitat Ma P, Wang S, Wang T (2019) Effect of bifunctional acid on the porosity improvement of biomass-derived activated carbon for methylene blue adsorption. Environ Sci Pollut R 1–3:1–11 Ma P, Wang S, Wang T (2019) Effect of bifunctional acid on the porosity improvement of biomass-derived activated carbon for methylene blue adsorption. Environ Sci Pollut R 1–3:1–11
28.
Zurück zum Zitat Shao L, Liu M, Huang J, Liu YN (2018) CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. J Colloid Interf Sci 513:304–313CrossRef Shao L, Liu M, Huang J, Liu YN (2018) CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. J Colloid Interf Sci 513:304–313CrossRef
29.
Zurück zum Zitat Bai R, Yang M, Hu G, Xu L, Hu X, Li Z, Wang S, Dai W, Fan M (2015) A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon 81:465–473CrossRef Bai R, Yang M, Hu G, Xu L, Hu X, Li Z, Wang S, Dai W, Fan M (2015) A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke. Carbon 81:465–473CrossRef
30.
Zurück zum Zitat Nowicki P, Pietrzak R, Wachowska H (2008) Comparison of physicochemical properties of nitrogen-enriched activated carbons prepared by physical and chemical activation of Brown coal. Energy Fuel 22:4133–4138CrossRef Nowicki P, Pietrzak R, Wachowska H (2008) Comparison of physicochemical properties of nitrogen-enriched activated carbons prepared by physical and chemical activation of Brown coal. Energy Fuel 22:4133–4138CrossRef
31.
Zurück zum Zitat Chen J, Yang J, Hu G, Hu X, Li Z, Shen S, Radosz M, Fan M (2016) Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain Chem Eng 4:1439–1445CrossRef Chen J, Yang J, Hu G, Hu X, Li Z, Shen S, Radosz M, Fan M (2016) Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain Chem Eng 4:1439–1445CrossRef
32.
Zurück zum Zitat Tian K, Wu Z, Xie F, Hu W, Li L (2017) N-doped porous carbons derived from triarylisocyanurate-cored polymers with high CO2 adsorption properties. Energy Fuel 31:12477–12486CrossRef Tian K, Wu Z, Xie F, Hu W, Li L (2017) N-doped porous carbons derived from triarylisocyanurate-cored polymers with high CO2 adsorption properties. Energy Fuel 31:12477–12486CrossRef
33.
Zurück zum Zitat Kou J, Sun LB (2016) Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: efficient adsorbents for selective CO2 capture. Ind Eng Chem Res 55:10916–10925CrossRef Kou J, Sun LB (2016) Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer: efficient adsorbents for selective CO2 capture. Ind Eng Chem Res 55:10916–10925CrossRef
34.
Zurück zum Zitat Tian W, Zhang H, Sun H, Suvorova A, Saunders M, Tade M, Wang S (2016) Porous carbon: heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications. Adv Funct Mater 26:8651–8661CrossRef Tian W, Zhang H, Sun H, Suvorova A, Saunders M, Tade M, Wang S (2016) Porous carbon: heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications. Adv Funct Mater 26:8651–8661CrossRef
35.
Zurück zum Zitat Li D, Zhou J, Zhang Z, Li L, Tian Y, Lu Y, Qiao Y, Li J, Wen L (2017) Improving low-pressure CO2 capture performance of N-doped active carbons by adjusting flow rate of protective gas during alkali activation. Carbon 114:496–503CrossRef Li D, Zhou J, Zhang Z, Li L, Tian Y, Lu Y, Qiao Y, Li J, Wen L (2017) Improving low-pressure CO2 capture performance of N-doped active carbons by adjusting flow rate of protective gas during alkali activation. Carbon 114:496–503CrossRef
36.
Zurück zum Zitat Duan L, Ma Q, Chen Z (2015) Fabrication and CO2 capture performance of silicon carbide derived carbons from polysiloxane. Micropor Mesopor Mater 203:24–31CrossRef Duan L, Ma Q, Chen Z (2015) Fabrication and CO2 capture performance of silicon carbide derived carbons from polysiloxane. Micropor Mesopor Mater 203:24–31CrossRef
37.
Zurück zum Zitat Liu X, Sun C, Liu H, Tan WH, Wang W, Snap C (2019) Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption. Chem Eng J 361:199–208CrossRef Liu X, Sun C, Liu H, Tan WH, Wang W, Snap C (2019) Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption. Chem Eng J 361:199–208CrossRef
38.
Zurück zum Zitat Manyà JJ, González B, Azuara M, Arner G (2018) Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem Eng J 345:631–639CrossRef Manyà JJ, González B, Azuara M, Arner G (2018) Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity. Chem Eng J 345:631–639CrossRef
Metadaten
Titel
Designing a novel N-doped adsorbent with ultrahigh selectivity for CO2: waste biomass pyrolysis and two-step activation
verfasst von
Zhixiu Yang
Guojie Zhang
Xiaofei Guo
Ying Xu
Publikationsdatum
11.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00633-0

Weitere Artikel der Ausgabe 6/2021

Biomass Conversion and Biorefinery 6/2021 Zur Ausgabe