Skip to main content
Erschienen in: Rare Metals 12/2021

03.05.2018

Development of processing map for InX-750 superalloy using hyperbolic sinus equation and ANN model

verfasst von: Saeed Aliakbari Sani, Ali Khorram, Abed Jaffari, Golamreza Ebrahimi

Erschienen in: Rare Metals | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this study is to develop processing maps based on two models and compare them with conventional processing maps. The hyperbolic sinus constitutive equation and artificial neural network (ANN) approaches were used in this investigation to predict flow stress and to develop processing maps in various conditions. The hot compression tests of InX-750 superalloy were carried out above the gamma prime phase temperature and within the temperature range of 1000–1150 °C and strain rate of 0.001–1.000 s−1. The processing maps were conducted based upon dynamic material model (DMM) for data by experimental, constitutive equation and ANN approaches. The processing maps drawn by either of the prediction methods show that the method developed by ANN data does not significantly differ from the experimental processing map. The ANN approach is thus a suitable way to predict the flow stress as well as hot working processing map of engineering metals and materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Mehtonen S, Karjalainen L, Porter D. Modeling of the high temperature flow behavior of stabilized 12–27 wt% Cr ferritic stainless steels. Mater Sci Eng A. 2014;607:44.CrossRef Mehtonen S, Karjalainen L, Porter D. Modeling of the high temperature flow behavior of stabilized 12–27 wt% Cr ferritic stainless steels. Mater Sci Eng A. 2014;607:44.CrossRef
[2]
Zurück zum Zitat Mirzadeh H, Cabrera JM, Najafizadeh A. Constitutive relationships for hot deformation of austenite. Acta Mater. 2011;59(16):6441.CrossRef Mirzadeh H, Cabrera JM, Najafizadeh A. Constitutive relationships for hot deformation of austenite. Acta Mater. 2011;59(16):6441.CrossRef
[3]
Zurück zum Zitat Wang J, Zhao G, Chen L, Li J. A comparative study of several constitutive models for powder metallurgy tungsten at elevated temperature. Mater Des. 2016;90:91.CrossRef Wang J, Zhao G, Chen L, Li J. A comparative study of several constitutive models for powder metallurgy tungsten at elevated temperature. Mater Des. 2016;90:91.CrossRef
[4]
Zurück zum Zitat He A, Xie G, Zhang H, Wang X. A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des. 2014;56:122.CrossRef He A, Xie G, Zhang H, Wang X. A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel. Mater Des. 2014;56:122.CrossRef
[5]
Zurück zum Zitat Luo J, Li M, Li X, Shi Y. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater. 2010;42(2):157.CrossRef Luo J, Li M, Li X, Shi Y. Constitutive model for high temperature deformation of titanium alloys using internal state variables. Mech Mater. 2010;42(2):157.CrossRef
[6]
Zurück zum Zitat McQueen H, Ryan N. Constitutive analysis in hot working. Mater Sci Eng A. 2002;322(1):43.CrossRef McQueen H, Ryan N. Constitutive analysis in hot working. Mater Sci Eng A. 2002;322(1):43.CrossRef
[7]
Zurück zum Zitat Ihom A, Offiong A. Neural networks in materials science and engineering: a review of salient issues. Eur J Eng Technol. 2015;3(7):45. Ihom A, Offiong A. Neural networks in materials science and engineering: a review of salient issues. Eur J Eng Technol. 2015;3(7):45.
[8]
Zurück zum Zitat Bhadeshia H. Neural networks in materials science. ISIJ Int. 1999;39(10):966.CrossRef Bhadeshia H. Neural networks in materials science. ISIJ Int. 1999;39(10):966.CrossRef
[9]
Zurück zum Zitat Okuyucu H, Kurt A, Arcaklioglu E. Artificial neural network application to the friction stir welding of aluminum plates. Mater Des. 2007;28(1):78.CrossRef Okuyucu H, Kurt A, Arcaklioglu E. Artificial neural network application to the friction stir welding of aluminum plates. Mater Des. 2007;28(1):78.CrossRef
[10]
Zurück zum Zitat Dashtbayazi M. Artificial neural network-based multiobjective optimization of mechanical alloying process for synthesizing of metal matrix nanocomposite powder. Mater Manuf Process. 2012;27(1):33.CrossRef Dashtbayazi M. Artificial neural network-based multiobjective optimization of mechanical alloying process for synthesizing of metal matrix nanocomposite powder. Mater Manuf Process. 2012;27(1):33.CrossRef
[11]
Zurück zum Zitat Malinov S, Sha W, McKeown J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci. 2001;21(3):375.CrossRef Malinov S, Sha W, McKeown J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci. 2001;21(3):375.CrossRef
[12]
Zurück zum Zitat Zhang Z, Friedrich K. Artificial neural networks applied to polymer composites: a review. Compos Sci Technol. 2003;63(14):2029.CrossRef Zhang Z, Friedrich K. Artificial neural networks applied to polymer composites: a review. Compos Sci Technol. 2003;63(14):2029.CrossRef
[13]
Zurück zum Zitat Anaraki MT, Sanjari M, Akbarzadeh A. Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN. Mater Des. 2008;29(9):1701.CrossRef Anaraki MT, Sanjari M, Akbarzadeh A. Modeling of high temperature rheological behavior of AZ61 Mg-alloy using inverse method and ANN. Mater Des. 2008;29(9):1701.CrossRef
[14]
Zurück zum Zitat Haghdadi N, Zarei-Hanzaki A, Khalesian A, Abedi H. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des. 2013;49:386.CrossRef Haghdadi N, Zarei-Hanzaki A, Khalesian A, Abedi H. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy. Mater Des. 2013;49:386.CrossRef
[15]
Zurück zum Zitat Peng W, Zeng W, Wang Q, Yu H. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des. 2013;51:95.CrossRef Peng W, Zeng W, Wang Q, Yu H. Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater Des. 2013;51:95.CrossRef
[16]
Zurück zum Zitat Han Y, Qiao G, Sun J, Zou D. A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models. Comput Mater Sci. 2013;67:93.CrossRef Han Y, Qiao G, Sun J, Zou D. A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models. Comput Mater Sci. 2013;67:93.CrossRef
[17]
Zurück zum Zitat Quan GZ, Pan J, Wang X. Prediction of the hot compressive deformation behavior for superalloy nimonic 80A by BP-ANN Model. Appl Sci. 2016;6(3):66.CrossRef Quan GZ, Pan J, Wang X. Prediction of the hot compressive deformation behavior for superalloy nimonic 80A by BP-ANN Model. Appl Sci. 2016;6(3):66.CrossRef
[18]
Zurück zum Zitat Somani M, Muraleedharan K, Prasad Y, Singh V. Mechanical processing and microstructural control in hot working of hot isostatically pressed P/M IN-100 superalloy. Mater Sci Eng A. 1998;245(1):88.CrossRef Somani M, Muraleedharan K, Prasad Y, Singh V. Mechanical processing and microstructural control in hot working of hot isostatically pressed P/M IN-100 superalloy. Mater Sci Eng A. 1998;245(1):88.CrossRef
[19]
Zurück zum Zitat Prasad Y, Gegel H, Doraivelu S, Malas J, Morgan J, Lark K, Barker DR. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall Mater Trans A. 1984;15(10):1883.CrossRef Prasad Y, Gegel H, Doraivelu S, Malas J, Morgan J, Lark K, Barker DR. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall Mater Trans A. 1984;15(10):1883.CrossRef
[20]
Zurück zum Zitat Amiri A, Bruschi S, Sadeghi MH, Bariani P. Investigation on hot deformation behavior of Waspaloy. Mater Sci Eng A. 2013;562:77.CrossRef Amiri A, Bruschi S, Sadeghi MH, Bariani P. Investigation on hot deformation behavior of Waspaloy. Mater Sci Eng A. 2013;562:77.CrossRef
[21]
Zurück zum Zitat Liu G, Han Y, Shi Z, Sun J, Zou D, Qiao G. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: a study with processing map. Mater Des. 2014;53:662.CrossRef Liu G, Han Y, Shi Z, Sun J, Zou D, Qiao G. Hot deformation and optimization of process parameters of an as-cast 6Mo superaustenitic stainless steel: a study with processing map. Mater Des. 2014;53:662.CrossRef
[22]
Zurück zum Zitat Venugopal S, Venugopal S, Sivaprasad P, Vasudevan M, Mannan S, Jha S, Pandey P, Prasad YVRK. Validation of processing maps for 304L stainless steel using hot forging, rolling and extrusion. J Mater Process Tech. 1996;59(4):343.CrossRef Venugopal S, Venugopal S, Sivaprasad P, Vasudevan M, Mannan S, Jha S, Pandey P, Prasad YVRK. Validation of processing maps for 304L stainless steel using hot forging, rolling and extrusion. J Mater Process Tech. 1996;59(4):343.CrossRef
[23]
Zurück zum Zitat Pu E, Zheng W, Xiang J, Song Z, Li J. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654. Mater Sci Eng A. 2014;598:174.CrossRef Pu E, Zheng W, Xiang J, Song Z, Li J. Hot deformation characteristic and processing map of superaustenitic stainless steel S32654. Mater Sci Eng A. 2014;598:174.CrossRef
[24]
Zurück zum Zitat Wang Z, Wang X, Zhu Z. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy. J Alloys Compd. 2017;692:149.CrossRef Wang Z, Wang X, Zhu Z. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy. J Alloys Compd. 2017;692:149.CrossRef
[25]
Zurück zum Zitat Park SY, Kim WJ. Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al–Zn–Mg–Cu (7075) Alloys. J Mater Sci Technol. 2016;32(7):660.CrossRef Park SY, Kim WJ. Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al–Zn–Mg–Cu (7075) Alloys. J Mater Sci Technol. 2016;32(7):660.CrossRef
[26]
Zurück zum Zitat Zhu SZ, Luo TJ, Zhang TA, Yang YS. Hot deformation behavior and processing maps of as-cast Mg–8Zn–1Al–0.5 Cu–0.5 Mn alloy. Trans Nonferrous Met Soc China. 2015;25(10):3232.CrossRef Zhu SZ, Luo TJ, Zhang TA, Yang YS. Hot deformation behavior and processing maps of as-cast Mg–8Zn–1Al–0.5 Cu–0.5 Mn alloy. Trans Nonferrous Met Soc China. 2015;25(10):3232.CrossRef
[27]
Zurück zum Zitat Kang FW, Zhang GQ, Zhou L, Sun JF. Hot deformation of spray formed nickel-base superalloy using processing maps. Trans Nonferrous Met Soc China. 2008;18(3):531.CrossRef Kang FW, Zhang GQ, Zhou L, Sun JF. Hot deformation of spray formed nickel-base superalloy using processing maps. Trans Nonferrous Met Soc China. 2008;18(3):531.CrossRef
[28]
Zurück zum Zitat Liu Y, Hu R, Li J, Kou H, Li H, Chang H, Fu H. Characterization of hot deformation behavior of Haynes230 by using processing maps. J Mater Process Technol. 2009;209(8):4020.CrossRef Liu Y, Hu R, Li J, Kou H, Li H, Chang H, Fu H. Characterization of hot deformation behavior of Haynes230 by using processing maps. J Mater Process Technol. 2009;209(8):4020.CrossRef
[29]
Zurück zum Zitat Robi P, Dixit U. Application of neural networks in generating processing map for hot working. J Mater Process Technol. 2003;142(1):289.CrossRef Robi P, Dixit U. Application of neural networks in generating processing map for hot working. J Mater Process Technol. 2003;142(1):289.CrossRef
[30]
Zurück zum Zitat Ganesan G, Raghukandan K, Karthikeyan R, Pai B. Development of processing map for 6061 Al/15% SiCp through neural networks. J Mater Process Technol. 2005;166(3):423.CrossRef Ganesan G, Raghukandan K, Karthikeyan R, Pai B. Development of processing map for 6061 Al/15% SiCp through neural networks. J Mater Process Technol. 2005;166(3):423.CrossRef
[31]
Zurück zum Zitat Sun Y, Zeng WD, Zhao YQ, Zhang XM, Ma X, Han YF. Constructing processing map of Ti 40 alloy using artificial neural network. Trans Nonferrous Met Soc China. 2011;21(1):159.CrossRef Sun Y, Zeng WD, Zhao YQ, Zhang XM, Ma X, Han YF. Constructing processing map of Ti 40 alloy using artificial neural network. Trans Nonferrous Met Soc China. 2011;21(1):159.CrossRef
[32]
Zurück zum Zitat Sun Y, Zeng W, Ma X, Xu B, Liang X, Zhang J. A hybrid approach for processing parameters optimization of Ti–22Al–25Nb alloy during hot deformation using artificial neural network and genetic algorithm. Intermetallics. 2011;19(7):1014.CrossRef Sun Y, Zeng W, Ma X, Xu B, Liang X, Zhang J. A hybrid approach for processing parameters optimization of Ti–22Al–25Nb alloy during hot deformation using artificial neural network and genetic algorithm. Intermetallics. 2011;19(7):1014.CrossRef
[33]
Zurück zum Zitat Davis JR. ASM Specialty Handbook: Heat-Resistant Materials. Geauga County: ASM International; 1997. 251. Davis JR. ASM Specialty Handbook: Heat-Resistant Materials. Geauga County: ASM International; 1997. 251.
[34]
Zurück zum Zitat Chamanfar A, Jahazi M, Gholipour J, Wanjara P, Yue S. Evolution of flow stress and microstructure during isothermal compression of Waspaloy. Mater Sci Eng A. 2014;615:497.CrossRef Chamanfar A, Jahazi M, Gholipour J, Wanjara P, Yue S. Evolution of flow stress and microstructure during isothermal compression of Waspaloy. Mater Sci Eng A. 2014;615:497.CrossRef
[35]
Zurück zum Zitat Jahangiri M, Arabi H, Boutorabi S. High-temperature compression behavior of cast and homogenized IN939 superalloy. Metall Mater Trans A. 2013;44(4):1827.CrossRef Jahangiri M, Arabi H, Boutorabi S. High-temperature compression behavior of cast and homogenized IN939 superalloy. Metall Mater Trans A. 2013;44(4):1827.CrossRef
[36]
Zurück zum Zitat Sani SA, Ebrahimi G, Rashid AK. Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61 + Sr magnesium alloys. J Magnes Alloys. 2016;4(2):104.CrossRef Sani SA, Ebrahimi G, Rashid AK. Hot deformation behavior and dynamic recrystallization kinetics of AZ61 and AZ61 + Sr magnesium alloys. J Magnes Alloys. 2016;4(2):104.CrossRef
[37]
Zurück zum Zitat Cabrera J, Jonas J, Prado J. Flow behaviour of medium carbon microalloyed steel under hot working conditions. Mater Sci Technol. 1996;12(7):579.CrossRef Cabrera J, Jonas J, Prado J. Flow behaviour of medium carbon microalloyed steel under hot working conditions. Mater Sci Technol. 1996;12(7):579.CrossRef
[38]
Zurück zum Zitat Medeiros S, Prasad Y, Frazier WG, Srinivasan R. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Mater Sci Eng A. 2000;293(1):198.CrossRef Medeiros S, Prasad Y, Frazier WG, Srinivasan R. Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Mater Sci Eng A. 2000;293(1):198.CrossRef
[39]
Zurück zum Zitat Monajati H, Taheri A, Jahazi M, Yue S. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy. Metall Mater Trans A. 2005;36(4):895.CrossRef Monajati H, Taheri A, Jahazi M, Yue S. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy. Metall Mater Trans A. 2005;36(4):895.CrossRef
[40]
Zurück zum Zitat Chen TF, Tiwari GP, Iijima Y, Yamauchi K. Volume and grain boundary diffusion of chromium in Ni-base Ni–Cr–Fe alloys. Mater Trans. 2003;44(1):40.CrossRef Chen TF, Tiwari GP, Iijima Y, Yamauchi K. Volume and grain boundary diffusion of chromium in Ni-base Ni–Cr–Fe alloys. Mater Trans. 2003;44(1):40.CrossRef
[41]
Zurück zum Zitat Guo Q, Li D, Guo S. Microstructural models of dynamic recrystallization in hot-deformed Inconel 625 superalloy. Mater Manuf Process. 2012;27(9):990.CrossRef Guo Q, Li D, Guo S. Microstructural models of dynamic recrystallization in hot-deformed Inconel 625 superalloy. Mater Manuf Process. 2012;27(9):990.CrossRef
[42]
Zurück zum Zitat Wang Y, Shao W, Zhen L, Zhang B. Hot deformation behavior of delta-processed superalloy 718. Mater Sci Eng A. 2011;528(7):3218.CrossRef Wang Y, Shao W, Zhen L, Zhang B. Hot deformation behavior of delta-processed superalloy 718. Mater Sci Eng A. 2011;528(7):3218.CrossRef
[43]
Zurück zum Zitat Ning Y, Yao Z, Liang X, Liu Y. Flow behavior and constitutive model for Ni–20.0Cr–2.5Ti–1.5Nb–1.0Al superalloy compressed below γ′-transus temperature. Mater Sci Eng A. 2012;551:7.CrossRef Ning Y, Yao Z, Liang X, Liu Y. Flow behavior and constitutive model for Ni–20.0Cr–2.5Ti–1.5Nb–1.0Al superalloy compressed below γ′-transus temperature. Mater Sci Eng A. 2012;551:7.CrossRef
[44]
Zurück zum Zitat Srinivasan N, Prasad Y, Rao PR. Hot deformation behaviour of Mg–3Al alloy—a study using processing map. Mater Sci Eng A. 2008;476(1):146.CrossRef Srinivasan N, Prasad Y, Rao PR. Hot deformation behaviour of Mg–3Al alloy—a study using processing map. Mater Sci Eng A. 2008;476(1):146.CrossRef
[45]
Zurück zum Zitat Prasad Y, Rao K, Sasidhar S. Hot Working Guide: A Compendium of Processing Maps. Geauga County: ASM international; 2015. 14. Prasad Y, Rao K, Sasidhar S. Hot Working Guide: A Compendium of Processing Maps. Geauga County: ASM international; 2015. 14.
[46]
Zurück zum Zitat Momeni A, Abbasi S, Morakabati M, Badri H, Wang X. Dynamic recrystallization behavior and constitutive analysis of Incoloy 901 under hot working condition. Mater Sci Eng A. 2014;615:51.CrossRef Momeni A, Abbasi S, Morakabati M, Badri H, Wang X. Dynamic recrystallization behavior and constitutive analysis of Incoloy 901 under hot working condition. Mater Sci Eng A. 2014;615:51.CrossRef
[47]
Zurück zum Zitat Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. London: Elsevier; 2004. 417. Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. London: Elsevier; 2004. 417.
Metadaten
Titel
Development of processing map for InX-750 superalloy using hyperbolic sinus equation and ANN model
verfasst von
Saeed Aliakbari Sani
Ali Khorram
Abed Jaffari
Golamreza Ebrahimi
Publikationsdatum
03.05.2018
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 12/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1043-9

Weitere Artikel der Ausgabe 12/2021

Rare Metals 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.