Skip to main content
Erschienen in: Microsystem Technologies 10/2017

15.03.2017 | Technical Paper

Dielectrophoretic effect on droplet dynamic behaviors in microchannels

verfasst von: Y. Yan, D. Guo, S. Z. Wen

Erschienen in: Microsystem Technologies | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dielectrophoresis is of particular interest in droplet manipulation because of its ability to manipulate droplets based on their unique dielectric properties. With the help of different kinds of electrodes, the droplet dynamic behaviors can be manipulated to complete various tasks. In this work, both the experimental and numerical simulation methods are applied to find out a way to slow down the velocity of the droplets which is very helpful for droplets detection. For the experimental part, the microchannels are embedded with various kinds of electrodes near their microchannel walls instead of being arranged in the microchannel, and the direct current voltages are applied to the electrodes to generate a prescribed electric field intensity gradient in the longitudinal direction. A more accurate simulation model is made to analyze the mechanisms of the dielectric effect on the droplet dynamic behaviors in detail. The dynamic behaviors and dielectric characteristics of the microdroplets are investigated by studying the moving velocity, the deformation, the dielectrophoretic force and distributions of the electric field intensity. According to the results presented herein, both the dielectrophoretic force and interfacial tension have significant effects on the droplet dynamic behaviors. The method proposed in this work can manipulate the droplet velocity efficiently, and the velocity of the droplets can be decreased to one-fifth of the initial velocity. Therefore, it is important to focus on this method to make a contribution to droplet non-damage detection in biological and chemical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahn K, Kerbage C, Hunt TP et al (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):24104CrossRef Ahn K, Kerbage C, Hunt TP et al (2006) Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl Phys Lett 88(2):24104CrossRef
Zurück zum Zitat Andrew C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4(4):299–309CrossRef Andrew C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4(4):299–309CrossRef
Zurück zum Zitat Aubry N, Singh P (2006) Control of electrostatic particle-particle interactions in dielectrophoresis. Euro Phys Lett 74(4):623–629CrossRef Aubry N, Singh P (2006) Control of electrostatic particle-particle interactions in dielectrophoresis. Euro Phys Lett 74(4):623–629CrossRef
Zurück zum Zitat Bakhtina NA, Korvink JG (2014) Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv 4(9):4691–4709CrossRef Bakhtina NA, Korvink JG (2014) Microfluidic laboratories for C. elegans enhance fundamental studies in biology. RSC Adv 4(9):4691–4709CrossRef
Zurück zum Zitat Baret JC, Miller OJ, Taly V et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858CrossRef Baret JC, Miller OJ, Taly V et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858CrossRef
Zurück zum Zitat Collier CM, Hill KA, Holzman JF (2013) A dielectrophoresis microjet for on-chip technologies. RSC Adv 3(45):23309–23316CrossRef Collier CM, Hill KA, Holzman JF (2013) A dielectrophoresis microjet for on-chip technologies. RSC Adv 3(45):23309–23316CrossRef
Zurück zum Zitat Daunay B, Lambert P, Jalabert L, Kumemura M, Renaudot R, Agache V, Fujita H (2012) Effect of substrate wettability in liquid dielectrophoresis (LDEP) based droplet generation: theoretical analysis and experimental confirmation. Lab Chip 12(2):361–368CrossRef Daunay B, Lambert P, Jalabert L, Kumemura M, Renaudot R, Agache V, Fujita H (2012) Effect of substrate wettability in liquid dielectrophoresis (LDEP) based droplet generation: theoretical analysis and experimental confirmation. Lab Chip 12(2):361–368CrossRef
Zurück zum Zitat Docoslis A, Kalogerakis N, Behie LA (1999) Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells. Cytotechnology 30(1–3):133–142CrossRef Docoslis A, Kalogerakis N, Behie LA (1999) Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells. Cytotechnology 30(1–3):133–142CrossRef
Zurück zum Zitat Fidalgo LM, Abell C, Huck W (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7(8):984–986CrossRef Fidalgo LM, Abell C, Huck W (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7(8):984–986CrossRef
Zurück zum Zitat Fuhr G, Hagedorn R, Muller T (1991) Asynchronous traveling-wave induced linear motion of living cells. Stud Biophys 140(2):79–102 Fuhr G, Hagedorn R, Muller T (1991) Asynchronous traveling-wave induced linear motion of living cells. Stud Biophys 140(2):79–102
Zurück zum Zitat Gascoyne PR, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4(4):299–309CrossRef Gascoyne PR, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4(4):299–309CrossRef
Zurück zum Zitat Gupta R, Baldock SJ, Carreras P, Fielden PR, Goddard NJ, Mohr S, Razavi BS, Treves Brown BJ (2011) A microfluidic device for self-synchronised production of droplets. Lab Chip 11(23):4052–4056CrossRef Gupta R, Baldock SJ, Carreras P, Fielden PR, Goddard NJ, Mohr S, Razavi BS, Treves Brown BJ (2011) A microfluidic device for self-synchronised production of droplets. Lab Chip 11(23):4052–4056CrossRef
Zurück zum Zitat Ikeda I, Monjushiro H, Watarai H (2005) Measurement of dielectrophoretic mobility of single micro-particles in a flow channel. Analyst 130:1340–1342CrossRef Ikeda I, Monjushiro H, Watarai H (2005) Measurement of dielectrophoretic mobility of single micro-particles in a flow channel. Analyst 130:1340–1342CrossRef
Zurück zum Zitat Im DJ, Noh J, Moon D, Kang IS (2011) Electrophoresis of a charged droplet in a dielectric liquid for droplet actuation. Anal Chem 83(13):5168–5174CrossRef Im DJ, Noh J, Moon D, Kang IS (2011) Electrophoresis of a charged droplet in a dielectric liquid for droplet actuation. Anal Chem 83(13):5168–5174CrossRef
Zurück zum Zitat Jones TB, Jones TB (2005) Electromechanics of particles. Cambridge University Press, Cambridge Jones TB, Jones TB (2005) Electromechanics of particles. Cambridge University Press, Cambridge
Zurück zum Zitat Jose BM, Cubaud T (2012) Droplet arrangement and coalescence in diverging/converging microchannels. Microfluid Nanofluid 12(5):687–696CrossRef Jose BM, Cubaud T (2012) Droplet arrangement and coalescence in diverging/converging microchannels. Microfluid Nanofluid 12(5):687–696CrossRef
Zurück zum Zitat Kadaksham A, Singh TJ, Aubry N (2004) Dynamics of electrorheological suspensions subjected to spatially nonuniform electric fields. J Fluid Eng 126(2):170–179CrossRef Kadaksham A, Singh TJ, Aubry N (2004) Dynamics of electrorheological suspensions subjected to spatially nonuniform electric fields. J Fluid Eng 126(2):170–179CrossRef
Zurück zum Zitat Leclerc E, Kinoshita H, Fujii T, Barthès-Biesel D (2012) Transient flow of microcapsules through convergent–divergent microchannels. Microfluid Nanofluid 12(5):761–770CrossRef Leclerc E, Kinoshita H, Fujii T, Barthès-Biesel D (2012) Transient flow of microcapsules through convergent–divergent microchannels. Microfluid Nanofluid 12(5):761–770CrossRef
Zurück zum Zitat Lewin PL, Wang P, Swaffield DJ (2008) A model for bubble motion in non-uniform electric fields. 16th IEEE International Conference on Dielectric Liquids, ICDL 2008, Poitiers, France. IEEE 50–53 Lewin PL, Wang P, Swaffield DJ (2008) A model for bubble motion in non-uniform electric fields. 16th IEEE International Conference on Dielectric Liquids, ICDL 2008, Poitiers, France. IEEE 50–53
Zurück zum Zitat Liu D, Guo YC, Lin WY (2013) Simulations of mixing processes after coalescence of binary momentum-less droplets. Sci China Technol Sci 56(7):1607–1617CrossRef Liu D, Guo YC, Lin WY (2013) Simulations of mixing processes after coalescence of binary momentum-less droplets. Sci China Technol Sci 56(7):1607–1617CrossRef
Zurück zum Zitat Liu L, Xie C, Chen B et al (2016) A new method for the interaction between multiple DEP particles: iterative dipole moment method. Microsyst Technol 22(9):2223–2232CrossRef Liu L, Xie C, Chen B et al (2016) A new method for the interaction between multiple DEP particles: iterative dipole moment method. Microsyst Technol 22(9):2223–2232CrossRef
Zurück zum Zitat Luo J, Guo D, Luo JB (2011a) Numerical simulation of bubble dynamics in a micro-channel under a nonuniform electric field. Electrophoresis 32(3–4):414–422 Luo J, Guo D, Luo JB (2011a) Numerical simulation of bubble dynamics in a micro-channel under a nonuniform electric field. Electrophoresis 32(3–4):414–422
Zurück zum Zitat Luo J, Qi LH, Zhou JM, Xiao Y, Yang F (2011b) Study on stable delivery of charged uniform droplets for freeform fabrication of metal parts. Sci China Technol Sci 54(7):1833–1840CrossRef Luo J, Qi LH, Zhou JM, Xiao Y, Yang F (2011b) Study on stable delivery of charged uniform droplets for freeform fabrication of metal parts. Sci China Technol Sci 54(7):1833–1840CrossRef
Zurück zum Zitat Mukhopadhyay R (2006) Diving into droplets. Anal Chem 78(5):1401–1404CrossRef Mukhopadhyay R (2006) Diving into droplets. Anal Chem 78(5):1401–1404CrossRef
Zurück zum Zitat Pit AM, Duits MHG, Mugele F (2015a) Droplet manipulations in two phase flow microfluidics. Micromachines 6(11):1768–1793CrossRef Pit AM, Duits MHG, Mugele F (2015a) Droplet manipulations in two phase flow microfluidics. Micromachines 6(11):1768–1793CrossRef
Zurück zum Zitat Pit AM, de Ruiter R, Kumar A et al (2015b) High-throughput sorting of drops in microfluidic chips using electric capacitance. Biomicrofluidics 9(4):044116CrossRef Pit AM, de Ruiter R, Kumar A et al (2015b) High-throughput sorting of drops in microfluidic chips using electric capacitance. Biomicrofluidics 9(4):044116CrossRef
Zurück zum Zitat Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19):3710–3718CrossRef Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19):3710–3718CrossRef
Zurück zum Zitat Shia-Yen T, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220CrossRef Shia-Yen T, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220CrossRef
Zurück zum Zitat Singh P, Aubry N (2005) Trapping force on a finite-sized particle in a dielectrophoretic cage. Phys Rev E 72(1):016602CrossRef Singh P, Aubry N (2005) Trapping force on a finite-sized particle in a dielectrophoretic cage. Phys Rev E 72(1):016602CrossRef
Zurück zum Zitat Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angewandte Chem Int Ed 42(7):768–772CrossRef Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angewandte Chem Int Ed 42(7):768–772CrossRef
Zurück zum Zitat Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47(6):1250–1254CrossRef Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47(6):1250–1254CrossRef
Zurück zum Zitat Tarn MD, Peyman SA, Pamme N (2013) Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Adv 3(20):7209–7214CrossRef Tarn MD, Peyman SA, Pamme N (2013) Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Adv 3(20):7209–7214CrossRef
Zurück zum Zitat Washizu M, Jones TB (1994) Multipolar dielectrophoretic force calculation. Electrostatics 33:187–198CrossRef Washizu M, Jones TB (1994) Multipolar dielectrophoretic force calculation. Electrostatics 33:187–198CrossRef
Zurück zum Zitat Watarai H, Sakamoto T, Tsukahara S (1997) In situ measurement of dielectrophoretic mobility of single polystyrene microparticles. Langmuir 13:2417–2420CrossRef Watarai H, Sakamoto T, Tsukahara S (1997) In situ measurement of dielectrophoretic mobility of single polystyrene microparticles. Langmuir 13:2417–2420CrossRef
Zurück zum Zitat Wootton R, Demello AJ (2012) Microfluidics: analog-to-digital drug screening. Nature 483(7387):43–44CrossRef Wootton R, Demello AJ (2012) Microfluidics: analog-to-digital drug screening. Nature 483(7387):43–44CrossRef
Zurück zum Zitat Zagnoni M, Cooper JM (2009) On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Lab Chip 9:2652–2658CrossRef Zagnoni M, Cooper JM (2009) On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size. Lab Chip 9:2652–2658CrossRef
Metadaten
Titel
Dielectrophoretic effect on droplet dynamic behaviors in microchannels
verfasst von
Y. Yan
D. Guo
S. Z. Wen
Publikationsdatum
15.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3362-4

Weitere Artikel der Ausgabe 10/2017

Microsystem Technologies 10/2017 Zur Ausgabe

Neuer Inhalt