Skip to main content
Erschienen in: Microsystem Technologies 8/2011

01.08.2011 | Technical Paper

Digitally-controlled array of solid-state microcoolers for use in surgery

verfasst von: J. P. Carmo, M. F. Silva, J. F. Ribeiro, R. F. Wolffenbuttel, P. Alpuim, J. G. Rocha, L. M. Gonçalves, J. H. Correia

Erschienen in: Microsystem Technologies | Ausgabe 8/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an approach for generating a well-defined cooling pattern over an area of tissue. An array of solid-state microcoolers is used, which could be included in a probe that provides local cooling. This medical instrument can be used for removal of scar tissue in the eye or for the rapid stopping of bleeding due to micro-cuts, which makes it a useful tool to medical doctors and could make surgery more secure to the patient. The array of microcoolers is composed of 64 independent thermo-electric elements, each controlled using an integrated circuit designed in CMOS. The independent control allows the flexible programming of the surface temperature profile. This type of control is very suitable in case abrupt temperature steps should be avoided. Cooling by lateral heat flow was selected in order to minimize the influence of heat by dissipation from the electronic circuits. Moreover, a thermo-electric component with lateral heat allows fabrication of the cooling elements using planar thin-film technology, lithography and wet etching on top of the silicon wafer. This approach is potentially CMOS compatible, which would allow for the fabrication of the thermo-electric elements on top of a pre-fabricated CMOS wafer as a post-process step. Each pixel is composed of thin-films of n-type bismuth telluride, Bi2Te3 and p-type antimony telluride, Sb2Te3, which are electrically interconnected as thermocouple. These materials have excellent thermoelectric characteristics, such as thermoelectric figures-of-merit, ZT, at room temperatures of 0.84 and 0.5, respectively, which is equivalent to power-factors, PF, of 3.62 × 10−3 W K−1 m−2 and 2.81 × 10−3 W K−1 m−2, respectively. The theoretical study presented here demonstrates a cooling capability of 15°C at room temperature (300 K ≈ 27°C). This cooling performance is sufficient to maintain a local tissue temperature at 25°C, which makes it suitable for the intended application. A first prototype was successfully fabricated to demonstrate the concept.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Altshuler GB, Zenzie HH, Erofeev AV, Smirnov MZ, Anderson RR, Dietrickx C (1999) Contact cooling of the skin. Phys Med Biol 44:1003–1023CrossRef Altshuler GB, Zenzie HH, Erofeev AV, Smirnov MZ, Anderson RR, Dietrickx C (1999) Contact cooling of the skin. Phys Med Biol 44:1003–1023CrossRef
Zurück zum Zitat Anvari B, Milner TE, Tanenbaum BS, Kimel S, Svaasand LO, Nelson JS (1995) Selective cooling of biological tissues: application of thermally mediated therapeutic procedures. Phys Med Biol 40:241–252CrossRef Anvari B, Milner TE, Tanenbaum BS, Kimel S, Svaasand LO, Nelson JS (1995) Selective cooling of biological tissues: application of thermally mediated therapeutic procedures. Phys Med Biol 40:241–252CrossRef
Zurück zum Zitat Argonne National Laboratory (2006) Rapid cooling technology could aid surgery patitents, heart attack victims. The University of Chicago, Argonne National Laboratory, Public Note, p 1 Argonne National Laboratory (2006) Rapid cooling technology could aid surgery patitents, heart attack victims. The University of Chicago, Argonne National Laboratory, Public Note, p 1
Zurück zum Zitat Bell L (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRef Bell L (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRef
Zurück zum Zitat Birkholz U, Fetting R, Rosenzweig J (1987) Fast semiconductor thermoelectric devices”, Sens. Actuators A 12:179–184CrossRef Birkholz U, Fetting R, Rosenzweig J (1987) Fast semiconductor thermoelectric devices”, Sens. Actuators A 12:179–184CrossRef
Zurück zum Zitat Bourgault D, Garampon C, Caillault N, Carbone L, Aymami JA (2008) Thermoelectric properties of n type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films deposited by direct current magnetron sputtering. Thin Solid Films 516:8579–8583CrossRef Bourgault D, Garampon C, Caillault N, Carbone L, Aymami JA (2008) Thermoelectric properties of n type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films deposited by direct current magnetron sputtering. Thin Solid Films 516:8579–8583CrossRef
Zurück zum Zitat Cheung EH, Arcidi JM Jr, Jackson ER, Hatcher CR Jr, Guyton RA (1988) Intracavitary right heart cooling during coronary bypass surgery. Circulation 78:173–179 Cheung EH, Arcidi JM Jr, Jackson ER, Hatcher CR Jr, Guyton RA (1988) Intracavitary right heart cooling during coronary bypass surgery. Circulation 78:173–179
Zurück zum Zitat da Silva LW, Kaviany M (2004) Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport. Int J Heat Mass Transfer 47:2417–2435CrossRef da Silva LW, Kaviany M (2004) Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport. Int J Heat Mass Transfer 47:2417–2435CrossRef
Zurück zum Zitat da Silva LW, Kaviany M (2005) Fabrication and measured performance of a first-generation microthermoelectric cooler. J Microelectromech Syst 14:1110–1117CrossRef da Silva LW, Kaviany M (2005) Fabrication and measured performance of a first-generation microthermoelectric cooler. J Microelectromech Syst 14:1110–1117CrossRef
Zurück zum Zitat da Silva LW, Massoud K (2002) Miniaturized thermoelectric cooler. In: Proceedings of the IMECE’02, New Orleans, pp 154–161 da Silva LW, Massoud K (2002) Miniaturized thermoelectric cooler. In: Proceedings of the IMECE’02, New Orleans, pp 154–161
Zurück zum Zitat Davidson SRH, Sherar MD (2003) Theoretical modelling, experimental studies and clinical simulations of urethral cooling catheters for use during prostate thermal therapy. Phys Med Biol 48:729–744CrossRef Davidson SRH, Sherar MD (2003) Theoretical modelling, experimental studies and clinical simulations of urethral cooling catheters for use during prostate thermal therapy. Phys Med Biol 48:729–744CrossRef
Zurück zum Zitat DiSalvo FJ (2009) Thermoelectric cooling and power generation. Science 285:703–706CrossRef DiSalvo FJ (2009) Thermoelectric cooling and power generation. Science 285:703–706CrossRef
Zurück zum Zitat Giani A, Boulouz A, Delannoy FP, Foucaran A, Charles E, Boyer A (1999) Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD. Materials Sci Eng B 64:19–24CrossRef Giani A, Boulouz A, Delannoy FP, Foucaran A, Charles E, Boyer A (1999) Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD. Materials Sci Eng B 64:19–24CrossRef
Zurück zum Zitat Gonçalves LM, Couto C, Alpuim P, Correia JH (2006a) Optimization of thermoelectric thin-films deposited by coevaporation on plastic substrates. In: Proceedings of the ECT’06, Cardiff Gonçalves LM, Couto C, Alpuim P, Correia JH (2006a) Optimization of thermoelectric thin-films deposited by coevaporation on plastic substrates. In: Proceedings of the ECT’06, Cardiff
Zurück zum Zitat Gonçalves LM, Couto C, Alpuim P, Correia JH (2006b) Flexible thin-film planar Peltier microcooler. In: Proceedings of the ICT’06, Vienna Gonçalves LM, Couto C, Alpuim P, Correia JH (2006b) Flexible thin-film planar Peltier microcooler. In: Proceedings of the ICT’06, Vienna
Zurück zum Zitat Haugk M, Sterz F, Grassberger M, Uray T, Kliegel A, Janata A, Richeling N, Herkner N, Laggner AN (2007) Feasibility and efficacy of a new non-invasive surface cooling device in post-resuscitation intensive care medicine. Resuscitation 75:76–81CrossRef Haugk M, Sterz F, Grassberger M, Uray T, Kliegel A, Janata A, Richeling N, Herkner N, Laggner AN (2007) Feasibility and efficacy of a new non-invasive surface cooling device in post-resuscitation intensive care medicine. Resuscitation 75:76–81CrossRef
Zurück zum Zitat Helin Z, Rowe DM, Williams SGK (2002) Peltier effect in a co-evaporated Sb2Te3(P) Bi2Te3(N) thin films thermocouple. Thin Solid Films 408:270–274CrossRef Helin Z, Rowe DM, Williams SGK (2002) Peltier effect in a co-evaporated Sb2Te3(P) Bi2Te3(N) thin films thermocouple. Thin Solid Films 408:270–274CrossRef
Zurück zum Zitat Huang H, Luan W, Tu S (2009) Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering. Thin Solid Films 517:3731–3734CrossRef Huang H, Luan W, Tu S (2009) Influence of annealing on thermoelectric properties of bismuth telluride films grown via radio frequency magnetron sputtering. Thin Solid Films 517:3731–3734CrossRef
Zurück zum Zitat Larin KV, Larina IV, Motamedi M, Esenaliev RO (2002) Optoacoustic laser monitoring of cooling and freezing of tissues. Quantum Electr 32:953–958CrossRef Larin KV, Larina IV, Motamedi M, Esenaliev RO (2002) Optoacoustic laser monitoring of cooling and freezing of tissues. Quantum Electr 32:953–958CrossRef
Zurück zum Zitat Lewis G, Mackenzie A (1971) Cooling during major vascular surgery. Br J Anaesth 44:859–864CrossRef Lewis G, Mackenzie A (1971) Cooling during major vascular surgery. Br J Anaesth 44:859–864CrossRef
Zurück zum Zitat Lia ZM, Hao Y, Zhanga JC, Yanga LA, Xua SR, Changa YM, Bia ZW, Zhoua XW, Nia JY (2009) Thermal transportation simulation of a susceptor structure with ring groove for the vertical MOCVD reactor. J Crystal Growth 311:4679–4684CrossRef Lia ZM, Hao Y, Zhanga JC, Yanga LA, Xua SR, Changa YM, Bia ZW, Zhoua XW, Nia JY (2009) Thermal transportation simulation of a susceptor structure with ring groove for the vertical MOCVD reactor. J Crystal Growth 311:4679–4684CrossRef
Zurück zum Zitat Lim S, Lim M, Oh T (2009) Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications. Thin Solid Films 517:4199–4203CrossRef Lim S, Lim M, Oh T (2009) Thermoelectric properties of the bismuth-antimony-telluride and the antimony-telluride films processed by electrodeposition for micro-device applications. Thin Solid Films 517:4199–4203CrossRef
Zurück zum Zitat Majumdar A (2004) Thermoelectricity in semiconductor nanostructures. Science 303:777–778CrossRef Majumdar A (2004) Thermoelectricity in semiconductor nanostructures. Science 303:777–778CrossRef
Zurück zum Zitat Min G, Rowe DM (1999) Cooling performance of integrated thermoelectric microcooler. Solid-State Electronics 43:923–929CrossRef Min G, Rowe DM (1999) Cooling performance of integrated thermoelectric microcooler. Solid-State Electronics 43:923–929CrossRef
Zurück zum Zitat Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:1325–1328CrossRef Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: a new class of thermoelectric materials. Science 272:1325–1328CrossRef
Zurück zum Zitat Takachiri M, Miyazaki K, Tsukamoto H (2008) Structural and thermoelectric properties of fine grained Bi0.4Te3.0Sb1.6 thin-films preferred orientation deposited by flash evaporation method. Thin Solid Films 516:6336–6343CrossRef Takachiri M, Miyazaki K, Tsukamoto H (2008) Structural and thermoelectric properties of fine grained Bi0.4Te3.0Sb1.6 thin-films preferred orientation deposited by flash evaporation method. Thin Solid Films 516:6336–6343CrossRef
Zurück zum Zitat Tang K, Man KF, Chen G, Kwon S (2001) An optional fuzzy PID controller. IEEE Trans Ind Electron 48:757–761CrossRef Tang K, Man KF, Chen G, Kwon S (2001) An optional fuzzy PID controller. IEEE Trans Ind Electron 48:757–761CrossRef
Zurück zum Zitat Treasure T (1988) Hypothermic protection (26 degrees-25 degrees C) without perfusion cooling for surgery of congenital cardiac defects using prolonged occlusion. Thorax Int J Respir Med 43:945CrossRef Treasure T (1988) Hypothermic protection (26 degrees-25 degrees C) without perfusion cooling for surgery of congenital cardiac defects using prolonged occlusion. Thorax Int J Respir Med 43:945CrossRef
Zurück zum Zitat Venkatasubramanian R, Silvola E, Colpits T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602CrossRef Venkatasubramanian R, Silvola E, Colpits T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602CrossRef
Zurück zum Zitat Völklein F, Min G, Rowe DM (1999) Modeling of a microelectromechanical thermoelectric cooler. Sens Actuators A 75:95–101CrossRef Völklein F, Min G, Rowe DM (1999) Modeling of a microelectromechanical thermoelectric cooler. Sens Actuators A 75:95–101CrossRef
Zurück zum Zitat Wijngaards DDL, Wolffenbuttel RF (2005) Thermo-electric characterization of APCVD PolySi0.7Ge0.3 for IC-compatible fabrication of integrated lateral Peltier elements. IEEE Trans Electr Dev 52:1014–1025CrossRef Wijngaards DDL, Wolffenbuttel RF (2005) Thermo-electric characterization of APCVD PolySi0.7Ge0.3 for IC-compatible fabrication of integrated lateral Peltier elements. IEEE Trans Electr Dev 52:1014–1025CrossRef
Metadaten
Titel
Digitally-controlled array of solid-state microcoolers for use in surgery
verfasst von
J. P. Carmo
M. F. Silva
J. F. Ribeiro
R. F. Wolffenbuttel
P. Alpuim
J. G. Rocha
L. M. Gonçalves
J. H. Correia
Publikationsdatum
01.08.2011
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 8/2011
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-011-1314-y

Weitere Artikel der Ausgabe 8/2011

Microsystem Technologies 8/2011 Zur Ausgabe

Neuer Inhalt