Skip to main content
Erschienen in: Journal of Materials Science 9/2019

24.01.2019 | Electronic materials

Dissolution of antiphase domain boundaries in GaAs on Si(001) via post-growth annealing

verfasst von: C. S. C. Barrett, A. Atassi, E. L. Kennon, Z. Weinrich, K. Haynes, X.-Y. Bao, P. Martin, K. S. Jones

Erschienen in: Journal of Materials Science | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

GaAs-on-Si epitaxial crystal quality has historically been limited by a number of growth-related defects. In particular, antiphase domain boundaries (APBs) can nucleate at the GaAs/Si interface and propagate throughout the entire GaAs layer. Still little is known about how thermal processing can affect the APB density in GaAs. In this study, GaAs was grown on nominally on-axis Si(001) by metal–organic chemical vapor deposition. The effect of ex situ post-growth annealing was evaluated for a temperature range of 550–700 °C. It was found that upon annealing the APB density was decreased significantly. The rate of APB density decrease was found to be temperature dependent. At annealing temperatures of 650 °C and above, the APB density was reduced from 0.10 μm−1 to approximately 0.010 μm−1 in less than 10 min. The activation energy for APB dissolution was determined to be 3.8 eV. The mechanism of APB dissolution is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits 9:256–268CrossRef Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits 9:256–268CrossRef
2.
Zurück zum Zitat Cipro R, Baron T, Martin M, Moeyaert J, David S, Gorbenko V, Bassani F, Bogumilowicz Y, Barnes JP, Rochat N, Loup V, Vizioz C, Allouti N, Chauvin N, Bao XY, Ye Z, Pin JB, Sanchez E (2014) Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices. Appl Phys Lett 104:262103-1–262103-15CrossRef Cipro R, Baron T, Martin M, Moeyaert J, David S, Gorbenko V, Bassani F, Bogumilowicz Y, Barnes JP, Rochat N, Loup V, Vizioz C, Allouti N, Chauvin N, Bao XY, Ye Z, Pin JB, Sanchez E (2014) Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices. Appl Phys Lett 104:262103-1–262103-15CrossRef
3.
Zurück zum Zitat Wood B, Hatem C, Bao X, Zhou H, Zhang M, Jin M, Chen H, Cai MP, Munnangi SS, Okazaki M, Sanchez E, Brand A (2015) International symposium on VLSI technology, systems and application, pp 1–2 Wood B, Hatem C, Bao X, Zhou H, Zhang M, Jin M, Chen H, Cai MP, Munnangi SS, Okazaki M, Sanchez E, Brand A (2015) International symposium on VLSI technology, systems and application, pp 1–2
4.
Zurück zum Zitat Fang SF, Adomi K, Iyer S, Morkoç H, Zabel H, Choi C, Otsuka N (1990) Gallium arsenide and other compound semiconductors on silicon. J Appl Phys 68:R31–R58CrossRef Fang SF, Adomi K, Iyer S, Morkoç H, Zabel H, Choi C, Otsuka N (1990) Gallium arsenide and other compound semiconductors on silicon. J Appl Phys 68:R31–R58CrossRef
5.
Zurück zum Zitat Kawabe M, Ueda T (1987) Self-annihilation of antiphase boundary in GaAs on Si(100) grown by molecular beam epitaxy. Jpn J Appl Phys 26:L944–L946CrossRef Kawabe M, Ueda T (1987) Self-annihilation of antiphase boundary in GaAs on Si(100) grown by molecular beam epitaxy. Jpn J Appl Phys 26:L944–L946CrossRef
6.
Zurück zum Zitat Grundmann M, Krost A, Bimberg D (1998) Observation of the first-order phase transition from single to double stepped Si(001) in metalorganic chemical vapor deposition of InP on Si. J Vac Sci Technol B Microelectron Nanometer Struct 9:2158–2166CrossRef Grundmann M, Krost A, Bimberg D (1998) Observation of the first-order phase transition from single to double stepped Si(001) in metalorganic chemical vapor deposition of InP on Si. J Vac Sci Technol B Microelectron Nanometer Struct 9:2158–2166CrossRef
7.
Zurück zum Zitat Mori H, Tachikawa M, Sugo M, Itoh Y (1993) GaAs heteroepitaxy on an epitaxial Si surface with a low-temperature process. Appl Phys Lett 63:1963–1965CrossRef Mori H, Tachikawa M, Sugo M, Itoh Y (1993) GaAs heteroepitaxy on an epitaxial Si surface with a low-temperature process. Appl Phys Lett 63:1963–1965CrossRef
8.
Zurück zum Zitat Bogumilowicz Y, Hartmann JM, Cipro R, Alcotte R, Martin M, Bassani F, Moeyaert J, Baron T, Pin JB, Bao X, Ye Z, Sanchez E (2015) Anti-phase boundaries–Free GaAs epilayers on “quasi-nominal” Ge-buffered silicon substrates. Appl Phys Lett 107:212105-1–212105-4CrossRef Bogumilowicz Y, Hartmann JM, Cipro R, Alcotte R, Martin M, Bassani F, Moeyaert J, Baron T, Pin JB, Bao X, Ye Z, Sanchez E (2015) Anti-phase boundaries–Free GaAs epilayers on “quasi-nominal” Ge-buffered silicon substrates. Appl Phys Lett 107:212105-1–212105-4CrossRef
9.
Zurück zum Zitat Sakamoto T, Hashiguchi G (1986) Si(001)-2 × 1 single-domain structure obtained by high temperature annealing. Jpn J Appl Phys 25:L78–L80CrossRef Sakamoto T, Hashiguchi G (1986) Si(001)-2 × 1 single-domain structure obtained by high temperature annealing. Jpn J Appl Phys 25:L78–L80CrossRef
10.
Zurück zum Zitat Aspnes DE, Ihm J (1986) Biatomic steps on (001) silicon surfaces. Phys Rev Lett 57:3054–3057CrossRef Aspnes DE, Ihm J (1986) Biatomic steps on (001) silicon surfaces. Phys Rev Lett 57:3054–3057CrossRef
11.
Zurück zum Zitat Akiyama M, Kawarada Y, Ueda T, Nishi S, Kaminishi K (1986) Growth of high quality GaAs layers on Si substrates by MOCVD. J Cryst Growth 77:490–497CrossRef Akiyama M, Kawarada Y, Ueda T, Nishi S, Kaminishi K (1986) Growth of high quality GaAs layers on Si substrates by MOCVD. J Cryst Growth 77:490–497CrossRef
12.
Zurück zum Zitat Ueda O, Soga T, Jimbo T, Umeno M (1989) Direct evidence for self-annihilation of antiphase domains in GaAs/Si heterostructures. Appl Phys Lett 55:445CrossRef Ueda O, Soga T, Jimbo T, Umeno M (1989) Direct evidence for self-annihilation of antiphase domains in GaAs/Si heterostructures. Appl Phys Lett 55:445CrossRef
13.
Zurück zum Zitat Georgakilas A, Stoemenos J, Tsagaraki K, Komninou P, Flevaris N, Panayotatos P, Christou A (1993) Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy. J Mater Res 8:1908–1921CrossRef Georgakilas A, Stoemenos J, Tsagaraki K, Komninou P, Flevaris N, Panayotatos P, Christou A (1993) Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy. J Mater Res 8:1908–1921CrossRef
14.
Zurück zum Zitat Alberts V, Neethling JH, Leitch AW (1994) Correlation between structural, optical, and electrical properties of GaAs grown on (001) Si. J Appl Phys 75:7258–7265CrossRef Alberts V, Neethling JH, Leitch AW (1994) Correlation between structural, optical, and electrical properties of GaAs grown on (001) Si. J Appl Phys 75:7258–7265CrossRef
15.
Zurück zum Zitat Yang VK, Groenert M, Leitz CW, Pitera AJ, Currie MT, Fitzgerald EA (2003) Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys 93:3859–3865CrossRef Yang VK, Groenert M, Leitz CW, Pitera AJ, Currie MT, Fitzgerald EA (2003) Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys 93:3859–3865CrossRef
16.
Zurück zum Zitat Choi C, Otsuka N, Munns G, Houdre R, Morkoç H, Zhang SL, Levi D, Klein MV (1987) Effect of in situ and ex situ annealing on dislocations in GaAs on Si substrates. Appl Phys Lett 50:992–994CrossRef Choi C, Otsuka N, Munns G, Houdre R, Morkoç H, Zhang SL, Levi D, Klein MV (1987) Effect of in situ and ex situ annealing on dislocations in GaAs on Si substrates. Appl Phys Lett 50:992–994CrossRef
17.
Zurück zum Zitat Yamaguchi M, Tachikawa M, Itoh Y, Sugo M, Kondo S (1990) Thermal annealing effects of defect reduction in GaAs on Si substrates. J Appl Phys 68:4518–4522CrossRef Yamaguchi M, Tachikawa M, Itoh Y, Sugo M, Kondo S (1990) Thermal annealing effects of defect reduction in GaAs on Si substrates. J Appl Phys 68:4518–4522CrossRef
18.
Zurück zum Zitat Ayers JE, Schowalter LJ, Ghandhi SK (1992) Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy. J Cryst Growth 125:329–335CrossRef Ayers JE, Schowalter LJ, Ghandhi SK (1992) Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy. J Cryst Growth 125:329–335CrossRef
19.
Zurück zum Zitat Chu SNG, Nakahara S, Pearton SJ, Boone T, Vernon SM (1988) Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon-on-insulator. J Appl Phys 64:2981–2989CrossRef Chu SNG, Nakahara S, Pearton SJ, Boone T, Vernon SM (1988) Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon-on-insulator. J Appl Phys 64:2981–2989CrossRef
20.
Zurück zum Zitat Létoublon A, Guo W, Cornet C, Boulle A, Véron M, Bondi A, Durand O, Rohel T, Dehaese O, Chevalier N, Bertru N, Le Corre A (2011) X-ray study of antiphase domains and their stability in MBE grown GaP on Si. J Cryst Growth 323:409–412CrossRef Létoublon A, Guo W, Cornet C, Boulle A, Véron M, Bondi A, Durand O, Rohel T, Dehaese O, Chevalier N, Bertru N, Le Corre A (2011) X-ray study of antiphase domains and their stability in MBE grown GaP on Si. J Cryst Growth 323:409–412CrossRef
21.
Zurück zum Zitat Guo W, Bondi A, Cornet C, Létoublon A, Durand O, Rohel T, Boyer-Richard S, Bertru N, Loualiche S, Even J, Le Corre A (2012) Thermodynamic evolution of antiphase boundaries in GaP/Si epilayers evidenced by advanced X-ray scattering. Appl Surf Sci 258:2808–2815CrossRef Guo W, Bondi A, Cornet C, Létoublon A, Durand O, Rohel T, Boyer-Richard S, Bertru N, Loualiche S, Even J, Le Corre A (2012) Thermodynamic evolution of antiphase boundaries in GaP/Si epilayers evidenced by advanced X-ray scattering. Appl Surf Sci 258:2808–2815CrossRef
22.
Zurück zum Zitat Yang R, Su N, Bonfanti P, Nie J, Ning J, Li TT (2010) Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules. J Vac Sci Technol B 28:56–61CrossRef Yang R, Su N, Bonfanti P, Nie J, Ning J, Li TT (2010) Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules. J Vac Sci Technol B 28:56–61CrossRef
24.
Zurück zum Zitat Biegelsen DK, Ponce FA, Smith AJ, Tramontana JC (1987) Initial stages of epitaxial growth of GaAs on (100) silicon. J Appl Phys 61:1856–1859CrossRef Biegelsen DK, Ponce FA, Smith AJ, Tramontana JC (1987) Initial stages of epitaxial growth of GaAs on (100) silicon. J Appl Phys 61:1856–1859CrossRef
25.
Zurück zum Zitat Barrett CSC, Martin TP, Bao X-Y, Kennon EL, Gutierrez L, Martin P, Sanchez E, Jones KS (2016) Effect of bulk growth temperature on antiphase domain boundary annihilation rate in MOCVD-grown GaAs on Si(001). J Cryst Growth 450:39–44CrossRef Barrett CSC, Martin TP, Bao X-Y, Kennon EL, Gutierrez L, Martin P, Sanchez E, Jones KS (2016) Effect of bulk growth temperature on antiphase domain boundary annihilation rate in MOCVD-grown GaAs on Si(001). J Cryst Growth 450:39–44CrossRef
26.
Zurück zum Zitat Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRef
28.
Zurück zum Zitat Cho N-H, Cooman BCD, Carter CB, Fletcher R, Wagner DK (1985) Antiphase boundaries in GaAs. Appl Phys Lett 47:879–881CrossRef Cho N-H, Cooman BCD, Carter CB, Fletcher R, Wagner DK (1985) Antiphase boundaries in GaAs. Appl Phys Lett 47:879–881CrossRef
29.
Zurück zum Zitat Cohen D, Carter CB (2002) Structure of the (110) antiphase boundary in gallium phosphide. J Microsc 208:84–99CrossRef Cohen D, Carter CB (2002) Structure of the (110) antiphase boundary in gallium phosphide. J Microsc 208:84–99CrossRef
30.
Zurück zum Zitat Rubel O, Baranovskii SD (2009) Formation energies of antiphase boundaries in GaAs and GaP: an ab initio study. Int J Mol Sci 10:5104–5114CrossRef Rubel O, Baranovskii SD (2009) Formation energies of antiphase boundaries in GaAs and GaP: an ab initio study. Int J Mol Sci 10:5104–5114CrossRef
31.
Zurück zum Zitat Volz K, Beyer A, Witte W, Ohlmann J, Németh I, Kunert B, Stolz W (2011) GaP-nucleation on exact Si(001) substrates for III/V device integration. J Cryst Growth 315:37–47CrossRef Volz K, Beyer A, Witte W, Ohlmann J, Németh I, Kunert B, Stolz W (2011) GaP-nucleation on exact Si(001) substrates for III/V device integration. J Cryst Growth 315:37–47CrossRef
32.
Zurück zum Zitat Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095CrossRef Allen SM, Cahn JW (1979) A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:1085–1095CrossRef
33.
Zurück zum Zitat Eerenstein W, Palstra TTM, Hibma T, Celotto S (2003) Diffusive motion of antiphase domain boundaries in Fe3O4 films. Phys Rev B 68:14428-1–14428-7CrossRef Eerenstein W, Palstra TTM, Hibma T, Celotto S (2003) Diffusive motion of antiphase domain boundaries in Fe3O4 films. Phys Rev B 68:14428-1–14428-7CrossRef
34.
Zurück zum Zitat Goapper S, Barbier L, Salanon B, Loiseau A, Torrelles X (1998) Observation of domain structure and coarsening at Cu-Pd alloy vicinal surfaces. Phys Rev B 57:12497–12500CrossRef Goapper S, Barbier L, Salanon B, Loiseau A, Torrelles X (1998) Observation of domain structure and coarsening at Cu-Pd alloy vicinal surfaces. Phys Rev B 57:12497–12500CrossRef
35.
Zurück zum Zitat Wager JF (1991) Energetics of self-diffusion in GaAs. J Appl Phys 69:3022–3031CrossRef Wager JF (1991) Energetics of self-diffusion in GaAs. J Appl Phys 69:3022–3031CrossRef
36.
Zurück zum Zitat Wang L, Hsu L, Haller EE, Erickson JW, Fischer A, Eberl K, Cardona M (1996) Ga self-diffusion in GaAs isotope heterostructures. Phys Rev Lett 76:2342–2345CrossRef Wang L, Hsu L, Haller EE, Erickson JW, Fischer A, Eberl K, Cardona M (1996) Ga self-diffusion in GaAs isotope heterostructures. Phys Rev Lett 76:2342–2345CrossRef
37.
Zurück zum Zitat Gösele UM, Tan TY, Schultz M, Egger U, Werner P, Scholz R, Breitenstein O (1997) Diffusion in GaAs and related compounds: recent developments. Defect Diffus Forum 143–147:1079–1094CrossRef Gösele UM, Tan TY, Schultz M, Egger U, Werner P, Scholz R, Breitenstein O (1997) Diffusion in GaAs and related compounds: recent developments. Defect Diffus Forum 143–147:1079–1094CrossRef
38.
Zurück zum Zitat Palfrey HD, Brown M, Willoughby AFW (1983) Self-diffusion in gallium arsenide. J Electron Mater 12:863–877CrossRef Palfrey HD, Brown M, Willoughby AFW (1983) Self-diffusion in gallium arsenide. J Electron Mater 12:863–877CrossRef
Metadaten
Titel
Dissolution of antiphase domain boundaries in GaAs on Si(001) via post-growth annealing
verfasst von
C. S. C. Barrett
A. Atassi
E. L. Kennon
Z. Weinrich
K. Haynes
X.-Y. Bao
P. Martin
K. S. Jones
Publikationsdatum
24.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 9/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03353-7

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.