Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2019

13.12.2018 | Research Paper

Distortion energy-based topology optimization design of hyperelastic materials

verfasst von: Hao Deng, Lin Cheng, Albert C. To

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Highly stretchable material is widely used in the engineering field ranging from soft robots to stretchable electronics. Some highly stretchable 3D-architected mechanical metamaterials have been developed recently. However, failure of material is still the most critical design constraint when stretchability of the structure is considered, and existing topology optimization methods based on, e.g., von Mises stress failure criterion, are not accurate when applied to design hyperelastic materials under large deformation. To address this issue, this paper presents a topology optimization method based on distortion energy for designing nonlinear hyperelastic material against failure. For this purpose, a new objective function based on distortion energy for hyperelastic materials is proposed in the p-norm form. The adjoint method is applied to obtain the sensitivities, and the corresponding optimization problem is solved by the method of moving asymptotes. Excessive mesh distortion in low-density area is addressed through an interpolation scheme of the strain energy known as the fictitious domain method. Four numerical design examples are presented to demonstrate the validity and effectiveness of the proposed algorithm in significantly reducing local distortion energy concentration. One of these examples involves design of highly stretchable metamaterial where the optimized design is shown to sustain three times the finite strain of its base material under uniaxial tension without failure. Therefore, the proposed method has great potential in designing extremely stretchable materials such as stretchable electronics in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexandersen J, Sigmund O, Meyer KE, Lazarov BS (2018) Design of passive coolers for light-emitting diode lamps using topology optimisation. Int J Heat Mass Transf 122:138–149CrossRef Alexandersen J, Sigmund O, Meyer KE, Lazarov BS (2018) Design of passive coolers for light-emitting diode lamps using topology optimisation. Int J Heat Mass Transf 122:138–149CrossRef
Zurück zum Zitat Amir O (2017) Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity. Struct Multidiscip Optim 55(5):1797–1818 Amir O (2017) Stress-constrained continuum topology optimization: a new approach based on elasto-plasticity. Struct Multidiscip Optim 55(5):1797–1818
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43:1–16CrossRefMATH
Zurück zum Zitat Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRefMATH Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654CrossRefMATH
Zurück zum Zitat Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36:125–141MathSciNetCrossRefMATH Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36:125–141MathSciNetCrossRefMATH
Zurück zum Zitat Bruns T, Tortorelli D (1998) Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, multidisciplinary analysis optimization conferences. https://doi.org/10.2514/6.1998-4950 Bruns T, Tortorelli D (1998) Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, multidisciplinary analysis optimization conferences. https://​doi.​org/​10.​2514/​6.​1998-4950
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRefMATH Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459CrossRefMATH
Zurück zum Zitat Buhl T, Pedersen CB, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19:93–104CrossRef Buhl T, Pedersen CB, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19:93–104CrossRef
Zurück zum Zitat Chen F, Wang Y, Wang MY, Zhang Y (2017) Topology optimization of hyperelastic structures using a level set method. J Comput Phys 351:437–454MathSciNetCrossRef Chen F, Wang Y, Wang MY, Zhang Y (2017) Topology optimization of hyperelastic structures using a level set method. J Comput Phys 351:437–454MathSciNetCrossRef
Zurück zum Zitat Chen F, Xu W, Zhang H, Wang Y, Cao J, Wang MY et al (2018) Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE Robot Autom Lett 3:2463–2470CrossRef Chen F, Xu W, Zhang H, Wang Y, Cao J, Wang MY et al (2018) Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE Robot Autom Lett 3:2463–2470CrossRef
Zurück zum Zitat Cheng G-D, Cai Y-W, Liang X (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sinica 29:550–556MathSciNetCrossRefMATH Cheng G-D, Cai Y-W, Liang X (2013) Novel implementation of homogenization method to predict effective properties of periodic materials. Acta Mech Sinica 29:550–556MathSciNetCrossRefMATH
Zurück zum Zitat Cheng L, Liu J, Liang X, To AC (2018a) Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Comput Methods Appl Mech Eng 332:408–439MathSciNetCrossRef Cheng L, Liu J, Liang X, To AC (2018a) Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design. Comput Methods Appl Mech Eng 332:408–439MathSciNetCrossRef
Zurück zum Zitat Cheng L, Liang X, Belski E, Wang X, Sietins JM, Ludwick S et al (2018b) Natural frequency optimization of variable-density additive manufactured lattice structure: theory and experimental validation. J Manuf Sci Eng 140:105002CrossRef Cheng L, Liang X, Belski E, Wang X, Sietins JM, Ludwick S et al (2018b) Natural frequency optimization of variable-density additive manufactured lattice structure: theory and experimental validation. J Manuf Sci Eng 140:105002CrossRef
Zurück zum Zitat Cheng L, Bai J, To AC (2019) Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints. Comput Methods Appl Mech Eng 344:334–359MathSciNetCrossRef Cheng L, Bai J, To AC (2019) Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints. Comput Methods Appl Mech Eng 344:334–359MathSciNetCrossRef
Zurück zum Zitat Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement–loaded non-linear structures. Comput Methods Appl Mech Eng 192:2539–2553CrossRefMATH Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement–loaded non-linear structures. Comput Methods Appl Mech Eng 192:2539–2553CrossRefMATH
Zurück zum Zitat Dede EM, Joshi SN, Zhou F (2015) Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink. J Mech Des 137:111403CrossRef Dede EM, Joshi SN, Zhou F (2015) Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink. J Mech Des 137:111403CrossRef
Zurück zum Zitat Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478MathSciNetCrossRefMATH Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478MathSciNetCrossRefMATH
Zurück zum Zitat Fan Z, Zhang Y, Ma Q, Zhang F, Fu H, Hwang K-C et al (2016) A finite deformation model of planar serpentine interconnects for stretchable electronics. Int J Solids Struct 91:46–54CrossRef Fan Z, Zhang Y, Ma Q, Zhang F, Fu H, Hwang K-C et al (2016) A finite deformation model of planar serpentine interconnects for stretchable electronics. Int J Solids Struct 91:46–54CrossRef
Zurück zum Zitat Gao H, Klein P (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 46:187–218CrossRefMATH Gao H, Klein P (1998) Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds. J Mech Phys Solids 46:187–218CrossRefMATH
Zurück zum Zitat Gaynor AT (2015) Topology optimization algorithms for additive manufacturing. Dissertation, Johns Hopkins University Gaynor AT (2015) Topology optimization algorithms for additive manufacturing. Dissertation, Johns Hopkins University
Zurück zum Zitat Gray D, Tien J, Chen CJAM (2004) High-conductivity elastomeric electronics. Adv Mater 16:393 477–477, 2004CrossRef Gray D, Tien J, Chen CJAM (2004) High-conductivity elastomeric electronics. Adv Mater 16:393 477–477, 2004CrossRef
Zurück zum Zitat Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254MathSciNetCrossRefMATH Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61:238–254MathSciNetCrossRefMATH
Zurück zum Zitat Hiller J, Lipson H (2012) Automatic design and manufacture of soft robots. IEEE Trans Robot 28:457–466CrossRef Hiller J, Lipson H (2012) Automatic design and manufacture of soft robots. IEEE Trans Robot 28:457–466CrossRef
Zurück zum Zitat James KA, Waisman H (2014) Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng 268:614–631MathSciNetCrossRefMATH James KA, Waisman H (2014) Failure mitigation in optimal topology design using a coupled nonlinear continuum damage model. Comput Methods Appl Mech Eng 268:614–631MathSciNetCrossRefMATH
Zurück zum Zitat Ji B, Gao H (2004) A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Mater Sci Eng A 366:96–103CrossRef Ji B, Gao H (2004) A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Mater Sci Eng A 366:96–103CrossRef
Zurück zum Zitat Jiang Y, Wang Q (2016) Highly-stretchable 3D-architected mechanical metamaterials. Sci Rep 6:34147CrossRef Jiang Y, Wang Q (2016) Highly-stretchable 3D-architected mechanical metamaterials. Sci Rep 6:34147CrossRef
Zurück zum Zitat Jones RM (2009) Deformation theory of plasticity. Bull Ridge Publishing, Blacksburgh Jones RM (2009) Deformation theory of plasticity. Bull Ridge Publishing, Blacksburgh
Zurück zum Zitat Kang Z, Tong L (2008) Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput Struct 86:1885–1893CrossRef Kang Z, Tong L (2008) Topology optimization-based distribution design of actuation voltage in static shape control of plates. Comput Struct 86:1885–1893CrossRef
Zurück zum Zitat Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30:459–476MathSciNetCrossRefMATH Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidiscip Optim 30:459–476MathSciNetCrossRefMATH
Zurück zum Zitat Khdir Y, Kanit T, Zaïri F, Nait-Abdelaziz M (2013) Computational homogenization of elastic–plastic composites. Int J Solids Struct 50:2829–2835CrossRef Khdir Y, Kanit T, Zaïri F, Nait-Abdelaziz M (2013) Computational homogenization of elastic–plastic composites. Int J Solids Struct 50:2829–2835CrossRef
Zurück zum Zitat Kim DH, Song J, Choi WM, Kim HS, Kim RH, Liu Z et al (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci U S A 105(48):18675–18680 Kim DH, Song J, Choi WM, Kim HS, Kim RH, Liu Z et al (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci U S A 105(48):18675–18680
Zurück zum Zitat Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Methods Appl Mech Eng 199:3153–3168MathSciNetCrossRefMATH Kim JE, Kim DS, Ma PS, Kim YY (2010) Multi-physics interpolation for the topology optimization of piezoelectric systems. Comput Methods Appl Mech Eng 199:3153–3168MathSciNetCrossRefMATH
Zurück zum Zitat Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S et al (2011) Epidermal electronics. Science 333(6044):838–843 Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S et al (2011) Epidermal electronics. Science 333(6044):838–843
Zurück zum Zitat Kiyono C, Vatanabe S, Silva E, Reddy J (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10–19CrossRef Kiyono C, Vatanabe S, Silva E, Reddy J (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10–19CrossRef
Zurück zum Zitat Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47:37–48MathSciNetCrossRefMATH Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47:37–48MathSciNetCrossRefMATH
Zurück zum Zitat Kögl M, Silva EC (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14:387CrossRef Kögl M, Silva EC (2005) Topology optimization of smart structures: design of piezoelectric plate and shell actuators. Smart Mater Struct 14:387CrossRef
Zurück zum Zitat Li L (2018) Topology optimization of structures with microstructural and elastoplastic-damage effects. Dissertation, University Of Notre Dame Li L (2018) Topology optimization of structures with microstructural and elastoplastic-damage effects. Dissertation, University Of Notre Dame
Zurück zum Zitat Li L, Khandelwal K (2017) Design of fracture resistant energy absorbing structures using elastoplastic topology optimization. Struct Multidiscip Optim 56:1447–1475MathSciNetCrossRef Li L, Khandelwal K (2017) Design of fracture resistant energy absorbing structures using elastoplastic topology optimization. Struct Multidiscip Optim 56:1447–1475MathSciNetCrossRef
Zurück zum Zitat Liu B, Guo D, Jiang C, Li G, Huang X (2019) Stress optimization of smooth continuum structures based on the distortion strain energy density. Comput Methods Appl Mech Eng 343:276–296 Liu B, Guo D, Jiang C, Li G, Huang X (2019) Stress optimization of smooth continuum structures based on the distortion strain energy density. Comput Methods Appl Mech Eng 343:276–296
Zurück zum Zitat Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker–Prager yield stress constraints. Comput Struct 90:65–75CrossRef Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker–Prager yield stress constraints. Comput Struct 90:65–75CrossRef
Zurück zum Zitat Luo Y, Wang MY, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441MathSciNetCrossRefMATH Luo Y, Wang MY, Kang Z (2015) Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique. Comput Methods Appl Mech Eng 286:422–441MathSciNetCrossRefMATH
Zurück zum Zitat Luo Y, Li M, Kang Z (2016) Topology optimization of hyperelastic structures with frictionless contact supports. Int J Solids Struct 81:373–382CrossRef Luo Y, Li M, Kang Z (2016) Topology optimization of hyperelastic structures with frictionless contact supports. Int J Solids Struct 81:373–382CrossRef
Zurück zum Zitat Maute K, Tkachuk A, Wu J, Qi HJ, Ding Z, Dunn ML (2015) Level set topology optimization of printed active composites. J Mech Des 137:111402CrossRef Maute K, Tkachuk A, Wu J, Qi HJ, Ding Z, Dunn ML (2015) Level set topology optimization of printed active composites. J Mech Des 137:111402CrossRef
Zurück zum Zitat Pedersen CB, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705CrossRefMATH Pedersen CB, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705CrossRefMATH
Zurück zum Zitat Picelli R, Townsend S, Brampton C, Norato J, Kim H (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23MathSciNetCrossRef Picelli R, Townsend S, Brampton C, Norato J, Kim H (2018) Stress-based shape and topology optimization with the level set method. Comput Methods Appl Mech Eng 329:1–23MathSciNetCrossRef
Zurück zum Zitat Rittel D, Wang Z, Merzer M (2006) Adiabatic shear failure and dynamic stored energy of cold work. Phys Rev Lett 96:075502CrossRef Rittel D, Wang Z, Merzer M (2006) Adiabatic shear failure and dynamic stored energy of cold work. Phys Rev Lett 96:075502CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MathSciNetCrossRefMATH
Zurück zum Zitat Trapper P, Volokh K (2010a) Elasticity with energy limiters for modeling dynamic failure propagation. Int J Solids Struct 47:3389–3396CrossRefMATH Trapper P, Volokh K (2010a) Elasticity with energy limiters for modeling dynamic failure propagation. Int J Solids Struct 47:3389–3396CrossRefMATH
Zurück zum Zitat Trapper P, Volokh K (2010b) Modeling dynamic failure in rubber. Int J Fract 162:245–253CrossRefMATH Trapper P, Volokh K (2010b) Modeling dynamic failure in rubber. Int J Fract 162:245–253CrossRefMATH
Zurück zum Zitat Volokh K (2007a) Softening hyperelasticity for modeling material failure: analysis of cavitation in hydrostatic tension. Int J Solids Struct 44:5043–5055CrossRefMATH Volokh K (2007a) Softening hyperelasticity for modeling material failure: analysis of cavitation in hydrostatic tension. Int J Solids Struct 44:5043–5055CrossRefMATH
Zurück zum Zitat Volokh K (2010) Comparison of biomechanical failure criteria for abdominal aortic aneurysm. J Biomech 43:2032–2034CrossRef Volokh K (2010) Comparison of biomechanical failure criteria for abdominal aortic aneurysm. J Biomech 43:2032–2034CrossRef
Zurück zum Zitat Volokh KY (2011) Modeling failure of soft anisotropic materials with application to arteries. J Mech Behav Biomed Mater 4:1582–1594CrossRef Volokh KY (2011) Modeling failure of soft anisotropic materials with application to arteries. J Mech Behav Biomed Mater 4:1582–1594CrossRef
Zurück zum Zitat Volokh K, Gao H (2005) On the modified virtual internal bond method. J Appl Mech 72:969–971CrossRefMATH Volokh K, Gao H (2005) On the modified virtual internal bond method. J Appl Mech 72:969–971CrossRefMATH
Zurück zum Zitat Volokh K, Ramesh K (2006) An approach to multi-body interactions in a continuum-atomistic context: application to analysis of tension instability in carbon nanotubes. Int J Solids Struct 43:7609–7627CrossRefMATH Volokh K, Ramesh K (2006) An approach to multi-body interactions in a continuum-atomistic context: application to analysis of tension instability in carbon nanotubes. Int J Solids Struct 43:7609–7627CrossRefMATH
Zurück zum Zitat Volokh KY, Trapper P (2008) Fracture toughness from the standpoint of softening hyperelasticity. J Mech Phys Solids 56(7):2459–2472 Volokh KY, Trapper P (2008) Fracture toughness from the standpoint of softening hyperelasticity. J Mech Phys Solids 56(7):2459–2472
Zurück zum Zitat Wallin M, Ivarsson N, Tortorelli D (2018) Stiffness optimization of non-linear elastic structures. Comput Methods Appl Mech Eng 330:292–307MathSciNetCrossRef Wallin M, Ivarsson N, Tortorelli D (2018) Stiffness optimization of non-linear elastic structures. Comput Methods Appl Mech Eng 330:292–307MathSciNetCrossRef
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472MathSciNetCrossRefMATH Wang F, Lazarov BS, Sigmund O, Jensen JS (2014) Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Methods Appl Mech Eng 276:453–472MathSciNetCrossRefMATH
Zurück zum Zitat Widlund T, Yang S, Hsu Y-Y, Lu N (2014) Stretchability and compliance of freestanding serpentine-shaped ribbons. Int J Solids Struct 51:4026–4037CrossRef Widlund T, Yang S, Hsu Y-Y, Lu N (2014) Stretchability and compliance of freestanding serpentine-shaped ribbons. Int J Solids Struct 51:4026–4037CrossRef
Zurück zum Zitat Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69:2196–2218MathSciNetCrossRefMATH Yoon GH, Kim YY (2007) Topology optimization of material-nonlinear continuum structures by the element connectivity parameterization. Int J Numer Methods Eng 69:2196–2218MathSciNetCrossRefMATH
Zurück zum Zitat Zhang Y, Fu H, Su Y, Xu S, Cheng H, Fan JA et al (2013) Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater 61:7816–7827CrossRef Zhang Y, Fu H, Su Y, Xu S, Cheng H, Fan JA et al (2013) Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater 61:7816–7827CrossRef
Zurück zum Zitat Zhang Y, Fu H, Xu S, Fan JA, Hwang K-C, Jiang J et al (2014) A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J Mech Phys Solids 72:115–130CrossRef Zhang Y, Fu H, Xu S, Fan JA, Hwang K-C, Jiang J et al (2014) A hierarchical computational model for stretchable interconnects with fractal-inspired designs. J Mech Phys Solids 72:115–130CrossRef
Metadaten
Titel
Distortion energy-based topology optimization design of hyperelastic materials
verfasst von
Hao Deng
Lin Cheng
Albert C. To
Publikationsdatum
13.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2019
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2161-6

Weitere Artikel der Ausgabe 6/2019

Structural and Multidisciplinary Optimization 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.