Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2018

16.10.2017

Distributed Roughness Effects on Transitional and Turbulent Boundary Layers

verfasst von: Nagabhushana Rao Vadlamani, Paul G. Tucker, Paul Durbin

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical investigation is carried out to study the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface. Post-transition, the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored. In the transitional regime, the onset of flow transition predicted by the current simulations is in agreement with the experimentally based correlations proposed in the literature. Transition mechanisms are shown to change significantly with the increasing roughness height. Roughness elements that are inside the boundary layer create an elevated shear layer and alternating high and low speed streaks near the wall. Secondary sinuous instabilities on the streaks destabilize the shear layer promoting transition to turbulence. For the roughness topology considered, it is observed that the instability wavelengths are governed by the streamwise and spanwise spacing between the roughness elements. In contrast, the roughness elements that are higher than the boundary layer create turbulent wakes in their lee. The scale of instability is much shorter and transition occurs due to the shedding from the obstacles. Post-transition, in the spatially developing TBL, the velocity defect profiles for both the smooth and rough walls collapsed when non dimensionalized in the outer units. However, when compared to the smooth wall, deviation in the Reynolds stresses are observable in the outer layer; the deviation being higher for the larger roughness elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that in some publications, (ξ 1,ξ 2,ξ 3) are represented as (ξ,η,ζ) and (x 1,x 2,x 3) as (x,y,z)
 
2
We have also carried out additional simulations to explore the effects of free-stream turbulence (FST). However, this is beyond the scope of the current paper and will be published elsewhere.
 
3
In the case of regularly distributed roughness, u can also be defined by subtracting the instantaneous flow from the flow field averaged over multiple roughness elements at identical phase. However, this approach is not feasible for randomly distributed roughness.
 
4
Note: The low-speed streak situated mid-way between the roughness peaks in Fig. 11a is due to the peaks of the roughness element at an upstream location (refer to the computational domain in Fig. 1)
 
Literatur
1.
Zurück zum Zitat Bons, J.P.: A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 021,004 (2010)CrossRef Bons, J.P.: A review of surface roughness effects in gas turbines. J. Turbomach. 132(2), 021,004 (2010)CrossRef
2.
Zurück zum Zitat Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)CrossRef Rao, V.N., Jefferson-Loveday, R., Tucker, P.G., Lardeau, S.: Large eddy simulations in turbines: influence of roughness and free-stream turbulence. Flow Turbul. Combust. 92(1-2), 543–561 (2014)CrossRef
4.
Zurück zum Zitat Braslow, A.L.: Review of the Effect of Distributed Surface Roughness on Boundary-Layer Transition. Tech. rep., DTIC Document (1960) Braslow, A.L.: Review of the Effect of Distributed Surface Roughness on Boundary-Layer Transition. Tech. rep., DTIC Document (1960)
5.
Zurück zum Zitat Montomoli, F., Hodson, H., Haselbach, F.: Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low reynolds numbers. J. Turbomach. 132(3), 031,018 (2010)CrossRef Montomoli, F., Hodson, H., Haselbach, F.: Effect of roughness and unsteadiness on the performance of a new low pressure turbine blade at low reynolds numbers. J. Turbomach. 132(3), 031,018 (2010)CrossRef
6.
Zurück zum Zitat Stripf, M., Schulz, A., Bauer, H.J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transfer—part i: model formulations. J. Turbomach. 131(3), 031,016 (2009)CrossRef Stripf, M., Schulz, A., Bauer, H.J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transfer—part i: model formulations. J. Turbomach. 131(3), 031,016 (2009)CrossRef
7.
Zurück zum Zitat De Tullio, N., Paredes, P., Sandham, N., Theofilis, V.: Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013)MathSciNetCrossRefMATH De Tullio, N., Paredes, P., Sandham, N., Theofilis, V.: Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613–646 (2013)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Bernardini, M., Pirozzoli, S., Orlandi, P.: Compressibility effects on roughness-induced boundary layer transition. Int. J. Heat Fluid Flow 35, 45–51 (2012)CrossRef Bernardini, M., Pirozzoli, S., Orlandi, P.: Compressibility effects on roughness-induced boundary layer transition. Int. J. Heat Fluid Flow 35, 45–51 (2012)CrossRef
9.
Zurück zum Zitat Iyer, P., Muppidi, S., Mahesh, K.: Roughness-induced transition in high speed flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 566 (2011) Iyer, P., Muppidi, S., Mahesh, K.: Roughness-induced transition in high speed flows. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 566 (2011)
10.
Zurück zum Zitat Redford, J.A., Sandham, N.D., Roberts, G.T.: Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48(12), 2818–2830 (2010)CrossRef Redford, J.A., Sandham, N.D., Roberts, G.T.: Compressibility effects on boundary-layer transition induced by an isolated roughness element. AIAA J. 48(12), 2818–2830 (2010)CrossRef
11.
Zurück zum Zitat Muppidi, S., Mahesh, K.: Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 28–56 (2012)CrossRefMATH Muppidi, S., Mahesh, K.: Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 28–56 (2012)CrossRefMATH
12.
Zurück zum Zitat Roberts, S., Yaras, M.: Boundary-layer transition affected by surface roughness and free-stream turbulence. J. Fluids Eng. 127(3), 449–457 (2005)CrossRef Roberts, S., Yaras, M.: Boundary-layer transition affected by surface roughness and free-stream turbulence. J. Fluids Eng. 127(3), 449–457 (2005)CrossRef
13.
Zurück zum Zitat Nikuradse, J.: Laws of flow in rough pipes. In: VDI Forschungsheft. Citeseer (1933) Nikuradse, J.: Laws of flow in rough pipes. In: VDI Forschungsheft. Citeseer (1933)
14.
Zurück zum Zitat Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1980)MATH Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1980)MATH
16.
Zurück zum Zitat Leonardi, S., Orlandi, P., Smalley, R., Djenidi, L., Antonia, R.: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003)CrossRefMATH Leonardi, S., Orlandi, P., Smalley, R., Djenidi, L., Antonia, R.: Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 491, 229–238 (2003)CrossRefMATH
17.
Zurück zum Zitat Chung, D., Chan, L., MacDonald, M., Hutchins, N., Ooi, A.: A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418–431 (2015)CrossRef Chung, D., Chan, L., MacDonald, M., Hutchins, N., Ooi, A.: A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418–431 (2015)CrossRef
18.
Zurück zum Zitat Chatzikyriakou, D., Buongiorno, J., Caviezel, D., Lakehal, D.: Dns and les of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements. Int. J. Heat Fluid Flow 53, 29–43 (2015)CrossRef Chatzikyriakou, D., Buongiorno, J., Caviezel, D., Lakehal, D.: Dns and les of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements. Int. J. Heat Fluid Flow 53, 29–43 (2015)CrossRef
19.
Zurück zum Zitat Licari, A., Christensen, K.: Modeling cumulative surface damage and assessing its impact on wall turbulence. AIAA J. 49(10), 2305–2320 (2011)CrossRef Licari, A., Christensen, K.: Modeling cumulative surface damage and assessing its impact on wall turbulence. AIAA J. 49(10), 2305–2320 (2011)CrossRef
20.
Zurück zum Zitat Yuan, J., Piomelli, U.: Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15(6), 350–365 (2014)MathSciNetCrossRef Yuan, J., Piomelli, U.: Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15(6), 350–365 (2014)MathSciNetCrossRef
21.
Zurück zum Zitat Lee, J.H., Sung, H.J., Krogstad, P.Å.: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431 (2011)CrossRefMATH Lee, J.H., Sung, H.J., Krogstad, P.Å.: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397–431 (2011)CrossRefMATH
22.
Zurück zum Zitat Lee, S.H., Sung, H.J.: Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007)CrossRefMATH Lee, S.H., Sung, H.J.: Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech. 584, 125–146 (2007)CrossRefMATH
23.
Zurück zum Zitat Simens, M.P., Gungor, A.G.: The effect of surface roughness on laminar separated boundary layers. J. Turbomach. 136(3), 031,014 (2014)CrossRef Simens, M.P., Gungor, A.G.: The effect of surface roughness on laminar separated boundary layers. J. Turbomach. 136(3), 031,014 (2014)CrossRef
24.
Zurück zum Zitat Sengupta, A., Vadlamani, N.R., Tucker, P.G.: Roughness induced transition in low pressure turbines. In: 55th AIAA Aerospace Sciences Meeting, p. 0303 (2017) Sengupta, A., Vadlamani, N.R., Tucker, P.G.: Roughness induced transition in low pressure turbines. In: 55th AIAA Aerospace Sciences Meeting, p. 0303 (2017)
25.
Zurück zum Zitat Vadlamani, N.R.: Numerical Investigation of Separated Flows in Low Pressure Turbines. Ph.D. thesis, University of Cambridge (2014) Vadlamani, N.R.: Numerical Investigation of Separated Flows in Low Pressure Turbines. Ph.D. thesis, University of Cambridge (2014)
26.
Zurück zum Zitat Rao, V.N., Tucker, P., Jefferson-Loveday, R., Coull, J.: Investigation of wake induced transition in low-pressure turbines using large eddy simulation. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V06CT42A008–V06CT42A008. American Society of Mechanical Engineers (2013) Rao, V.N., Tucker, P., Jefferson-Loveday, R., Coull, J.: Investigation of wake induced transition in low-pressure turbines using large eddy simulation. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, pp. V06CT42A008–V06CT42A008. American Society of Mechanical Engineers (2013)
27.
Zurück zum Zitat Matsuura, K., Kato, C.: Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade. AIAA J. 45(2), 442–457 (2007)CrossRef Matsuura, K., Kato, C.: Large-eddy simulation of compressible transitional flows in a low-pressure turbine cascade. AIAA J. 45(2), 442–457 (2007)CrossRef
28.
Zurück zum Zitat Rizzetta, D.P., Visbal, M.R.: Direct numerical simulations of flow past an array of distributed roughness elements. AIAA J. 45(8), 1967–1976 (2007)CrossRef Rizzetta, D.P., Visbal, M.R.: Direct numerical simulations of flow past an array of distributed roughness elements. AIAA J. 45(8), 1967–1976 (2007)CrossRef
29.
Zurück zum Zitat Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(04), 1259–1286 (2001)MathSciNetCrossRefMATH Visbal, M.R., Gaitonde, D.V.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(04), 1259–1286 (2001)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Leonardi, S., Orlandi, P., Antonia, R.A.: Properties of d-and k-type roughness in a turbulent channel flow. Phys. Fluids 19(12), 125,101 (2007)CrossRefMATH Leonardi, S., Orlandi, P., Antonia, R.A.: Properties of d-and k-type roughness in a turbulent channel flow. Phys. Fluids 19(12), 125,101 (2007)CrossRefMATH
31.
Zurück zum Zitat Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)MathSciNetCrossRefMATH Visbal, M.R., Gaitonde, D.V.: On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181(1), 155–185 (2002)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Gaitonde, D.V., Visbal, M.R.: High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into Fdl3di. Tech. rep., DTIC Document (1998)CrossRef Gaitonde, D.V., Visbal, M.R.: High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation into Fdl3di. Tech. rep., DTIC Document (1998)CrossRef
33.
Zurück zum Zitat Rao, V.N., Tucker, P.G.: Intake lip separation control using plasma actuators. In: 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (2016) Rao, V.N., Tucker, P.G.: Intake lip separation control using plasma actuators. In: 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (2016)
34.
Zurück zum Zitat Choudhari, M., Fischer, P.: Roughness induced transient growth. In: 35th AIAA Fluid Dynamics Conference and Exhibit, p. 4756 (2005) Choudhari, M., Fischer, P.: Roughness induced transient growth. In: 35th AIAA Fluid Dynamics Conference and Exhibit, p. 4756 (2005)
35.
Zurück zum Zitat Ergin, F.G., White, E.B.: Unsteady and transitional flows behind roughness elements. AIAA J. 44(11), 2504–2514 (2006)CrossRef Ergin, F.G., White, E.B.: Unsteady and transitional flows behind roughness elements. AIAA J. 44(11), 2504–2514 (2006)CrossRef
36.
Zurück zum Zitat Reda, D.C.: Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rocket. 39(2), 161–167 (2002)CrossRef Reda, D.C.: Review and synthesis of roughness-dominated transition correlations for reentry applications. J. Spacecr. Rocket. 39(2), 161–167 (2002)CrossRef
37.
Zurück zum Zitat Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)MathSciNetCrossRefMATH Brandt, L., Schlatter, P., Henningson, D.S.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Hack, M., Zaki, T.: Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280–315 (2014)MathSciNetCrossRef Hack, M., Zaki, T.: Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280–315 (2014)MathSciNetCrossRef
39.
Zurück zum Zitat Loiseau, J.C., Robinet, J.C., Cherubini, S., Leriche, E.: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)MathSciNetCrossRef Loiseau, J.C., Robinet, J.C., Cherubini, S., Leriche, E.: Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175–211 (2014)MathSciNetCrossRef
40.
Zurück zum Zitat Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084,110 (2015)CrossRef Citro, V., Giannetti, F., Luchini, P., Auteri, F.: Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27(8), 084,110 (2015)CrossRef
41.
Zurück zum Zitat Vaughan, N.J., Zaki, T.A.: Stability of zero-pressure-gradient boundary layer distorted by unsteady klebanoff streaks. J. Fluid Mech. 681, 116–153 (2011)CrossRefMATH Vaughan, N.J., Zaki, T.A.: Stability of zero-pressure-gradient boundary layer distorted by unsteady klebanoff streaks. J. Fluid Mech. 681, 116–153 (2011)CrossRefMATH
42.
Zurück zum Zitat Bose, R., Durbin, P.A.: Helical modes in boundary layer transition. Physical Review Fluids 1(7), 073,602 (2016)CrossRef Bose, R., Durbin, P.A.: Helical modes in boundary layer transition. Physical Review Fluids 1(7), 073,602 (2016)CrossRef
43.
Zurück zum Zitat Denissen, N.A., White, E.B.: Secondary instability of roughness-induced transient growth. Phys. Fluids 25(11), 114,108 (2013)CrossRef Denissen, N.A., White, E.B.: Secondary instability of roughness-induced transient growth. Phys. Fluids 25(11), 114,108 (2013)CrossRef
44.
Zurück zum Zitat Andersson, P., Brandt, L., Bottaro, A., Henningson, D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001)MathSciNetCrossRefMATH Andersson, P., Brandt, L., Bottaro, A., Henningson, D.S.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Schultz, M., Flack, K.: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007)CrossRefMATH Schultz, M., Flack, K.: The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381–405 (2007)CrossRefMATH
46.
Zurück zum Zitat Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 1–37 (2011)CrossRefMATH Hong, J., Katz, J., Schultz, M.P.: Near-wall turbulence statistics and flow structures over three-dimensional roughness in a turbulent channel flow. J. Fluid Mech. 667, 1–37 (2011)CrossRefMATH
47.
Zurück zum Zitat Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116 (2010)CrossRefMATH Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116 (2010)CrossRefMATH
48.
Zurück zum Zitat Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrog. Energy 34(21), 8964–8973 (2009)CrossRef Peet, Y., Sagaut, P., Charron, Y.: Pressure loss reduction in hydrogen pipelines by surface restructuring. Int. J. Hydrog. Energy 34(21), 8964–8973 (2009)CrossRef
49.
Zurück zum Zitat Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: Dns of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603–637 (2013)MathSciNetCrossRefMATH Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K., Castillo, L.: Dns of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603–637 (2013)MathSciNetCrossRefMATH
50.
Zurück zum Zitat Smalley, R., Leonardi, S., Antonia, R., Djenidi, L., Orlandi, P.: Reynolds stress anisotropy of turbulent rough wall layers. Exp. Fluids 33(1), 31–37 (2002)CrossRef Smalley, R., Leonardi, S., Antonia, R., Djenidi, L., Orlandi, P.: Reynolds stress anisotropy of turbulent rough wall layers. Exp. Fluids 33(1), 31–37 (2002)CrossRef
51.
Zurück zum Zitat Jackson, P.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)CrossRefMATH Jackson, P.: On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 15–25 (1981)CrossRefMATH
Metadaten
Titel
Distributed Roughness Effects on Transitional and Turbulent Boundary Layers
verfasst von
Nagabhushana Rao Vadlamani
Paul G. Tucker
Paul Durbin
Publikationsdatum
16.10.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9864-4

Weitere Artikel der Ausgabe 3/2018

Flow, Turbulence and Combustion 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.