Skip to main content
Erschienen in: Wood Science and Technology 1/2017

07.06.2016 | Original

Dynamic simulation of disintegration of wood chips caused by impact and collisions during the steam explosion pretreatment

verfasst von: Muhammad Muzamal, Anders Rasmuson

Erschienen in: Wood Science and Technology | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Steam explosion (SE) pretreatment produces damaged and disintegrated biomass with a large surface area which facilitates enzymatic hydrolysis for the production of biofuels and other value-added chemicals. It was observed during experiments that wood chips disintegrate into smaller pieces because of collisions and impact with each other and the walls of the SE equipment. In this study, these events were simulated using the finite element method. Wood chips were simulated in this model as a linear elastic material until failure. The damage initiation was identified using Hashin’s damage initiation criteria. Once the damage was initiated, additional loading caused the evolution of damage, i.e. degradation and breakage of the material, which was modelled using the material property degradation model and deletion of the failed elements. Elastic and strength properties of spruce wood were estimated at ambient conditions (12 % moisture content at 20 °C) and at SE conditions (30 % moisture content at 160 °C). Comparison of simulations performed using material properties at ambient and SE conditions revealed that the damage in wood chips significantly increased because of the steam treatment. The effects of wood chip velocity and orientation at the time of impact were studied as well. It was found that wood chips moving at high velocity and impacting with the steel wall in the radial direction acquire the most damage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alemi-Ardakani M, Milani AS, Yannacopoulos S (2014) On complexities of impact simulation of fiber reinforced polymer composites: A simplified modeling framework. Sci World J 2014:1–10CrossRef Alemi-Ardakani M, Milani AS, Yannacopoulos S (2014) On complexities of impact simulation of fiber reinforced polymer composites: A simplified modeling framework. Sci World J 2014:1–10CrossRef
Zurück zum Zitat Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefPubMed Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefPubMed
Zurück zum Zitat Camanho PP, Mathews FL (1999) A progressive damage model for mechanically fastened joints in composite laminates. J Compos Mater 33:2248–2280CrossRef Camanho PP, Mathews FL (1999) A progressive damage model for mechanically fastened joints in composite laminates. J Compos Mater 33:2248–2280CrossRef
Zurück zum Zitat Dahl KB, Malo KA (2009) Nonlinear shear properties of spruce softwood: experimental results. Wood Sci Technol 43:539–558CrossRef Dahl KB, Malo KA (2009) Nonlinear shear properties of spruce softwood: experimental results. Wood Sci Technol 43:539–558CrossRef
Zurück zum Zitat De Borst K, Jenkel C, Montero C, Colmars J, Gril J, Kaliske M, Eberhardsteiner J (2013) Mechanical characterization of wood: an integrative approach ranging from nanoscale to structure. Comput Struct 127:53–67CrossRef De Borst K, Jenkel C, Montero C, Colmars J, Gril J, Kaliske M, Eberhardsteiner J (2013) Mechanical characterization of wood: an integrative approach ranging from nanoscale to structure. Comput Struct 127:53–67CrossRef
Zurück zum Zitat Echaabi J, Trochu F, Gauvin R (1996) Review of failure criteria of fibrous composite materials. Polym Compos 17:786–796CrossRef Echaabi J, Trochu F, Gauvin R (1996) Review of failure criteria of fibrous composite materials. Polym Compos 17:786–796CrossRef
Zurück zum Zitat Fan JY, Guan ZW, Cantwell WJ (2011) Structural behaviour of fibre metal laminates subjected to a low velocity impact. Sci China Phys Mech Astron 54:1168–1177CrossRef Fan JY, Guan ZW, Cantwell WJ (2011) Structural behaviour of fibre metal laminates subjected to a low velocity impact. Sci China Phys Mech Astron 54:1168–1177CrossRef
Zurück zum Zitat Fortino S, Mirianon F, Toratti T (2009) A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech Time Depend Mater 13:333–356CrossRef Fortino S, Mirianon F, Toratti T (2009) A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech Time Depend Mater 13:333–356CrossRef
Zurück zum Zitat Goulet M (1960) Dependence of transverse tensile strength of oak, beech and spruce on moisture content and temperature within the range of 0° to 100° C. Holz Roh Werkst 18:325–331CrossRef Goulet M (1960) Dependence of transverse tensile strength of oak, beech and spruce on moisture content and temperature within the range of 0° to 100° C. Holz Roh Werkst 18:325–331CrossRef
Zurück zum Zitat Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Technol 8:274–280CrossRef Grous WR, Converse AO, Grethlein HE (1986) Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme Microb Technol 8:274–280CrossRef
Zurück zum Zitat Guindos P (2014) Comparison of different failure approaches in knotty wood. Drewno 57:51–68 Guindos P (2014) Comparison of different failure approaches in knotty wood. Drewno 57:51–68
Zurück zum Zitat Guindos P, Guaita M (2013) A three-dimensional wood material model to simulate the behavior of wood with any type of knot at the macro-scale. Wood Sci Technol 47:585–599CrossRef Guindos P, Guaita M (2013) A three-dimensional wood material model to simulate the behavior of wood with any type of knot at the macro-scale. Wood Sci Technol 47:585–599CrossRef
Zurück zum Zitat Hanhijärvi A, Mackenzie-Helnwein P (2003) Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J Eng Mech 129:996–1005CrossRef Hanhijärvi A, Mackenzie-Helnwein P (2003) Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J Eng Mech 129:996–1005CrossRef
Zurück zum Zitat Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334CrossRef Hashin Z (1980) Failure criteria for unidirectional fiber composites. J Appl Mech 47:329–334CrossRef
Zurück zum Zitat Hassan NK, Mohamedien MA, Riskallah SH (1996) Finite element analysis of bolted connections for PFRP composites. Compos B 27B:339–349CrossRef Hassan NK, Mohamedien MA, Riskallah SH (1996) Finite element analysis of bolted connections for PFRP composites. Compos B 27B:339–349CrossRef
Zurück zum Zitat Holtzapple MT, Humphrey AE, Taylor JD (1989) Energy requirements for the size reduction of poplar and aspen wood. Biotechnol Bioeng 33:207–210CrossRefPubMed Holtzapple MT, Humphrey AE, Taylor JD (1989) Energy requirements for the size reduction of poplar and aspen wood. Biotechnol Bioeng 33:207–210CrossRefPubMed
Zurück zum Zitat Ishida S (1954) The effect of temperature on the strength of wood. Hokkaido Univ Res Bull Coll Exp For 17:1–14 Ishida S (1954) The effect of temperature on the strength of wood. Hokkaido Univ Res Bull Coll Exp For 17:1–14
Zurück zum Zitat Kermanidis D, Labeas G, Tserpes KI, Pantelakis S (2000) Finite element modeling of damage accumulation in bolted composite joints under incremental tensile loading. In: Proceedings of European congress on computational methods in applied sciences and engineering, Barcelona, Spain Kermanidis D, Labeas G, Tserpes KI, Pantelakis S (2000) Finite element modeling of damage accumulation in bolted composite joints under incremental tensile loading. In: Proceedings of European congress on computational methods in applied sciences and engineering, Barcelona, Spain
Zurück zum Zitat Keunecke D (2008) Elasto-mechanical characterisation of yew and spruce wood with regard to structure-property relationships. Dissertation, Eidgenössische Technische Hochschule Zürich Keunecke D (2008) Elasto-mechanical characterisation of yew and spruce wood with regard to structure-property relationships. Dissertation, Eidgenössische Technische Hochschule Zürich
Zurück zum Zitat Keunecke D, Sonderegger W, Pereteanu K, Luthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309–327CrossRef Keunecke D, Sonderegger W, Pereteanu K, Luthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309–327CrossRef
Zurück zum Zitat Kollmann F (1940) The mechanical properties of wood of different moisture content within −200° to +200°C temperature range. VDI Forschungsheft 403:1–18 Kollmann F (1940) The mechanical properties of wood of different moisture content within −200° to +200°C temperature range. VDI Forschungsheft 403:1–18
Zurück zum Zitat Kretschmann DE (2010) Mechanical properties of wood. wood handbook, Chapter 5. General Technical Report FPL-GTR-190 Kretschmann DE (2010) Mechanical properties of wood. wood handbook, Chapter 5. General Technical Report FPL-GTR-190
Zurück zum Zitat Kufner M (1978) Modulus of elasticity and tensile strength of wood species with different density and their dependence on moisture content. Holz Roh Werkst 36(11):435–439CrossRef Kufner M (1978) Modulus of elasticity and tensile strength of wood species with different density and their dependence on moisture content. Holz Roh Werkst 36(11):435–439CrossRef
Zurück zum Zitat Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos A 38A:2333–2341CrossRef Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos A 38A:2333–2341CrossRef
Zurück zum Zitat Lee CS, Kim JH, Kim SK, Ryu DM, Lee JM (2015) Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method. Compos Struct 121:406–419CrossRef Lee CS, Kim JH, Kim SK, Ryu DM, Lee JM (2015) Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method. Compos Struct 121:406–419CrossRef
Zurück zum Zitat Leont’ev NL (1960) The strength of wood at varying moisture content. Derev Prom 10:17–18 Leont’ev NL (1960) The strength of wood at varying moisture content. Derev Prom 10:17–18
Zurück zum Zitat McCarthy CT, McCarthy MA, Lawlor VP (2005) Progressive damage analysis of multi-bolt composite joints with variable bolt–hole clearances. Compos B 36:290–305CrossRef McCarthy CT, McCarthy MA, Lawlor VP (2005) Progressive damage analysis of multi-bolt composite joints with variable bolt–hole clearances. Compos B 36:290–305CrossRef
Zurück zum Zitat Muzamal M, Gamstedt EK, Rasmuson A (2014) Modeling wood fiber deformation caused by vapor expansion during steam explosion of wood. Wood Sci Technol 48:353–372CrossRef Muzamal M, Gamstedt EK, Rasmuson A (2014) Modeling wood fiber deformation caused by vapor expansion during steam explosion of wood. Wood Sci Technol 48:353–372CrossRef
Zurück zum Zitat Muzamal M, Jedvert K, Theliander H, Rasmuson A (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66CrossRef Muzamal M, Jedvert K, Theliander H, Rasmuson A (2015) Structural changes in spruce wood during different steps of steam explosion pretreatment. Holzforschung 69:61–66CrossRef
Zurück zum Zitat Ohsawa J, Yoneda Y (1978) Shear test of woods as a model of defibration. J Jpn Wood Res Soc 24:230–236 Ohsawa J, Yoneda Y (1978) Shear test of woods as a model of defibration. J Jpn Wood Res Soc 24:230–236
Zurück zum Zitat Palka LC (1973) Predicting the effect of specific gravity, moisture content, temperature and strain rate on the elastic properties of softwoods. Wood Sci Technol 7:127–141CrossRef Palka LC (1973) Predicting the effect of specific gravity, moisture content, temperature and strain rate on the elastic properties of softwoods. Wood Sci Technol 7:127–141CrossRef
Zurück zum Zitat Rubio-López A, Olmedo A, Santiuste C (2015) Modelling impact behaviour of all-cellulose composite plates. Compos Struct 122:139–143CrossRef Rubio-López A, Olmedo A, Santiuste C (2015) Modelling impact behaviour of all-cellulose composite plates. Compos Struct 122:139–143CrossRef
Zurück zum Zitat Salmén L (1982) Temperature and water induced softening behaviour of wood fiber based materials. Dissertation, The Royal Institute of Technology Stockholm Salmén L (1982) Temperature and water induced softening behaviour of wood fiber based materials. Dissertation, The Royal Institute of Technology Stockholm
Zurück zum Zitat Schmidt J, Kaliske M (2009) Models for numerical failure analysis of wooden structures. Eng Struct 31:571–579CrossRef Schmidt J, Kaliske M (2009) Models for numerical failure analysis of wooden structures. Eng Struct 31:571–579CrossRef
Zurück zum Zitat Sell J (1997) Eigenschaften und Kenngrössen von Holzarten (Properties and parameter of wood species) (In German). Baufachverlag AG Zürich, Dietikon Sell J (1997) Eigenschaften und Kenngrössen von Holzarten (Properties and parameter of wood species) (In German). Baufachverlag AG Zürich, Dietikon
Zurück zum Zitat Tay TE, Liu G, Tan VBC, Sun XS, Pham DC (2008) Progressive failure analysis of composites. J Compos Mater 42:1921–1946CrossRef Tay TE, Liu G, Tan VBC, Sun XS, Pham DC (2008) Progressive failure analysis of composites. J Compos Mater 42:1921–1946CrossRef
Zurück zum Zitat Tsai SW (1965) Strength characteristics of composite materials. NASA Report No. CR-224, Washington DC Tsai SW (1965) Strength characteristics of composite materials. NASA Report No. CR-224, Washington DC
Zurück zum Zitat Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5:58–80CrossRef Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5:58–80CrossRef
Zurück zum Zitat Uhmeier A, Salmén L (1996) Influence of strain rate and temperature on the radial compression behaviour of wet spruce. J Eng Mater Technol 118:289–294CrossRef Uhmeier A, Salmén L (1996) Influence of strain rate and temperature on the radial compression behaviour of wet spruce. J Eng Mater Technol 118:289–294CrossRef
Zurück zum Zitat Widehammar S (2004) Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction. Exp Mech 44:44–48CrossRef Widehammar S (2004) Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction. Exp Mech 44:44–48CrossRef
Zurück zum Zitat Wilson TRC (1932) Strength-moisture relations for wood. USDA Tech Bull No. 282, US Dep Agric, Washington, DC Wilson TRC (1932) Strength-moisture relations for wood. USDA Tech Bull No. 282, US Dep Agric, Washington, DC
Zurück zum Zitat Yamada SE, Sun CT (1978) Analysis of laminate strength and its distribution. J Compos Mater 12:275–284CrossRef Yamada SE, Sun CT (1978) Analysis of laminate strength and its distribution. J Compos Mater 12:275–284CrossRef
Zurück zum Zitat Zhang C, Li N, Wang W, Binienda WK, Fang H (2015) Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos Struct 125:104–116CrossRef Zhang C, Li N, Wang W, Binienda WK, Fang H (2015) Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos Struct 125:104–116CrossRef
Metadaten
Titel
Dynamic simulation of disintegration of wood chips caused by impact and collisions during the steam explosion pretreatment
verfasst von
Muhammad Muzamal
Anders Rasmuson
Publikationsdatum
07.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Wood Science and Technology / Ausgabe 1/2017
Print ISSN: 0043-7719
Elektronische ISSN: 1432-5225
DOI
https://doi.org/10.1007/s00226-016-0840-2

Weitere Artikel der Ausgabe 1/2017

Wood Science and Technology 1/2017 Zur Ausgabe

Editorial

Editorial