Skip to main content
Erschienen in: Microsystem Technologies 2/2018

22.05.2017 | Technical Paper

Dynamic transverse vibration characteristics and vibro-buckling analyses of axially moving and rotating nanobeams based on nonlocal strain gradient theory

verfasst von: Song Guo, Yuming He, Dabiao Liu, Jian Lei, Zhenkun Li

Erschienen in: Microsystem Technologies | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic transverse vibration characteristics and vibro-buckling analyses of axially moving nanobeam and rotating nanobeam based on nonlocal strain gradient theory are investigated. The axially moving model involves axial velocity in kinetic energy, and the effect of rotating is added as Coriolis acceleration to energy relation for rotating model. Governing equations of two dynamical models are derived by Hamilton’s principle. Meanwhile, corresponding classical and high order non-classical boundaries are also given. Numerical results are obtained by employing Galerkin approach for double simply supported boundary. Results for influence of axial velocity on transverse vibration characteristics illustrate that natural frequencies decrease with increasing axial velocity. However, frequencies of rotating nanobeam model are splitted into forward and backward frequencies with increasing rotating velocity. It is found that forward frequencies increase and backward frequencies decrease with elevated rotating velocity. It is revealed that the nonlocal effect weakens the rigidity and the strain gradient effect strengthens the rigidity. Finally, vibro-buckling analyses of two models, referring to fundamental frequencies vanishing for axially moving model and frequencies corresponding to rotating velocity for rotating model, are shown.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbas BAH (1986) Dynamic stability of a rotating Timoshenko beam with a flexible root. J Sound Vib 108:25–32CrossRef Abbas BAH (1986) Dynamic stability of a rotating Timoshenko beam with a flexible root. J Sound Vib 108:25–32CrossRef
Zurück zum Zitat Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49:1268–1280MathSciNetCrossRef Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49:1268–1280MathSciNetCrossRef
Zurück zum Zitat Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E 41:1651–1655CrossRef Aydogdu M (2009) A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys E 41:1651–1655CrossRef
Zurück zum Zitat Bourlon B, Glattli DC, Miko C, Forró L, Bachtold A (2004) Carbon nanotube based bearing for rotational motions. Nano Lett 4:709–712CrossRef Bourlon B, Glattli DC, Miko C, Forró L, Bachtold A (2004) Carbon nanotube based bearing for rotational motions. Nano Lett 4:709–712CrossRef
Zurück zum Zitat Chen L-Q (2005) Analysis and control of transverse vibrations of axially moving strings. Appl Mech Rev 58:91–116CrossRef Chen L-Q (2005) Analysis and control of transverse vibrations of axially moving strings. Appl Mech Rev 58:91–116CrossRef
Zurück zum Zitat Chen J, Guo J, Pan E (2017) Reflection and transmission of plane wave in multilayered nonlocal magneto-electro-elastic plates immersed in liquid. Compos Struct 162:401–410CrossRef Chen J, Guo J, Pan E (2017) Reflection and transmission of plane wave in multilayered nonlocal magneto-electro-elastic plates immersed in liquid. Compos Struct 162:401–410CrossRef
Zurück zum Zitat Dehrouyeh-Semnani AM, Dehrouyeh M, Zafari-Koloukhi H, Ghamami M (2015) Size-dependent frequency and stability characteristics of axially moving microbeams based on modified couple stress theory. Int J Eng Sci 97:98–112MathSciNetCrossRef Dehrouyeh-Semnani AM, Dehrouyeh M, Zafari-Koloukhi H, Ghamami M (2015) Size-dependent frequency and stability characteristics of axially moving microbeams based on modified couple stress theory. Int J Eng Sci 97:98–112MathSciNetCrossRef
Zurück zum Zitat Ding H, Chen L-Q (2010) Galerkin methods for natural frequencies of high-speed axially moving beams. J Sound Vib 329:3484–3494CrossRef Ding H, Chen L-Q (2010) Galerkin methods for natural frequencies of high-speed axially moving beams. J Sound Vib 329:3484–3494CrossRef
Zurück zum Zitat Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, Hoboken Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, Hoboken
Zurück zum Zitat Ebrahimi F, Barati MR (2016) Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl Phys A 122:843CrossRef Ebrahimi F, Barati MR (2016) Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl Phys A 122:843CrossRef
Zurück zum Zitat Ebrahimi F, Barati MR, Dabbagh A (2016) A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182CrossRef Ebrahimi F, Barati MR, Dabbagh A (2016) A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182CrossRef
Zurück zum Zitat Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487CrossRef Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487CrossRef
Zurück zum Zitat Fung R-F, Lu P-Y, Tseng C-C (1998) Non-linearly dynamic modelling of an axially moving beam with a tip mass. J Sound Vib 218:559–571CrossRef Fung R-F, Lu P-Y, Tseng C-C (1998) Non-linearly dynamic modelling of an axially moving beam with a tip mass. J Sound Vib 218:559–571CrossRef
Zurück zum Zitat Ghayesh MH, Amabili M (2013) Steady-state transverse response of an axially moving beam with time-dependent axial speed. Int J Non-Linear Mech 49:40–49CrossRefMATH Ghayesh MH, Amabili M (2013) Steady-state transverse response of an axially moving beam with time-dependent axial speed. Int J Non-Linear Mech 49:40–49CrossRefMATH
Zurück zum Zitat Ghayesh MH, Balar S (2010) Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl Math Model 34:2850–2859MathSciNetCrossRefMATH Ghayesh MH, Balar S (2010) Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl Math Model 34:2850–2859MathSciNetCrossRefMATH
Zurück zum Zitat Guo X, Wang Z (2010) Thermoelastic coupling vibration characteristics of the axially moving beam with frictional contact. J Vib Acoust 132:051010CrossRef Guo X, Wang Z (2010) Thermoelastic coupling vibration characteristics of the axially moving beam with frictional contact. J Vib Acoust 132:051010CrossRef
Zurück zum Zitat Guo S, He Y, Liu D, Lei J, Shen L, Li Z (2016) Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect. Int J Mech Sci 119:88–96CrossRef Guo S, He Y, Liu D, Lei J, Shen L, Li Z (2016) Torsional vibration of carbon nanotube with axial velocity and velocity gradient effect. Int J Mech Sci 119:88–96CrossRef
Zurück zum Zitat Han J, Globus A, Jaffe R, Deardorff G (1997) Molecular dynamics simulations of carbon nanotube-based gears. Nanotechnology 8:95–102CrossRef Han J, Globus A, Jaffe R, Deardorff G (1997) Molecular dynamics simulations of carbon nanotube-based gears. Nanotechnology 8:95–102CrossRef
Zurück zum Zitat Hosseini-Hashemi S, Ilkhani M (2016a) Nonlocal modeling for dynamic stability of spinning nanotube under axial load. Meccanica 52:1107–1121MathSciNetCrossRefMATH Hosseini-Hashemi S, Ilkhani M (2016a) Nonlocal modeling for dynamic stability of spinning nanotube under axial load. Meccanica 52:1107–1121MathSciNetCrossRefMATH
Zurück zum Zitat Hosseini-Hashemi S, Ilkhani M (2016b) Exact solution for free vibrations of spinning nanotube based on nonlocal first order shear deformation shell theory. Compos Struct 157:1–11CrossRef Hosseini-Hashemi S, Ilkhani M (2016b) Exact solution for free vibrations of spinning nanotube based on nonlocal first order shear deformation shell theory. Compos Struct 157:1–11CrossRef
Zurück zum Zitat Hosseini-Hashemi S, Khaniki HB (2016) Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle. J Mech 91:1–17 Hosseini-Hashemi S, Khaniki HB (2016) Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle. J Mech 91:1–17
Zurück zum Zitat Ilkhani MR, Hosseini-Hashemi S (2016) Size dependent vibro-buckling of rotating beam based on modified couple stress theory. Compos Struct 143:75–83CrossRef Ilkhani MR, Hosseini-Hashemi S (2016) Size dependent vibro-buckling of rotating beam based on modified couple stress theory. Compos Struct 143:75–83CrossRef
Zurück zum Zitat Kazemirad S, Ghayesh MH, Amabili M (2013) Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Arch Appl Mech 83:25–42CrossRefMATH Kazemirad S, Ghayesh MH, Amabili M (2013) Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Arch Appl Mech 83:25–42CrossRefMATH
Zurück zum Zitat Khaniki HB, Hosseini-Hashemi Sh (2017a) The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory. Eur Phys J Plus 132(5):1–18 Khaniki HB, Hosseini-Hashemi Sh (2017a) The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory. Eur Phys J Plus 132(5):1–18
Zurück zum Zitat Khaniki HB, Hosseini-Hashemi Sh (201b7) Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle. Int J Eng Sci 115:51–72MathSciNetCrossRef Khaniki HB, Hosseini-Hashemi Sh (201b7) Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle. Int J Eng Sci 115:51–72MathSciNetCrossRef
Zurück zum Zitat Kiani K (2013) Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr Appl Phys 13:1651–1660CrossRef Kiani K (2013) Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr Appl Phys 13:1651–1660CrossRef
Zurück zum Zitat Kiani K (2014) Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials. Compos Struct 107:610–619CrossRef Kiani K (2014) Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials. Compos Struct 107:610–619CrossRef
Zurück zum Zitat Lam DCC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508CrossRefMATH Lam DCC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508CrossRefMATH
Zurück zum Zitat Lee SY, Kuo YH (1992) Bending vibrations of a rotating non-uniform beam with an elastically restrained root. J Sound Vib 154:441–451CrossRefMATH Lee SY, Kuo YH (1992) Bending vibrations of a rotating non-uniform beam with an elastically restrained root. J Sound Vib 154:441–451CrossRefMATH
Zurück zum Zitat Lei J, He Y, Zhang B, Liu D, Shen L, Guo S (2015) A size-dependent FG micro-plate model incorporating higher-order shear and normal deformation effects based on a modified couple stress theory. Int J Mech Sci 104:8–23CrossRef Lei J, He Y, Zhang B, Liu D, Shen L, Guo S (2015) A size-dependent FG micro-plate model incorporating higher-order shear and normal deformation effects based on a modified couple stress theory. Int J Mech Sci 104:8–23CrossRef
Zurück zum Zitat Lei J, He Y, Guo S, Li Z, Liu D (2016) Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv 6:105202CrossRef Lei J, He Y, Guo S, Li Z, Liu D (2016) Size-dependent vibration of nickel cantilever microbeams: experiment and gradient elasticity. AIP Adv 6:105202CrossRef
Zurück zum Zitat Li L, Hu Y (2015) Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci 97:84–94MathSciNetCrossRef Li L, Hu Y (2015) Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci 97:84–94MathSciNetCrossRef
Zurück zum Zitat Li L, Hu Y, Ling L (2015) Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092CrossRef Li L, Hu Y, Ling L (2015) Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092CrossRef
Zurück zum Zitat Li X, Li L, Hu Y, Ding Z, Deng W (2017) Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct 165:250–265CrossRef Li X, Li L, Hu Y, Ding Z, Deng W (2017) Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct 165:250–265CrossRef
Zurück zum Zitat Lim CW, Li C, Yu J-L (2010) Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech Sin 26:755–765MathSciNetCrossRefMATH Lim CW, Li C, Yu J-L (2010) Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech Sin 26:755–765MathSciNetCrossRefMATH
Zurück zum Zitat Lim CW, Li C, Yu J (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331:2798–2808CrossRef Lim CW, Li C, Yu J (2012) Free torsional vibration of nanotubes based on nonlocal stress theory. J Sound Vib 331:2798–2808CrossRef
Zurück zum Zitat Lim C, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313MathSciNetCrossRefMATH Lim C, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313MathSciNetCrossRefMATH
Zurück zum Zitat Lin SC, Hsiao KM (2001) Vibration analysis of a rotating Timoshenko beam. J Sound Vib 240:303–322CrossRefMATH Lin SC, Hsiao KM (2001) Vibration analysis of a rotating Timoshenko beam. J Sound Vib 240:303–322CrossRefMATH
Zurück zum Zitat Liu D, He Y, Tang X, Ding H, Hu P, Cao P (2012) Size effects in the torsion of microscale copper wires: experiment and analysis. Scripta Mater 66:406–409CrossRef Liu D, He Y, Tang X, Ding H, Hu P, Cao P (2012) Size effects in the torsion of microscale copper wires: experiment and analysis. Scripta Mater 66:406–409CrossRef
Zurück zum Zitat Liu J, Li C, Fan X, Tong L (2017) Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory. Appl Math Model 45:65–84MathSciNetCrossRef Liu J, Li C, Fan X, Tong L (2017) Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory. Appl Math Model 45:65–84MathSciNetCrossRef
Zurück zum Zitat Marynowski K (2014) Axially moving microscale panel model based on modified couple stress theory. J Nanomechanics Micromechanics 5:A4014002CrossRef Marynowski K (2014) Axially moving microscale panel model based on modified couple stress theory. J Nanomechanics Micromechanics 5:A4014002CrossRef
Zurück zum Zitat Mote C Jr (1972) Dynamic stability of axially moving materials. Shock Vib Dig 4:2–11CrossRef Mote C Jr (1972) Dynamic stability of axially moving materials. Shock Vib Dig 4:2–11CrossRef
Zurück zum Zitat Ni Q, Li M, Tang M, Wang L (2014) Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. J Sound Vib 333:2543–2555CrossRef Ni Q, Li M, Tang M, Wang L (2014) Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. J Sound Vib 333:2543–2555CrossRef
Zurück zum Zitat Öz H, Pakdemirli M (1999) Vibrations of an axially moving beam with time-dependent velocity. J Sound Vib 227:239–257CrossRef Öz H, Pakdemirli M (1999) Vibrations of an axially moving beam with time-dependent velocity. J Sound Vib 227:239–257CrossRef
Zurück zum Zitat Pellicano F, Vestroni F (2002) Complex dynamics of high-speed axially moving systems. J Sound Vib 258:31–44CrossRef Pellicano F, Vestroni F (2002) Complex dynamics of high-speed axially moving systems. J Sound Vib 258:31–44CrossRef
Zurück zum Zitat Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307CrossRefMATH Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307CrossRefMATH
Zurück zum Zitat Rezaee M, Lotfan S (2015) Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity. Int J Mech Sci 96:36–46CrossRef Rezaee M, Lotfan S (2015) Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity. Int J Mech Sci 96:36–46CrossRef
Zurück zum Zitat Schilhansl MJ (1958) Bending frequency of a rotating cantilever beam. ASME J Appl Mech 25:28–30MathSciNetMATH Schilhansl MJ (1958) Bending frequency of a rotating cantilever beam. ASME J Appl Mech 25:28–30MathSciNetMATH
Zurück zum Zitat Şimşek M (2016) Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int J Eng Sci 105:12–27MathSciNetCrossRef Şimşek M (2016) Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int J Eng Sci 105:12–27MathSciNetCrossRef
Zurück zum Zitat Sinha SK (2007) Combined torsional-bending-axial dynamics of a twisted rotating Cantilever Timoshenko beam with contact-impact loads at the free end. J Appl Mech 74:505–522CrossRefMATH Sinha SK (2007) Combined torsional-bending-axial dynamics of a twisted rotating Cantilever Timoshenko beam with contact-impact loads at the free end. J Appl Mech 74:505–522CrossRefMATH
Zurück zum Zitat Stylianou M, Tabarrok B (1994) Finite element analysis of an axially moving beam, Part II: stability analysis. J Sound Vib 178:455–481CrossRef Stylianou M, Tabarrok B (1994) Finite element analysis of an axially moving beam, Part II: stability analysis. J Sound Vib 178:455–481CrossRef
Zurück zum Zitat Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64MathSciNetCrossRef Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64MathSciNetCrossRef
Zurück zum Zitat Thai H-T, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54:58–66MathSciNetCrossRef Thai H-T, Vo TP (2012) A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams. Int J Eng Sci 54:58–66MathSciNetCrossRef
Zurück zum Zitat Torkaman-Asadi M, Rahmanian M, Firouz-Abadi R (2015) Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations. Compos Struct 126:52–61CrossRef Torkaman-Asadi M, Rahmanian M, Firouz-Abadi R (2015) Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations. Compos Struct 126:52–61CrossRef
Zurück zum Zitat Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301CrossRef Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301CrossRef
Zurück zum Zitat Wang Q, Wang C (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702CrossRef Wang Q, Wang C (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702CrossRef
Zurück zum Zitat Wang C, Zhang Y, Ramesh SS, Kitipornchai S (2006) Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39:3904CrossRef Wang C, Zhang Y, Ramesh SS, Kitipornchai S (2006) Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39:3904CrossRef
Zurück zum Zitat Wickert J, Mote C (1990) Classical vibration analysis of axially moving continua. J Appl Mech 57:738–744CrossRefMATH Wickert J, Mote C (1990) Classical vibration analysis of axially moving continua. J Appl Mech 57:738–744CrossRefMATH
Zurück zum Zitat Xu XJ, Wang XC, Zheng ML, Ma Z (2016) Bending and buckling of nonlocal strain gradient elastic beams. Compos Struct 160:366–377CrossRef Xu XJ, Wang XC, Zheng ML, Ma Z (2016) Bending and buckling of nonlocal strain gradient elastic beams. Compos Struct 160:366–377CrossRef
Zurück zum Zitat Xu-Xia G, Zhong-Min W (2010) Thermoelastic coupling vibration characteristics of the axially moving beam with frictional contact. J Vib Acoust 132:051010CrossRef Xu-Xia G, Zhong-Min W (2010) Thermoelastic coupling vibration characteristics of the axially moving beam with frictional contact. J Vib Acoust 132:051010CrossRef
Zurück zum Zitat Yang F, Chong A, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743CrossRefMATH Yang F, Chong A, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743CrossRefMATH
Zurück zum Zitat Yang JB, Jiang LJ, Chen DC (2004) Dynamic modelling and control of a rotating Euler–Bernoulli beam. J Sound Vib 274:863–875MathSciNetCrossRefMATH Yang JB, Jiang LJ, Chen DC (2004) Dynamic modelling and control of a rotating Euler–Bernoulli beam. J Sound Vib 274:863–875MathSciNetCrossRefMATH
Zurück zum Zitat Yao G, Zhang Y-M, Li C-Y, Yang Z (2016) Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment. Acta Mech 227:3517–3527MathSciNetCrossRef Yao G, Zhang Y-M, Li C-Y, Yang Z (2016) Stability analysis and vibration characteristics of an axially moving plate in aero-thermal environment. Acta Mech 227:3517–3527MathSciNetCrossRef
Zurück zum Zitat Yigit A, Scott RA, Ulsoy AG (1988) Flexural motion of a radially rotating beam attached to a rigid body. J Sound Vib 121(2):201–210MathSciNetCrossRefMATH Yigit A, Scott RA, Ulsoy AG (1988) Flexural motion of a radially rotating beam attached to a rigid body. J Sound Vib 121(2):201–210MathSciNetCrossRefMATH
Zurück zum Zitat Young TH (1991) Dynamic resppnse of a pretwisted, tapered beam with non-constant rotating speed. J Sound Vib 150:435–446CrossRef Young TH (1991) Dynamic resppnse of a pretwisted, tapered beam with non-constant rotating speed. J Sound Vib 150:435–446CrossRef
Zurück zum Zitat Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
Zurück zum Zitat Zhang B, He Y, Liu D, Gan Z, Shen L (2013a) A non-classical Mindlin plate finite element based on a modified couple stress theory. Eur J Mech A/Solids 42:63–80MathSciNetCrossRef Zhang B, He Y, Liu D, Gan Z, Shen L (2013a) A non-classical Mindlin plate finite element based on a modified couple stress theory. Eur J Mech A/Solids 42:63–80MathSciNetCrossRef
Zurück zum Zitat Zhang B, He Y, Liu D, Gan Z, Shen L (2013b) A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos Struct 106:374–392CrossRef Zhang B, He Y, Liu D, Gan Z, Shen L (2013b) A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos Struct 106:374–392CrossRef
Zurück zum Zitat Zhang B, He Y, Liu D, Gan Z, Shen L (2014) Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem Anal Des 79:22–39MathSciNetCrossRef Zhang B, He Y, Liu D, Gan Z, Shen L (2014) Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem Anal Des 79:22–39MathSciNetCrossRef
Metadaten
Titel
Dynamic transverse vibration characteristics and vibro-buckling analyses of axially moving and rotating nanobeams based on nonlocal strain gradient theory
verfasst von
Song Guo
Yuming He
Dabiao Liu
Jian Lei
Zhenkun Li
Publikationsdatum
22.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3441-6

Weitere Artikel der Ausgabe 2/2018

Microsystem Technologies 2/2018 Zur Ausgabe

Neuer Inhalt