Skip to main content
Erschienen in: Telecommunication Systems 1/2024

11.11.2023

EELCR: energy efficient lifetime aware cluster based routing technique for wireless sensor networks using optimal clustering and compression

verfasst von: N. Nisha Sulthana, M. Duraipandian

Erschienen in: Telecommunication Systems | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) offer a multitude of advantages and find applications across various domains, garnering substantial research interest. However, a notable drawback in these networks is the energy consumption, which can be mitigated through compression techniques. Additionally, the limited lifespan of sensor batteries remains a concern. Even when incorporating renewable energy sources, ensuring energy efficiency in WSNs is imperative. One prevailing issue is the disregard for spatial data correlation in existing data clustering methods within WSNs. Addressing these challenges necessitates effective modeling and the acquisition of event source locations in the proposed scheme. In this work, we propose an energy-efficient lifetime-aware cluster based routing (EELCR) for WSN. In EELCR technique, modified giant trevally optimization (MGTO) algorithm is introduced for efficient balanced clustering which minimizes energy consumption. An optimal squirrel search (OSS) algorithm is used to selects the best optimal node, named as cluster head (CH) for prolonging the lifetime in the sensor networks. Each CH nodes compress clustering data using optimal selective Huffman compression to achieve maximum compression ratio which overcomes inefficiency of area overhead problem in existing Huffman compression. Furthermore, we develop a hybrid deep learning technique which combines deep neural network (DNN) with Granular neural network (GNN) (named as DGNN) to find optimal way for data broadcast from CH to base station (BS). Finally, we assess the efficacy of the proposed EELCR approach through various simulation scenarios, demonstrating its effectiveness concerning Quality of Service (QoS) parameters. The outcomes reveal a notable enhancement in our coding scheme, with an average compression rate improvement of 9.346% when compared to state-of-the-art coding techniques. Furthermore, our proposed EELCR technique significantly outperforms existing routing methods, exhibiting an average network lifetime improvement of 51.88% in node density considerations and 52.625% in simulation rounds, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mao, W., Zhao, Z., Chang, Z., Min, G., & Gao, W. (2021). Energy-efficient industrial internet of things: Overview and open issues. IEEE Transactions on Industrial Informatics, 17(11), 7225–7237.CrossRef Mao, W., Zhao, Z., Chang, Z., Min, G., & Gao, W. (2021). Energy-efficient industrial internet of things: Overview and open issues. IEEE Transactions on Industrial Informatics, 17(11), 7225–7237.CrossRef
2.
Zurück zum Zitat Li, F., Lam, K. Y., Li, X., Sheng, Z., Hua, J., & Wang, L. (2019). Advances and emerging challenges in cognitive internet-of-things. IEEE Transactions on Industrial Informatics, 16(8), 5489–5496.CrossRef Li, F., Lam, K. Y., Li, X., Sheng, Z., Hua, J., & Wang, L. (2019). Advances and emerging challenges in cognitive internet-of-things. IEEE Transactions on Industrial Informatics, 16(8), 5489–5496.CrossRef
3.
Zurück zum Zitat Yao, Y., Cao, Q., & Vasilakos, A. V. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef Yao, Y., Cao, Q., & Vasilakos, A. V. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.CrossRef
4.
Zurück zum Zitat Xiao, M., Wu, J., & Huang, L. (2014). Time-sensitive utility-based single-copy routing in low-duty-cycle wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(5), 1452–1465.CrossRef Xiao, M., Wu, J., & Huang, L. (2014). Time-sensitive utility-based single-copy routing in low-duty-cycle wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(5), 1452–1465.CrossRef
5.
Zurück zum Zitat Cota-Ruiz, J., Rivas-Perea, P., Sifuentes, E., & Gonzalez-Landaeta, R. (2016). A recursive shortest path routing algorithm with application for wireless sensor network localization. IEEE Sensors Journal, 16(11), 4631–4637.CrossRef Cota-Ruiz, J., Rivas-Perea, P., Sifuentes, E., & Gonzalez-Landaeta, R. (2016). A recursive shortest path routing algorithm with application for wireless sensor network localization. IEEE Sensors Journal, 16(11), 4631–4637.CrossRef
6.
Zurück zum Zitat Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy efficient direction-based PDORP routing protocol for WSN. IEEE Access, 4, 3182–3194.CrossRef Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy efficient direction-based PDORP routing protocol for WSN. IEEE Access, 4, 3182–3194.CrossRef
7.
Zurück zum Zitat Huynh, T. T., Dinh-Duc, A. V., & Tran, C. H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580–588.CrossRef Huynh, T. T., Dinh-Duc, A. V., & Tran, C. H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580–588.CrossRef
8.
Zurück zum Zitat Sasirekha, S., & Swamynathan, S. (2017). Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network. Journal of Communications and Networks, 19(4), 392–401.CrossRef Sasirekha, S., & Swamynathan, S. (2017). Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network. Journal of Communications and Networks, 19(4), 392–401.CrossRef
9.
Zurück zum Zitat Bhavathankar, P., Chatterjee, S., & Misra, S. (2017). Link-quality aware path selection in the presence of proactive jamming in fallible wireless sensor networks. IEEE Transactions on Communications, 66(4), 1689–1704.CrossRef Bhavathankar, P., Chatterjee, S., & Misra, S. (2017). Link-quality aware path selection in the presence of proactive jamming in fallible wireless sensor networks. IEEE Transactions on Communications, 66(4), 1689–1704.CrossRef
10.
Zurück zum Zitat Saleem, F., Majeed, M. N., Iqbal, J., Waheed, A., Rauf, A., Zareei, M., & Mohamed, E. M. (2021). Ant lion optimizer based clustering algorithm for wireless body area networks in livestock industry. IEEE Access, 9, 114495–114513.CrossRef Saleem, F., Majeed, M. N., Iqbal, J., Waheed, A., Rauf, A., Zareei, M., & Mohamed, E. M. (2021). Ant lion optimizer based clustering algorithm for wireless body area networks in livestock industry. IEEE Access, 9, 114495–114513.CrossRef
11.
Zurück zum Zitat Yang, L., Lu, Y., Yang, S. X., Guo, T., & Liang, Z. (2020). A secure clustering protocol with fuzzy trust evaluation and outlier detection for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 17(7), 4837–4847.CrossRef Yang, L., Lu, Y., Yang, S. X., Guo, T., & Liang, Z. (2020). A secure clustering protocol with fuzzy trust evaluation and outlier detection for industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 17(7), 4837–4847.CrossRef
12.
Zurück zum Zitat Zheng, J., Wang, P., & Li, C. (2010). Distributed data aggregation using Slepian-Wolf coding in cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 59(5), 2564–2574.CrossRef Zheng, J., Wang, P., & Li, C. (2010). Distributed data aggregation using Slepian-Wolf coding in cluster-based wireless sensor networks. IEEE Transactions on Vehicular Technology, 59(5), 2564–2574.CrossRef
13.
Zurück zum Zitat Paek, J., & Ko, J. (2015). $ K $-Means clustering-based data compression scheme for wireless imaging sensor networks. IEEE Systems Journal, 11(4), 2652–2662.CrossRef Paek, J., & Ko, J. (2015). $ K $-Means clustering-based data compression scheme for wireless imaging sensor networks. IEEE Systems Journal, 11(4), 2652–2662.CrossRef
14.
Zurück zum Zitat Arunraja, M., Malathi, V., & Sakthivel, E. (2015). Distributed similarity based clustering and compressed forwarding for wireless sensor networks. ISA Transactions, 59, 180–192.CrossRef Arunraja, M., Malathi, V., & Sakthivel, E. (2015). Distributed similarity based clustering and compressed forwarding for wireless sensor networks. ISA Transactions, 59, 180–192.CrossRef
15.
Zurück zum Zitat Lan, K. C., & Wei, M. Z. (2017). A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sensors Journal, 17(8), 2550–2562.CrossRef Lan, K. C., & Wei, M. Z. (2017). A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sensors Journal, 17(8), 2550–2562.CrossRef
16.
Zurück zum Zitat Wei, Z., Lijuan, S., Jian, G., & Linfeng, L. (2016). Image compression scheme based on PCA for wireless multimedia sensor networks. The Journal of China Universities of Posts and Telecommunications, 23(1), 22–30.CrossRef Wei, Z., Lijuan, S., Jian, G., & Linfeng, L. (2016). Image compression scheme based on PCA for wireless multimedia sensor networks. The Journal of China Universities of Posts and Telecommunications, 23(1), 22–30.CrossRef
17.
Zurück zum Zitat Chen, S., Liu, J., Wang, K., & Wu, M. (2019). A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks. Wireless Networks, 25(1), 429–438.CrossRef Chen, S., Liu, J., Wang, K., & Wu, M. (2019). A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks. Wireless Networks, 25(1), 429–438.CrossRef
18.
Zurück zum Zitat Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2019). A new lossless neighborhood indexing sequence (NIS) algorithm for data compression in wireless sensor networks. Ad Hoc Networks, 83, 149–157.CrossRef Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2019). A new lossless neighborhood indexing sequence (NIS) algorithm for data compression in wireless sensor networks. Ad Hoc Networks, 83, 149–157.CrossRef
19.
Zurück zum Zitat Pacharaney, U. S., & Gupta, R. K. (2019). Clustering and compressive data gathering in wireless sensor network. Wireless Personal Communications, 109(2), 1311–1331.CrossRef Pacharaney, U. S., & Gupta, R. K. (2019). Clustering and compressive data gathering in wireless sensor network. Wireless Personal Communications, 109(2), 1311–1331.CrossRef
20.
Zurück zum Zitat Chen, S., Zhang, S., Zheng, X., & Ruan, X. (2019). Layered adaptive compression design for efficient data collection in industrial wireless sensor networks. Journal of Network and Computer Applications, 129, 37–45.CrossRef Chen, S., Zhang, S., Zheng, X., & Ruan, X. (2019). Layered adaptive compression design for efficient data collection in industrial wireless sensor networks. Journal of Network and Computer Applications, 129, 37–45.CrossRef
21.
Zurück zum Zitat Sheeja, R., & Sutha, J. (2020). Soft fuzzy computing to medical image compression in wireless sensor network-based tele medicine system. Multimedia Tools and Applications, 79(15), 10215–10232.CrossRef Sheeja, R., & Sutha, J. (2020). Soft fuzzy computing to medical image compression in wireless sensor network-based tele medicine system. Multimedia Tools and Applications, 79(15), 10215–10232.CrossRef
22.
Zurück zum Zitat Ghaderi, M. R., TabatabaVakili, V., & Sheikhan, M. (2020). FGAF-CDG: Fuzzy geographic routing protocol based on compressive data gathering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(6), 2567–2589.CrossRef Ghaderi, M. R., TabatabaVakili, V., & Sheikhan, M. (2020). FGAF-CDG: Fuzzy geographic routing protocol based on compressive data gathering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(6), 2567–2589.CrossRef
23.
Zurück zum Zitat Singh, A., & Nagaraju, A. (2020). Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN. Ad Hoc Networks, 107, 102182.CrossRef Singh, A., & Nagaraju, A. (2020). Low latency and energy efficient routing-aware network coding-based data transmission in multi-hop and multi-sink WSN. Ad Hoc Networks, 107, 102182.CrossRef
24.
Zurück zum Zitat Rani, M. J., & Vasanthanayaki, C. (2020). Network condition based multi-level image compression and transmission in WSN. Computer Communications, 150, 317–324.CrossRef Rani, M. J., & Vasanthanayaki, C. (2020). Network condition based multi-level image compression and transmission in WSN. Computer Communications, 150, 317–324.CrossRef
25.
Zurück zum Zitat Aziz, A., Osamy, W., Khedr, A. M., El-Sawy, A. A., & Singh, K. (2020). Grey Wolf based compressive sensing scheme for data gathering in IoT based heterogeneous WSNs. Wireless Networks, 26(5), 3395–3418.CrossRef Aziz, A., Osamy, W., Khedr, A. M., El-Sawy, A. A., & Singh, K. (2020). Grey Wolf based compressive sensing scheme for data gathering in IoT based heterogeneous WSNs. Wireless Networks, 26(5), 3395–3418.CrossRef
26.
Zurück zum Zitat Reddy, V., & Gayathri, P. (2020). Energy efficient data transmission in WSN thru compressive slender penetrative etiquette. Journal of Ambient Intelligence and Humanized Computing, 11(11), 4681–4693.CrossRef Reddy, V., & Gayathri, P. (2020). Energy efficient data transmission in WSN thru compressive slender penetrative etiquette. Journal of Ambient Intelligence and Humanized Computing, 11(11), 4681–4693.CrossRef
27.
Zurück zum Zitat Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2020). An efficient compressive sensing routing scheme for internet of things based wireless sensor networks. Wireless Personal Communications, 114(3), 1905–1925.CrossRef Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2020). An efficient compressive sensing routing scheme for internet of things based wireless sensor networks. Wireless Personal Communications, 114(3), 1905–1925.CrossRef
28.
Zurück zum Zitat Ghaderi, M. R., TabatabaVakili, V., & Sheikhan, M. (2021). Compressive sensing-based energy consumption model for data gathering techniques in wireless sensor networks. Telecommunication Systems, 77(1), 83–108.CrossRef Ghaderi, M. R., TabatabaVakili, V., & Sheikhan, M. (2021). Compressive sensing-based energy consumption model for data gathering techniques in wireless sensor networks. Telecommunication Systems, 77(1), 83–108.CrossRef
29.
Zurück zum Zitat Jari, A., & Avokh, A. (2021). PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory. Engineering Applications of Artificial Intelligence, 100, 104164.CrossRef Jari, A., & Avokh, A. (2021). PSO-based sink placement and load-balanced anycast routing in multi-sink WSNs considering compressive sensing theory. Engineering Applications of Artificial Intelligence, 100, 104164.CrossRef
30.
Zurück zum Zitat Molk, A.M.N.G., Ghoreishi, S.M., Ghasemi, F. and Elyasi, I. (2022). Improve performances of wireless sensor networks for data transfer based on fuzzy clustering and huffman compression. Journal of Sensors. Molk, A.M.N.G., Ghoreishi, S.M., Ghasemi, F. and Elyasi, I. (2022). Improve performances of wireless sensor networks for data transfer based on fuzzy clustering and huffman compression. Journal of Sensors.
31.
Zurück zum Zitat Mishra, M., Sen Gupta, G., & Gui, X. (2022). Investigation of energy cost of data compression algorithms in WSN for IoT applications. Sensors, 22(19), 7685.CrossRef Mishra, M., Sen Gupta, G., & Gui, X. (2022). Investigation of energy cost of data compression algorithms in WSN for IoT applications. Sensors, 22(19), 7685.CrossRef
Metadaten
Titel
EELCR: energy efficient lifetime aware cluster based routing technique for wireless sensor networks using optimal clustering and compression
verfasst von
N. Nisha Sulthana
M. Duraipandian
Publikationsdatum
11.11.2023
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 1/2024
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-023-01068-4

Weitere Artikel der Ausgabe 1/2024

Telecommunication Systems 1/2024 Zur Ausgabe

Neuer Inhalt