Skip to main content
Erschienen in: Telecommunication Systems 1/2021

03.01.2021

Compressive sensing-based energy consumption model for data gathering techniques in wireless sensor networks

verfasst von: Mohammad Reza Ghaderi, Vahid Tabataba Vakili, Mansour Sheikhan

Erschienen in: Telecommunication Systems | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nowadays, wireless sensor networks (WSNs) have found many applications in a variety of topics. The main objective in WSNs is to measure environmental phenomena and send reading data to the sink in multi-hop paths. The most important challenge in WSNs is to minimize energy consumption in the sensor nodes and increase the network lifetime. One of the most effective techniques for reducing energy consumption in WSNs is the compressive sensing (CS) which has recently been considered by the researchers. CS reduces the network energy consumption by reducing the number and size of transmitted data packets over the network. On the other hand, in order to overcome the challenge of energy consumption in the network, it is necessary to identify and analyze the energy consumption resources of the network. Although many models have been proposed for energy consumption analysis in the WSN, but these models were not based on the CS technique. Therefore, we have proposed a complete model in this work for energy consumption analysis in various CS-based data gathering techniques in WSNs. This model can be very effective in energy consumption optimization when designing a CS-based data gathering technique for WSN.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(14), 393–422.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(14), 393–422.CrossRef
2.
Zurück zum Zitat Xiong, Z., Liveris, A., & Cheng, S. (2004). Distributed source coding for sensor networks. IEEE Signal Processing Magazine, 21(5), 80–94.CrossRef Xiong, Z., Liveris, A., & Cheng, S. (2004). Distributed source coding for sensor networks. IEEE Signal Processing Magazine, 21(5), 80–94.CrossRef
3.
Zurück zum Zitat Lee, J., & Cheng, W. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2897.CrossRef Lee, J., & Cheng, W. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2897.CrossRef
4.
Zurück zum Zitat Zahhad, M. A., Amin, O., Farrag, M., & Ali, A. (2015). An energy consumption model for wireless sensor networks. In IEEE 5th international conference on energy aware computing systems & applications, Egypt, March 2015. Zahhad, M. A., Amin, O., Farrag, M., & Ali, A. (2015). An energy consumption model for wireless sensor networks. In IEEE 5th international conference on energy aware computing systems & applications, Egypt, March 2015.
5.
Zurück zum Zitat Haupt, J., Bajwa, W., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data. Signal Processing Magazine, 25(2), 92–101.CrossRef Haupt, J., Bajwa, W., Rabbat, M., & Nowak, R. (2008). Compressed sensing for networked data. Signal Processing Magazine, 25(2), 92–101.CrossRef
6.
Zurück zum Zitat Mahmudimanesh, M., Khelil, A., & Suri, N. (2012). Balanced spatio-temporal compressive sensing for multi-hop wireless sensornetworks. In Proceedings of the IEEE 9th international conference on mobile ad hoc and sensor systems, USA, Oct. 2012. Mahmudimanesh, M., Khelil, A., & Suri, N. (2012). Balanced spatio-temporal compressive sensing for multi-hop wireless sensornetworks. In Proceedings of the IEEE 9th international conference on mobile ad hoc and sensor systems, USA, Oct. 2012.
7.
Zurück zum Zitat Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35(3), 40–58.CrossRef Qin, Z., Fan, J., Liu, Y., Gao, Y., & Li, G. Y. (2018). Sparse representation for wireless communications: A compressive sensing approach. IEEE Signal Processing Magazine, 35(3), 40–58.CrossRef
8.
Zurück zum Zitat Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal compressive data gathering in wireless sensor networks. IEEE Communication Letters, 14(3), 578–581.CrossRef Quan, L., Xiao, S., Xue, X., & Lu, C. (2016). Neighbor-aided spatial-temporal compressive data gathering in wireless sensor networks. IEEE Communication Letters, 14(3), 578–581.CrossRef
9.
Zurück zum Zitat Candes, E., & Wakin, M. (2008). An introduction to compressive sampling. Signal Processing Magazine, 25(2), 21–30.CrossRef Candes, E., & Wakin, M. (2008). An introduction to compressive sampling. Signal Processing Magazine, 25(2), 21–30.CrossRef
10.
Zurück zum Zitat Wakin, M. B., Duarte, M. F., Sarvotham, S., Baron, D., & Baraniuk, R. G. (2009). Recovery of jointly sparse signals from few random. In Proceedings of the 15th ACM MobiCom, Beijing, China (pp. 145–156). Wakin, M. B., Duarte, M. F., Sarvotham, S., Baron, D., & Baraniuk, R. G. (2009). Recovery of jointly sparse signals from few random. In Proceedings of the 15th ACM MobiCom, Beijing, China (pp. 145–156).
11.
Zurück zum Zitat Tropp, J., & Gilbert, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.CrossRef Tropp, J., & Gilbert, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.CrossRef
12.
Zurück zum Zitat Kulkarni, A., & Mohsenin, T. (2017). Low overhead architectures for OMP compressive sensing reconstruction algorithm. IEEE Transactions on Circuits and Systems, 64(6), 1468–1480.CrossRef Kulkarni, A., & Mohsenin, T. (2017). Low overhead architectures for OMP compressive sensing reconstruction algorithm. IEEE Transactions on Circuits and Systems, 64(6), 1468–1480.CrossRef
13.
Zurück zum Zitat Donoho, D. L., Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse over complete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1), 6–18.CrossRef Donoho, D. L., Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse over complete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1), 6–18.CrossRef
14.
Zurück zum Zitat Yadav, S., & Kumar, V. (2019). Hybrid compressive sensing enabled energy efficient transmission of multi-hop clustered UWSNs. International Journal of Electronics and Communications (AEÜ), 110, 1–10.CrossRef Yadav, S., & Kumar, V. (2019). Hybrid compressive sensing enabled energy efficient transmission of multi-hop clustered UWSNs. International Journal of Electronics and Communications (AEÜ), 110, 1–10.CrossRef
15.
Zurück zum Zitat Candes, E., & Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3), 969–985.CrossRef Candes, E., & Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3), 969–985.CrossRef
16.
Zurück zum Zitat Mehrjoo, S., & Khunjush, F. (2018). Accurate compressive data gathering in wireless sensor networks using weighted spatio-temporal compressive sensing. Telecommunication Systems, 68(1), 79–88.CrossRef Mehrjoo, S., & Khunjush, F. (2018). Accurate compressive data gathering in wireless sensor networks using weighted spatio-temporal compressive sensing. Telecommunication Systems, 68(1), 79–88.CrossRef
17.
Zurück zum Zitat Ali, B., Pissinou, N., & Makki, K. (2009). Identification and validation of spatio-temporal associations in wireless sensor networks. In Proceedings of the SENSORCOMM, Athens, Greece, Jun. 2009 (pp. 496–501). Ali, B., Pissinou, N., & Makki, K. (2009). Identification and validation of spatio-temporal associations in wireless sensor networks. In Proceedings of the SENSORCOMM, Athens, Greece, Jun. 2009 (pp. 496–501).
18.
Zurück zum Zitat Tayeh, G. B., Makhoul, A., Perera, C., & Demerjian, J. (2019). A spatial-temporal correlation approach for data reduction in cluster-based sensor networks. IEEE Access, 7, 50669–50680.CrossRef Tayeh, G. B., Makhoul, A., Perera, C., & Demerjian, J. (2019). A spatial-temporal correlation approach for data reduction in cluster-based sensor networks. IEEE Access, 7, 50669–50680.CrossRef
19.
Zurück zum Zitat Cai, W., & Zhang, M. (2018). Spatio-temporal correlation–based adaptive sampling algorithm for clustered wireless sensor networks. International Journal of Distributed Sensor Networks, 14(8), 1–14.CrossRef Cai, W., & Zhang, M. (2018). Spatio-temporal correlation–based adaptive sampling algorithm for clustered wireless sensor networks. International Journal of Distributed Sensor Networks, 14(8), 1–14.CrossRef
20.
Zurück zum Zitat Jiang, D., Nie, L., Lv, Z., & Song, H. (2016). Spatio-temporal Kronecker compressive sensing for traffic matrix recovery. IEEE Access: Practical Innovations, Open Solutions, 4, 3046–3053.CrossRef Jiang, D., Nie, L., Lv, Z., & Song, H. (2016). Spatio-temporal Kronecker compressive sensing for traffic matrix recovery. IEEE Access: Practical Innovations, Open Solutions, 4, 3046–3053.CrossRef
21.
Zurück zum Zitat Gong, B., Cheng, P., Chen, Z., Liu, N., Gui, L., & de Hoog, F. (2015). Spatio-temporal compressive network coding for energy-efficient distributed data storage in wireless sensor networks. IEEE Communication Letters, 19(5), 803–806.CrossRef Gong, B., Cheng, P., Chen, Z., Liu, N., Gui, L., & de Hoog, F. (2015). Spatio-temporal compressive network coding for energy-efficient distributed data storage in wireless sensor networks. IEEE Communication Letters, 19(5), 803–806.CrossRef
22.
Zurück zum Zitat Leinonen, M., & Member, S. (2015). Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks. IEEE Transactions on Wireless Communication, 14(3), 1622–1635.CrossRef Leinonen, M., & Member, S. (2015). Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks. IEEE Transactions on Wireless Communication, 14(3), 1622–1635.CrossRef
23.
Zurück zum Zitat Duarte, M., & Baraniuk, R. (2010). Kronecker product matrices for compressive sensing. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing, Dallas, TX, USA (pp. 3650–3653). Duarte, M., & Baraniuk, R. (2010). Kronecker product matrices for compressive sensing. In Proceedings of the IEEE international conference on acoustics, speech, and  signal processing, Dallas, TX, USA (pp. 3650–3653).
24.
Zurück zum Zitat Haque, M., Ahmad, A.,&Imran, M. (2017). Review of hierarchical routing protocols for wireless sensor networks. In Proceedings of the intelligent communication and computational technologies (pp. 237–246). Haque, M., Ahmad, A.,&Imran, M. (2017). Review of hierarchical routing protocols for wireless sensor networks. In Proceedings of the intelligent communication and computational technologies (pp. 237–246).
25.
Zurück zum Zitat Shafiq, M., Ashraf, H., Ullah, A., & Tahira, S. (2020). Systematic literature review on energy efficient routing schemes in WSN: A survey. Mobile Networks and Applications, 25(1), 882–895.CrossRef Shafiq, M., Ashraf, H., Ullah, A., & Tahira, S. (2020). Systematic literature review on energy efficient routing schemes in WSN: A survey. Mobile Networks and Applications, 25(1), 882–895.CrossRef
26.
Zurück zum Zitat Chan, L., Chavez, K. G., Rudolph, H., & Hourani, A. (2020). Hierarchical routing protocols for wireless sensor network: A compressive survey. Wireless Networks, 26(1), 3291–3314.CrossRef Chan, L., Chavez, K. G., Rudolph, H., & Hourani, A. (2020). Hierarchical routing protocols for wireless sensor network: A compressive survey. Wireless Networks, 26(1), 3291–3314.CrossRef
27.
Zurück zum Zitat Purkait, R., & Tripathi, S. (2016). Energy aware fuzzy based multi-hop routing protocol using unequal clustering. Wireless Personal Communications, 94, 809–833.CrossRef Purkait, R., & Tripathi, S. (2016). Energy aware fuzzy based multi-hop routing protocol using unequal clustering. Wireless Personal Communications, 94, 809–833.CrossRef
28.
Zurück zum Zitat Lan, K. C., & Wei, M. Z. (2017). A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sensors Journal, 17(8), 2550–2562.CrossRef Lan, K. C., & Wei, M. Z. (2017). A compressibility-based clustering algorithm for hierarchical compressive data gathering. IEEE Sensors Journal, 17(8), 2550–2562.CrossRef
29.
Zurück zum Zitat Luo, C., et al. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (Mobicom) (pp. 145–156). Luo, C., et al. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking (Mobicom) (pp. 145–156).
30.
Zurück zum Zitat Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806–815.CrossRef Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806–815.CrossRef
31.
Zurück zum Zitat Xu, X., Ansari, R., Khokhar, A., & Vacilacos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks, 11(3), 1–25.CrossRef Xu, X., Ansari, R., Khokhar, A., & Vacilacos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks, 11(3), 1–25.CrossRef
32.
Zurück zum Zitat Majma, M. R., Pedram, H., & Dehghan, M. (2014). IGBDD: Intelligent grid based data dissemination protocol for mobile sink in wireless sensor networks. Wireless Personal Communications, 78(1), 687–714.CrossRef Majma, M. R., Pedram, H., & Dehghan, M. (2014). IGBDD: Intelligent grid based data dissemination protocol for mobile sink in wireless sensor networks. Wireless Personal Communications, 78(1), 687–714.CrossRef
33.
Zurück zum Zitat Soni, V., & Mallick, D. K. (2017). FTGAF-HEX: Fuzzy logic based two level geographic routing protocol in wireless sensor networks. Microsystem Technology, 23(8), 3443–3455.CrossRef Soni, V., & Mallick, D. K. (2017). FTGAF-HEX: Fuzzy logic based two level geographic routing protocol in wireless sensor networks. Microsystem Technology, 23(8), 3443–3455.CrossRef
34.
Zurück zum Zitat Ghaderi, M. R., Tabataba Vakili, V., & Sheikhan, M. (2020). FGAF-CDG: Fuzzy geographic routing protocol based on compressive data gathering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(3), 2567–2589.CrossRef Ghaderi, M. R., Tabataba Vakili, V., & Sheikhan, M. (2020). FGAF-CDG: Fuzzy geographic routing protocol based on compressive data gathering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(3), 2567–2589.CrossRef
35.
Zurück zum Zitat Pacharaney, U. S., & Gupta, R. K. (2019). Clustering and compressive data gathering in wireless sensor network. Wireless Personal Communications, 109, 1311–1331.CrossRef Pacharaney, U. S., & Gupta, R. K. (2019). Clustering and compressive data gathering in wireless sensor network. Wireless Personal Communications, 109, 1311–1331.CrossRef
36.
Zurück zum Zitat Abo-Zahhad, M., Amin, O., Farrag, M., & Ali, A. (2014). Survey on energy consumption models in wireless sensor networks. Open Transactions on Wireless Communications, 1(1), 63–79. Abo-Zahhad, M., Amin, O., Farrag, M., & Ali, A. (2014). Survey on energy consumption models in wireless sensor networks. Open Transactions on Wireless Communications, 1(1), 63–79.
37.
Zurück zum Zitat Karakus, C., Gurbuz, A. C., & Tavli, B. (2013). Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sensors Journal, 13(5), 1999–2008.CrossRef Karakus, C., Gurbuz, A. C., & Tavli, B. (2013). Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sensors Journal, 13(5), 1999–2008.CrossRef
38.
Zurück zum Zitat Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks? In Proceeding of the IEEE international conference on communications, Cape Town, South Africa. Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks? In Proceeding of the IEEE international conference on communications, Cape Town, South Africa.
39.
Zurück zum Zitat Ali, A., Abo-Zahhad, M., & Farrag, M. (2017). Modeling of wireless sensor networks with minimum energy consumption. Arabian Journal for Science and Engineering, 42(7), 2631–2639.CrossRef Ali, A., Abo-Zahhad, M., & Farrag, M. (2017). Modeling of wireless sensor networks with minimum energy consumption. Arabian Journal for Science and Engineering, 42(7), 2631–2639.CrossRef
43.
Zurück zum Zitat Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application- specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). An application- specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
45.
Zurück zum Zitat Valle-Soto, C. D., Mex-Perera, C., Nolazco-Flores, J. A., Velázquez, R., & Rossa-Sierra, A. (2020). Wireless sensor network energy model and its use in the optimization of routing protocols. Sensors, 13(3), 1–33. Valle-Soto, C. D., Mex-Perera, C., Nolazco-Flores, J. A., Velázquez, R., & Rossa-Sierra, A. (2020). Wireless sensor network energy model and its use in the optimization of routing protocols. Sensors, 13(3), 1–33.
46.
Zurück zum Zitat Vales-Alonso, J., Egea-Lopez, E., Martínez-Sala, A., Pavon-Marino, P., Bueno-Delgado, M. V., & García-Haro, J. (2007). Performance evaluation of MAC transmission power control in wireless sensor networks. Computer Networks, 51(6), 1483–1498.CrossRef Vales-Alonso, J., Egea-Lopez, E., Martínez-Sala, A., Pavon-Marino, P., Bueno-Delgado, M. V., & García-Haro, J. (2007). Performance evaluation of MAC transmission power control in wireless sensor networks. Computer Networks, 51(6), 1483–1498.CrossRef
47.
Zurück zum Zitat Djiroun, F. Z., & Djenouri, D. (2017). MAC protocols with wake-up radio for wireless sensor networks: A review. IEEE Communications Surveys & Tutorials, 19(1), 587–618.CrossRef Djiroun, F. Z., & Djenouri, D. (2017). MAC protocols with wake-up radio for wireless sensor networks: A review. IEEE Communications Surveys & Tutorials, 19(1), 587–618.CrossRef
48.
Zurück zum Zitat Rasul, A., & Erlebach, T. (2014). Reducing idle listening during data collection in wireless sensor networks. In Proceedings of the 10th international conference on mobile ad-hoc and sensor networks, Maui, HI, USA. Rasul, A., & Erlebach, T. (2014). Reducing idle listening during data collection in wireless sensor networks. In Proceedings of the 10th international conference on mobile ad-hoc and sensor networks, Maui, HI, USA.
49.
Zurück zum Zitat Minh, N. N., & Kim, M. K. (2016). Reducing idle listening time in pipeline-forwarding MAC protocols of wireless sensor networks. In Proceedings of the IEEE international conference on advanced technologies for communications (ATC), Hanoi, Vietnam. Minh, N. N., & Kim, M. K. (2016). Reducing idle listening time in pipeline-forwarding MAC protocols of wireless sensor networks. In Proceedings of the IEEE international conference on advanced technologies for communications (ATC), Hanoi, Vietnam.
50.
Zurück zum Zitat Lee, S. H., & Choi, L. (2017). Zero MAC: Toward a zero sleep delay and zero idle listening media access control protocol with ultralow power radio frequency wakeup sensor. International Journal of Distributed Sensor Networks, 13(8), 1–21. Lee, S. H., & Choi, L. (2017). Zero MAC: Toward a zero sleep delay and zero idle listening media access control protocol with ultralow power radio frequency wakeup sensor. International Journal of Distributed Sensor Networks, 13(8), 1–21.
Metadaten
Titel
Compressive sensing-based energy consumption model for data gathering techniques in wireless sensor networks
verfasst von
Mohammad Reza Ghaderi
Vahid Tabataba Vakili
Mansour Sheikhan
Publikationsdatum
03.01.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 1/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-020-00748-9

Weitere Artikel der Ausgabe 1/2021

Telecommunication Systems 1/2021 Zur Ausgabe

Neuer Inhalt