Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2018

05.04.2018

Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

verfasst von: Yongda Ye, Haibo Wang, Guoyi Tang, Guolin Song

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.S. Milovanović, B.B. Radak, B.M. Gaković, D. Batani, M.D. Momčilović, and M.S. Trtica, Surface Morphology Modifications of Titanium Based Implant Induced by 40 picosecond laser Pulses at 266 nm, J. Alloys Compd., 2010, 501(1), p 89–92CrossRef D.S. Milovanović, B.B. Radak, B.M. Gaković, D. Batani, M.D. Momčilović, and M.S. Trtica, Surface Morphology Modifications of Titanium Based Implant Induced by 40 picosecond laser Pulses at 266 nm, J. Alloys Compd., 2010, 501(1), p 89–92CrossRef
2.
Zurück zum Zitat M. Masmoudi, M. Assoul, M. Wery, R. Abdelhedi, F.E. Halouani, and G. Monteil, Wear Behaviour of Nitric Acid Passivated cp Ti and Ti6Al4V, J. Alloys Compd., 2009, 478(1–2), p 726–730CrossRef M. Masmoudi, M. Assoul, M. Wery, R. Abdelhedi, F.E. Halouani, and G. Monteil, Wear Behaviour of Nitric Acid Passivated cp Ti and Ti6Al4V, J. Alloys Compd., 2009, 478(1–2), p 726–730CrossRef
3.
Zurück zum Zitat C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, Z. Kai, J.M.K. Wiezorek, Z. Zhou, D. Qian, and S.R. Mannava, Gradient Nanostructure and Residual Stresses Induced by Ultrasonic Nano-crystal SURFACE Modification in 304 Austenitic Stainless Steel for High Strength and High Ductility, Mater. Sci. Eng. A, 2014, 613(11–12), p 274–288CrossRef C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, Z. Kai, J.M.K. Wiezorek, Z. Zhou, D. Qian, and S.R. Mannava, Gradient Nanostructure and Residual Stresses Induced by Ultrasonic Nano-crystal SURFACE Modification in 304 Austenitic Stainless Steel for High Strength and High Ductility, Mater. Sci. Eng. A, 2014, 613(11–12), p 274–288CrossRef
4.
Zurück zum Zitat A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, and E.A. Sinyakova, Mechanisms of Surface Roughening of Commercial Purity Titanium During Ultrasonic Impact Treatment, Mater. Sci. Eng. A, 2015, 647, p 43–50CrossRef A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, and E.A. Sinyakova, Mechanisms of Surface Roughening of Commercial Purity Titanium During Ultrasonic Impact Treatment, Mater. Sci. Eng. A, 2015, 647, p 43–50CrossRef
5.
Zurück zum Zitat A. Amanov, Y.S. Pyun, and S. Sasaki, Effects of Ultrasonic Nanocrystalline Surface Modification (UNSM) Technique on the Tribological Behavior of Sintered Cu-Based Alloy, Tribol. Int., 2014, 72(4), p 187–197CrossRef A. Amanov, Y.S. Pyun, and S. Sasaki, Effects of Ultrasonic Nanocrystalline Surface Modification (UNSM) Technique on the Tribological Behavior of Sintered Cu-Based Alloy, Tribol. Int., 2014, 72(4), p 187–197CrossRef
6.
Zurück zum Zitat V. Singh and M. Marya, Surface Modification of Oilfield Alloys by Ultrasonic Impact Peening: UNS N07718, N07716, G41400, and S17400, J. Mater. Eng. Perform., 2016, 25(1), p 338–347CrossRef V. Singh and M. Marya, Surface Modification of Oilfield Alloys by Ultrasonic Impact Peening: UNS N07718, N07716, G41400, and S17400, J. Mater. Eng. Perform., 2016, 25(1), p 338–347CrossRef
7.
Zurück zum Zitat X.J. Cao, Y.S. Pyoun, and R. Murakami, Fatigue Properties of a S45C Steel Subjected to Ultrasonic Nanocrystal Surface Modification, Appl. Surf. Sci., 2010, 256(21), p 6297–6303CrossRef X.J. Cao, Y.S. Pyoun, and R. Murakami, Fatigue Properties of a S45C Steel Subjected to Ultrasonic Nanocrystal Surface Modification, Appl. Surf. Sci., 2010, 256(21), p 6297–6303CrossRef
8.
Zurück zum Zitat A. Amanov, I.S. Cho, and Y.S. Pyun, Microstructural Evolution and Surface Properties of Nanostructured Cu-Based Alloy by Ultrasonic Nanocrystalline Surface Modification Technique, Appl. Surf. Sci., 2016, 388, p 185–195CrossRef A. Amanov, I.S. Cho, and Y.S. Pyun, Microstructural Evolution and Surface Properties of Nanostructured Cu-Based Alloy by Ultrasonic Nanocrystalline Surface Modification Technique, Appl. Surf. Sci., 2016, 388, p 185–195CrossRef
9.
Zurück zum Zitat J. Yu, G. Gou, L. Zhang, W. Zhang, H. Chen, and Y.P. Yang, Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(7), p 3046–3056CrossRef J. Yu, G. Gou, L. Zhang, W. Zhang, H. Chen, and Y.P. Yang, Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(7), p 3046–3056CrossRef
10.
Zurück zum Zitat B. Wu, P. Wang, Y.S. Pyoun, J. Zhang, and R.I. Murakami, Effect of Ultrasonic Nanocrystal Surface Modification on the Fatigue Behaviors of Plasma-Nitrided S45C Steel, Surf. Coat. Technol., 2012, 213(12), p 271–277CrossRef B. Wu, P. Wang, Y.S. Pyoun, J. Zhang, and R.I. Murakami, Effect of Ultrasonic Nanocrystal Surface Modification on the Fatigue Behaviors of Plasma-Nitrided S45C Steel, Surf. Coat. Technol., 2012, 213(12), p 271–277CrossRef
11.
Zurück zum Zitat A. Cherif, Y. Pyoun, and B. Scholtes, Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI, 304, J. Mater. Eng. Perform., 2010, 19(2), p 282–286CrossRef A. Cherif, Y. Pyoun, and B. Scholtes, Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI, 304, J. Mater. Eng. Perform., 2010, 19(2), p 282–286CrossRef
12.
Zurück zum Zitat A. Amanov, B. Urmanov, T. Amanov, and Y.S. Pyun, Strengthening of Ti-6Al-4V Alloy by High Temperature Ultrasonic Nanocrystal Surface Modification Technique, Mater. Lett., 2017, 196, p 198–201CrossRef A. Amanov, B. Urmanov, T. Amanov, and Y.S. Pyun, Strengthening of Ti-6Al-4V Alloy by High Temperature Ultrasonic Nanocrystal Surface Modification Technique, Mater. Lett., 2017, 196, p 198–201CrossRef
13.
Zurück zum Zitat I.S. Cho, A. Amanov, D.H. Kwak, B.J. Jeong, and I.G. Park, The Influence of Surface Modification Techniques on Fretting Wear of Al-Si Alloy Prepared by Gravity Die Casting, Mater. Design, 2015, 65(65), p 401–409CrossRef I.S. Cho, A. Amanov, D.H. Kwak, B.J. Jeong, and I.G. Park, The Influence of Surface Modification Techniques on Fretting Wear of Al-Si Alloy Prepared by Gravity Die Casting, Mater. Design, 2015, 65(65), p 401–409CrossRef
14.
Zurück zum Zitat A. Karimi and S. Amini, Steel 7225 Surface Ultrafine Structure and Improvement of Its Mechanical Properties Using Surface Nanocrystallization Technology by Ultrasonic Impact, Int. J. Adv. Manuf. Technol., 2016, 83(5–8), p 1127–1134CrossRef A. Karimi and S. Amini, Steel 7225 Surface Ultrafine Structure and Improvement of Its Mechanical Properties Using Surface Nanocrystallization Technology by Ultrasonic Impact, Int. J. Adv. Manuf. Technol., 2016, 83(5–8), p 1127–1134CrossRef
15.
Zurück zum Zitat H. Wang, G. Song, and G. Tang, Enhanced Surface Properties of Austenitic Stainless Steel by Electropulsing-Assisted Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2015, 282, p 149–154CrossRef H. Wang, G. Song, and G. Tang, Enhanced Surface Properties of Austenitic Stainless Steel by Electropulsing-Assisted Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2015, 282, p 149–154CrossRef
16.
Zurück zum Zitat X. Yang, J. Zhou, and X. Ling, Study on Plastic Damage of AISI, 304 Stainless Steel Induced by Ultrasonic Impact Treatment, Mater. Design, 2012, 36, p 477–481CrossRef X. Yang, J. Zhou, and X. Ling, Study on Plastic Damage of AISI, 304 Stainless Steel Induced by Ultrasonic Impact Treatment, Mater. Design, 2012, 36, p 477–481CrossRef
17.
Zurück zum Zitat R. Zhu, G. Tang, S. Shi, and M. Fu, Effect of Electroplastic Rolling on Deformability and Oxidation of NiTiNb Shape Memory Alloy, J. Mater. Process. Technol., 2013, 213(1), p 30–35CrossRef R. Zhu, G. Tang, S. Shi, and M. Fu, Effect of Electroplastic Rolling on Deformability and Oxidation of NiTiNb Shape Memory Alloy, J. Mater. Process. Technol., 2013, 213(1), p 30–35CrossRef
18.
Zurück zum Zitat Y. Jiang, L. Guan, G. Tang, C. Shek, and Z. Zhang, Influence of Electropulsing Treatment on Microstructure and Mechanical Properties of Cold-Rolled Mg-9Al-1Zn Alloy Strip, Mater. Sci. Eng. A, 2011, 528(16), p 5627–5635CrossRef Y. Jiang, L. Guan, G. Tang, C. Shek, and Z. Zhang, Influence of Electropulsing Treatment on Microstructure and Mechanical Properties of Cold-Rolled Mg-9Al-1Zn Alloy Strip, Mater. Sci. Eng. A, 2011, 528(16), p 5627–5635CrossRef
19.
Zurück zum Zitat X. Li, F. Wang, X. Li, G. Tang, and J. Zhu, Improvement of Formability of Mg-3Al-1Zn Alloy Strip by Electroplastic-Differential Speed Rolling, Mater. Sci. Eng. A, 2014, 618, p 500–504CrossRef X. Li, F. Wang, X. Li, G. Tang, and J. Zhu, Improvement of Formability of Mg-3Al-1Zn Alloy Strip by Electroplastic-Differential Speed Rolling, Mater. Sci. Eng. A, 2014, 618, p 500–504CrossRef
20.
Zurück zum Zitat J. Kuang, X. Li, R. Zhang, Y. Ye, A.A. Luo, and G. Tang, Enhanced rollability of Mg 3Al 1Zn Alloy by Pulsed Electric Current: A Comparative Study, Mater. Design, 2016, 100, p 204–216CrossRef J. Kuang, X. Li, R. Zhang, Y. Ye, A.A. Luo, and G. Tang, Enhanced rollability of Mg 3Al 1Zn Alloy by Pulsed Electric Current: A Comparative Study, Mater. Design, 2016, 100, p 204–216CrossRef
21.
Zurück zum Zitat Y. Jiang, G. Tang, C. Shek, and Y. Zhu, Effect of Electropulsing Treatment on Microstructure and Tensile Fracture Behavior of Aged Mg-9Al-1Zn Alloy Strip, Appl. Phys. A, 2009, 97(3), p 607–615CrossRef Y. Jiang, G. Tang, C. Shek, and Y. Zhu, Effect of Electropulsing Treatment on Microstructure and Tensile Fracture Behavior of Aged Mg-9Al-1Zn Alloy Strip, Appl. Phys. A, 2009, 97(3), p 607–615CrossRef
22.
Zurück zum Zitat Y. Jiang, G. Tang, C. Shek, Y. Zhu, L. Guan, S. Wang, and Z. Xu, Improved Ductility of Aged Mg-9Al-1Zn Alloy Strip by Electropulsing Treatment, J. Mater. Res., 2009, 24(5), p 1810–1814CrossRef Y. Jiang, G. Tang, C. Shek, Y. Zhu, L. Guan, S. Wang, and Z. Xu, Improved Ductility of Aged Mg-9Al-1Zn Alloy Strip by Electropulsing Treatment, J. Mater. Res., 2009, 24(5), p 1810–1814CrossRef
23.
Zurück zum Zitat R. Qin and S. Su, Thermodynamics of Crack Healing Under Electropulsing, J. Mater. Res., 2002, 17(8), p 2048–2052CrossRef R. Qin and S. Su, Thermodynamics of Crack Healing Under Electropulsing, J. Mater. Res., 2002, 17(8), p 2048–2052CrossRef
24.
Zurück zum Zitat A. Hosoi, T. Nagahama, and Y. Ju, Fatigue Crack Healing by a Controlled High Density Electric Current Field, Mater. Sci. Eng. A, 2012, 533(1), p 38–42CrossRef A. Hosoi, T. Nagahama, and Y. Ju, Fatigue Crack Healing by a Controlled High Density Electric Current Field, Mater. Sci. Eng. A, 2012, 533(1), p 38–42CrossRef
25.
Zurück zum Zitat J. Kuang, X. Li, X. Ye, J. Tang, H. Liu, J. Wang, and G. Tang, Microstructure and Texture Evolution of Magnesium Alloys During Electropulse Treatment, Metall. Mater. Trans. A, 2015, 46(4), p 1789–1804CrossRef J. Kuang, X. Li, X. Ye, J. Tang, H. Liu, J. Wang, and G. Tang, Microstructure and Texture Evolution of Magnesium Alloys During Electropulse Treatment, Metall. Mater. Trans. A, 2015, 46(4), p 1789–1804CrossRef
26.
Zurück zum Zitat J. Kuang, X. Du, X. Li, Y. Yang, A.A. Luo, and G. Tang, Athermal influence of Pulsed Electric Current on the Twinning Behavior of Mg-3Al-1Zn Alloy During Rolling, Scr. Mater., 2016, 114, p 151–155CrossRef J. Kuang, X. Du, X. Li, Y. Yang, A.A. Luo, and G. Tang, Athermal influence of Pulsed Electric Current on the Twinning Behavior of Mg-3Al-1Zn Alloy During Rolling, Scr. Mater., 2016, 114, p 151–155CrossRef
27.
Zurück zum Zitat A. Rahnama and R.S. Qin, The Effect of Electropulsing on the Interlamellar Spacing and Mechanical Properties of a Hot-Rolled 0.14% Carbon Steel, Mater. Sci. Eng. A, 2015, 627, p 145–152CrossRef A. Rahnama and R.S. Qin, The Effect of Electropulsing on the Interlamellar Spacing and Mechanical Properties of a Hot-Rolled 0.14% Carbon Steel, Mater. Sci. Eng. A, 2015, 627, p 145–152CrossRef
28.
Zurück zum Zitat L. Guan, G. Tang, Y. Jiang, and P.K. Chu, Texture Evolution in Cold-Rolled AZ31 Magnesium Alloy During Electropulsing Treatment, J. Alloys Compd., 2009, 487(1–2), p 309–313CrossRef L. Guan, G. Tang, Y. Jiang, and P.K. Chu, Texture Evolution in Cold-Rolled AZ31 Magnesium Alloy During Electropulsing Treatment, J. Alloys Compd., 2009, 487(1–2), p 309–313CrossRef
29.
Zurück zum Zitat R.F. Zhu, G.Y. Tang, S.Q. Shi, M.W. Fu, and V.E. Gromov, Effect of Electropulsing Treatment on the Microstructure and Superelasticity of TiNi Alloy, Appl. Phys. A, 2013, 111(4), p 1195–1201CrossRef R.F. Zhu, G.Y. Tang, S.Q. Shi, M.W. Fu, and V.E. Gromov, Effect of Electropulsing Treatment on the Microstructure and Superelasticity of TiNi Alloy, Appl. Phys. A, 2013, 111(4), p 1195–1201CrossRef
30.
Zurück zum Zitat V.E. Gromov, Y.F. Ivanov, V.V. Sizov, S.V. Vorob’Ev, and S.V. Konovalov, Increase in the Fatigue Durability of Stainless Steel by Electron-Beam Surface Treatment, J. Surf. Investig. X-ray Synchrotron Neutron Tech, 2013, 7(1), p 94–98CrossRef V.E. Gromov, Y.F. Ivanov, V.V. Sizov, S.V. Vorob’Ev, and S.V. Konovalov, Increase in the Fatigue Durability of Stainless Steel by Electron-Beam Surface Treatment, J. Surf. Investig. X-ray Synchrotron Neutron Tech, 2013, 7(1), p 94–98CrossRef
31.
Zurück zum Zitat R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, and B. Elliottbowman, Electropulsed Steels, Mater. Sci. Tech-Lond, 2014, 30(9), p 1040CrossRef R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, and B. Elliottbowman, Electropulsed Steels, Mater. Sci. Tech-Lond, 2014, 30(9), p 1040CrossRef
32.
Zurück zum Zitat H. Wang, G. Song, and G. Tang, Evolution of Surface Mechanical Properties and Microstructure of Ti 6Al 4V Alloy Induced by Electropulsing-Assisted Ultrasonic Surface Rolling Process, J. Alloys Compd., 2016, 681, p 146–156CrossRef H. Wang, G. Song, and G. Tang, Evolution of Surface Mechanical Properties and Microstructure of Ti 6Al 4V Alloy Induced by Electropulsing-Assisted Ultrasonic Surface Rolling Process, J. Alloys Compd., 2016, 681, p 146–156CrossRef
33.
Zurück zum Zitat H. Wang, G. Song, and G. Tang, Effect of Electropulsing on Surface Mechanical Properties and Microstructure of AISI, 304 Stainless Steel During Ultrasonic Surface Rolling Process, Mater. Sci. Eng. A, 2016, 662, p 456–467CrossRef H. Wang, G. Song, and G. Tang, Effect of Electropulsing on Surface Mechanical Properties and Microstructure of AISI, 304 Stainless Steel During Ultrasonic Surface Rolling Process, Mater. Sci. Eng. A, 2016, 662, p 456–467CrossRef
34.
Zurück zum Zitat Y. Fu, N.L. Loh, A.W. Batchelor, D. Liu, X. Zhu, J. He, and K. Xu, Improvement in Fretting Wear and Fatigue Resistance of Ti-6Al-4V by Application of Several Surface Treatments and Coatings, Surf. Coat. Technol., 1998, 106, p 193–197CrossRef Y. Fu, N.L. Loh, A.W. Batchelor, D. Liu, X. Zhu, J. He, and K. Xu, Improvement in Fretting Wear and Fatigue Resistance of Ti-6Al-4V by Application of Several Surface Treatments and Coatings, Surf. Coat. Technol., 1998, 106, p 193–197CrossRef
35.
Zurück zum Zitat G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Effects of the Different Frequencies and Loads of Ultrasonic Surface Rolling on Surface Mechanical Properties and Fretting Wear Resistance of HIP Ti-6Al-4V Alloy, Appl. Surf. Sci., 2016, 389, p 324–334CrossRef G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Effects of the Different Frequencies and Loads of Ultrasonic Surface Rolling on Surface Mechanical Properties and Fretting Wear Resistance of HIP Ti-6Al-4V Alloy, Appl. Surf. Sci., 2016, 389, p 324–334CrossRef
36.
Zurück zum Zitat A. Amanov, J.H. Kim, Y.S. Pyun, T. Hirayama, and M. Hino, Wear Mechanisms of Silicon Carbide Subjected to Ultrasonic Nanocrystalline Surface Modification Technique, Wear, 2015, 332–333, p 891–899CrossRef A. Amanov, J.H. Kim, Y.S. Pyun, T. Hirayama, and M. Hino, Wear Mechanisms of Silicon Carbide Subjected to Ultrasonic Nanocrystalline Surface Modification Technique, Wear, 2015, 332–333, p 891–899CrossRef
37.
Zurück zum Zitat D.H. Jeong, U. Erb, K.T. Aust, and G. Palumbo, The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings, Scr. Mater., 2003, 48, p 1067–1072CrossRef D.H. Jeong, U. Erb, K.T. Aust, and G. Palumbo, The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings, Scr. Mater., 2003, 48, p 1067–1072CrossRef
38.
Zurück zum Zitat A. Amanov, I.S. Cho, D.E. Kim, and Y.S. Pyun, Fretting Wear and Friction Reduction of CP Titanium And Ti-6Al-4V Alloy by Ultrasonic Nanocrystalline Surface Modification, Surf. Coat. Technol., 2012, 207(21), p 135–142CrossRef A. Amanov, I.S. Cho, D.E. Kim, and Y.S. Pyun, Fretting Wear and Friction Reduction of CP Titanium And Ti-6Al-4V Alloy by Ultrasonic Nanocrystalline Surface Modification, Surf. Coat. Technol., 2012, 207(21), p 135–142CrossRef
39.
Zurück zum Zitat Q. Xu, G. Tang, and Y. Jiang, Thermal and Electromigration Effects of Electropulsing on Dynamic Recrystallization in Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2011, 528(13–14), p 4431–4436CrossRef Q. Xu, G. Tang, and Y. Jiang, Thermal and Electromigration Effects of Electropulsing on Dynamic Recrystallization in Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2011, 528(13–14), p 4431–4436CrossRef
40.
Zurück zum Zitat Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang, Effects of Dynamic Electropulsing on Microstructure and Elongation of a Zn-Al Alloy, Mater. Sci. Eng. A, 2009, 501(1), p 125–132CrossRef Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang, Effects of Dynamic Electropulsing on Microstructure and Elongation of a Zn-Al Alloy, Mater. Sci. Eng. A, 2009, 501(1), p 125–132CrossRef
41.
Zurück zum Zitat G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, and Q. Li, Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L, Mater. Sci. Eng. A, 2000, 281(1–2), p 263–267CrossRef G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, and Q. Li, Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L, Mater. Sci. Eng. A, 2000, 281(1–2), p 263–267CrossRef
Metadaten
Titel
Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy
verfasst von
Yongda Ye
Haibo Wang
Guoyi Tang
Guolin Song
Publikationsdatum
05.04.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3248-3

Weitere Artikel der Ausgabe 5/2018

Journal of Materials Engineering and Performance 5/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.