Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2022

10.01.2022 | Technical Article

Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel

verfasst von: Bilal Nawaz, Xiaoyan Long, Yanguo Li, Zhinan Yang, Fucheng Zhang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ultrafine-grained dual-phase ferrite/martensite steel produced through intercritical annealing at 765, 775 and 795 °C. The microstructures at all temperatures consisted of ultrafine ferrite, martensite and carbides. Carbides were found in two different morphologies, alloy carbides and V(C, N). The grain size of ferrite was decreased to 0.83 ± 0.3 μm when the intercritical temperature was increased to 795 °C. Higher kinetics of phase transition from ferrite to austenite and ferrite grains growth restriction by alloy carbides and V(C, N) carbides reduced the ferrite size. The maximum yield strength of 1710 ± 15 MPa with total elongation of 11.5 ± 0.3% was achieved at 795 °C. The larger volume fraction of martensite, smaller ferrite grain size and smaller (FeMnCr)3C particles improved the yield strength. Despite the higher ferrite grain size and higher carbon content in martensite, the maximum strain hardening rate was attained at 765 °C. Higher amount of carbides increased the strain hardening rate at 765 °C. The strengthening mechanism of dual-phase steels at each intercritical temperature was studied and strength contribution from each strengthening factor was calculated. The calculated results at each temperature were agreed well with the experimental results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan and B. Bai, Enhanced Ductility and Toughness in an Ultrahigh-Strength Mn-Si-Cr-C Steel: The Great Potential of Ultrafine Filmy Retained Austenite, Acta Mater., 2014, 76, p 425–433.CrossRef G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan and B. Bai, Enhanced Ductility and Toughness in an Ultrahigh-Strength Mn-Si-Cr-C Steel: The Great Potential of Ultrafine Filmy Retained Austenite, Acta Mater., 2014, 76, p 425–433.CrossRef
2.
Zurück zum Zitat M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670.CrossRef M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59, p 658–670.CrossRef
3.
Zurück zum Zitat D. Barbier, L. Germain, A. Hazotte, M. Gouné and A. Chbihi, Microstructures Resulting from the Interaction Between Ferrite Recrystallization and Austenite Formation in Dual-Phase Steels, J. Mater. Sci., 2015, 50, p 374–381.CrossRef D. Barbier, L. Germain, A. Hazotte, M. Gouné and A. Chbihi, Microstructures Resulting from the Interaction Between Ferrite Recrystallization and Austenite Formation in Dual-Phase Steels, J. Mater. Sci., 2015, 50, p 374–381.CrossRef
4.
Zurück zum Zitat M. Mazinani and W.J. Poole, Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel, Metall. Mater. Trans. A., 2007, 38, p 328–339.CrossRef M. Mazinani and W.J. Poole, Effect of Martensite Plasticity on the Deformation Behavior of a Low-Carbon Dual-Phase Steel, Metall. Mater. Trans. A., 2007, 38, p 328–339.CrossRef
5.
Zurück zum Zitat S.-P. Tsai, C.-H. Jen, H.-W. Yen, C.-Y. Chen, M.-C. Tsai, C.-Y. Huang, Y.-T. Wang and J.-R. Yang, Effects of Interphase TiC Precipitates on Tensile Properties and Dislocation Structures in a Dual Phase Steel, Mater. Charact., 2017, 123, p 153–158.CrossRef S.-P. Tsai, C.-H. Jen, H.-W. Yen, C.-Y. Chen, M.-C. Tsai, C.-Y. Huang, Y.-T. Wang and J.-R. Yang, Effects of Interphase TiC Precipitates on Tensile Properties and Dislocation Structures in a Dual Phase Steel, Mater. Charact., 2017, 123, p 153–158.CrossRef
6.
Zurück zum Zitat D. Das and P. Chattopadhyay, Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Ferrite–Martensite Dual-Phase Steel, J. Mater. Sci., 2009, 44, p 2957–2965.CrossRef D. Das and P. Chattopadhyay, Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Ferrite–Martensite Dual-Phase Steel, J. Mater. Sci., 2009, 44, p 2957–2965.CrossRef
7.
Zurück zum Zitat D.K. Mondal and R.M. Dey, Effect of Grain Size on the Microstructure and Mechanical Properties of a CMnV Dual-Phase Steel, Mater. Sci. Eng. A., 1992, 149, p 173–181.CrossRef D.K. Mondal and R.M. Dey, Effect of Grain Size on the Microstructure and Mechanical Properties of a CMnV Dual-Phase Steel, Mater. Sci. Eng. A., 1992, 149, p 173–181.CrossRef
8.
Zurück zum Zitat G. Han, Z.J. Xie, L. Xiong, C.J. Shang and R.D.K. Misra, Evolution of Nano-Size Precipitation and Mechanical Properties in a High Strength-Ductility Low Alloy Steel Through Intercritical Treatment, Mater. Sci. Eng. A., 2017, 705, p 89–97.CrossRef G. Han, Z.J. Xie, L. Xiong, C.J. Shang and R.D.K. Misra, Evolution of Nano-Size Precipitation and Mechanical Properties in a High Strength-Ductility Low Alloy Steel Through Intercritical Treatment, Mater. Sci. Eng. A., 2017, 705, p 89–97.CrossRef
9.
Zurück zum Zitat Y.L. Kang, Q.H. Han, X.M. Zhao and M.H. Cai, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 40, p 331–339.CrossRef Y.L. Kang, Q.H. Han, X.M. Zhao and M.H. Cai, Influence of Nanoparticle Reinforcements on the Strengthening Mechanisms of an Ultrafine-Grained Dual Phase Steel Containing Titanium, Mater. Des., 2013, 40, p 331–339.CrossRef
10.
Zurück zum Zitat S.-P. Tsai, T.-C. Su, J.-R. Yang, C.-Y. Chen, Y.-T. Wang and C.-Y. Huang, Effect of Cr and Al Additions on the Development of Interphase-Precipitated Carbides Strengthened Dual-Phase Ti-Bearing Steels, Mater. Des., 2017, 119, p 319–325.CrossRef S.-P. Tsai, T.-C. Su, J.-R. Yang, C.-Y. Chen, Y.-T. Wang and C.-Y. Huang, Effect of Cr and Al Additions on the Development of Interphase-Precipitated Carbides Strengthened Dual-Phase Ti-Bearing Steels, Mater. Des., 2017, 119, p 319–325.CrossRef
11.
Zurück zum Zitat N. Kamikawa, M. Hirohashi, Y. Sato, E. Chandiran, G. Miyamoto and T. Furuhara, Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides, ISIJ Int., 2015, 55, p 1781–1790.CrossRef N. Kamikawa, M. Hirohashi, Y. Sato, E. Chandiran, G. Miyamoto and T. Furuhara, Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides, ISIJ Int., 2015, 55, p 1781–1790.CrossRef
12.
Zurück zum Zitat C.-H. Li, C.-Y. Chen, S.-P. Tsai and J.-R. Yang, Microstructure Characterization and Strengthening Behavior of Dual Precipitation Particles in CuTi Microalloyed Dual-Phase Steels, Mater. Des., 2019, 166, p 107–113. C.-H. Li, C.-Y. Chen, S.-P. Tsai and J.-R. Yang, Microstructure Characterization and Strengthening Behavior of Dual Precipitation Particles in CuTi Microalloyed Dual-Phase Steels, Mater. Des., 2019, 166, p 107–113.
13.
Zurück zum Zitat R. Ueji, N. Tsuji, Y. Minamino and Y. Koizumi, Effect of Rolling Reduction on Ultrafine Grained Structure and Mechanical Properties of Low-Carbon Steel Thermomechanically Processed from Martensite Starting Structure, Sci. Technol. Adv. Mater., 2004, 5, p 153–162.CrossRef R. Ueji, N. Tsuji, Y. Minamino and Y. Koizumi, Effect of Rolling Reduction on Ultrafine Grained Structure and Mechanical Properties of Low-Carbon Steel Thermomechanically Processed from Martensite Starting Structure, Sci. Technol. Adv. Mater., 2004, 5, p 153–162.CrossRef
14.
Zurück zum Zitat J. Sun, T. Jiang, Y. Wang, S. Guo and Y. Liu, Ultrafine Grained Dual-Phase Martensite/Ferrite Steel Strengthened and Toughened by Lamella Structure, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process, 2018, 12, p 311–317.CrossRef J. Sun, T. Jiang, Y. Wang, S. Guo and Y. Liu, Ultrafine Grained Dual-Phase Martensite/Ferrite Steel Strengthened and Toughened by Lamella Structure, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process, 2018, 12, p 311–317.CrossRef
15.
Zurück zum Zitat M. Jafari, S. Ziaei-Rad and N. Torabian, A Dislocation Density-Based Model for Analyzing Mechanical Behavior of Dual-Phase Steels, Metallogr. Microstruct. Anal., 2014, 3, p 185–193.CrossRef M. Jafari, S. Ziaei-Rad and N. Torabian, A Dislocation Density-Based Model for Analyzing Mechanical Behavior of Dual-Phase Steels, Metallogr. Microstruct. Anal., 2014, 3, p 185–193.CrossRef
16.
Zurück zum Zitat Z. Li, D. Wu, W. Lv, S. Kang and Z. Zheng, The Effects of Thermomechanical Processing on the Microstructure and Mechanical Properties of Ultra-High Strength Dual Phase Steel, Adv. Mater. Res., 2013, 631–632, p 666–669.CrossRef Z. Li, D. Wu, W. Lv, S. Kang and Z. Zheng, The Effects of Thermomechanical Processing on the Microstructure and Mechanical Properties of Ultra-High Strength Dual Phase Steel, Adv. Mater. Res., 2013, 631–632, p 666–669.CrossRef
17.
Zurück zum Zitat J. Guo, G. Zhu, Z. Yao, J. Liu, Y. Du and F. Li, Effects of the Morphology and Distribution of Ferrite and Martensite on Mechanical Properties of Dual-Phases Steel, Adv. Mater. Res., 2013, 631–632, p 404–411. J. Guo, G. Zhu, Z. Yao, J. Liu, Y. Du and F. Li, Effects of the Morphology and Distribution of Ferrite and Martensite on Mechanical Properties of Dual-Phases Steel, Adv. Mater. Res., 2013, 631–632, p 404–411.
18.
Zurück zum Zitat A. Bag, K.K. Ray and E.S. Dwarakadasa, Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels, Metall. Mater. Trans. A., 1999, 30, p 1193–1202.CrossRef A. Bag, K.K. Ray and E.S. Dwarakadasa, Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels, Metall. Mater. Trans. A., 1999, 30, p 1193–1202.CrossRef
19.
Zurück zum Zitat M. Alibeyki, H. Mirzadeh and M. Najafi, Fine-Grained Dual Phase Steel via Intercritical Annealing of Cold-Rolled Martensite, Vacuum, 2018, 155, p 147–152.CrossRef M. Alibeyki, H. Mirzadeh and M. Najafi, Fine-Grained Dual Phase Steel via Intercritical Annealing of Cold-Rolled Martensite, Vacuum, 2018, 155, p 147–152.CrossRef
20.
Zurück zum Zitat G.D. Preston, Elements of X-ray Diffraction by B, D. Cullity, 1957, 13, p 1450–1480. G.D. Preston, Elements of X-ray Diffraction by B, D. Cullity, 1957, 13, p 1450–1480.
21.
Zurück zum Zitat R.K. Ham, The Determination of Dislocation Densities in Thin Films, Philos. Mag., 1961, 6, p 1183–1184.CrossRef R.K. Ham, The Determination of Dislocation Densities in Thin Films, Philos. Mag., 1961, 6, p 1183–1184.CrossRef
22.
Zurück zum Zitat E. Chandiran, Y. Sato and N. Kamikawa, Effect of Ferrite/Martensite Phase Size on Tensile Behavior of Dual-Phase Steels with Nano-Precipitation of Vanadium Carbides, Metall. Mater. Trans. A., 2019, 50, p 4111–4126.CrossRef E. Chandiran, Y. Sato and N. Kamikawa, Effect of Ferrite/Martensite Phase Size on Tensile Behavior of Dual-Phase Steels with Nano-Precipitation of Vanadium Carbides, Metall. Mater. Trans. A., 2019, 50, p 4111–4126.CrossRef
23.
Zurück zum Zitat J.R. Weertman, Hall-Petch Strengthening in Nanocrystalline Metals, Mater. Sci. Eng A., 1993, 166, p 161–167.CrossRef J.R. Weertman, Hall-Petch Strengthening in Nanocrystalline Metals, Mater. Sci. Eng A., 1993, 166, p 161–167.CrossRef
24.
Zurück zum Zitat Q.-F. Dai, R.-B. Song and X.-X. Guan, Microstructure and Properties of Ultra-High Strength Ferrite-Martensite Dual Phase Steel Tested Under Dynamic Tensile Conditions, J. Mater. Eng., 2013, 3, p 6–11. Q.-F. Dai, R.-B. Song and X.-X. Guan, Microstructure and Properties of Ultra-High Strength Ferrite-Martensite Dual Phase Steel Tested Under Dynamic Tensile Conditions, J. Mater. Eng., 2013, 3, p 6–11.
25.
Zurück zum Zitat R. Branco and F. Berto, Mechanical Behavior of High-Strength Low-Alloy Steels, Metals (Basel), 2018, 8, p 3–8. R. Branco and F. Berto, Mechanical Behavior of High-Strength Low-Alloy Steels, Metals (Basel), 2018, 8, p 3–8.
26.
Zurück zum Zitat E. Ahmad, T. Manzoor and N. Hussain, Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel, Mater. Sci. Eng. A., 2009, 508, p 259–265.CrossRef E. Ahmad, T. Manzoor and N. Hussain, Thermomechanical Processing in the Intercritical Region and Tensile Properties of Dual-Phase Steel, Mater. Sci. Eng. A., 2009, 508, p 259–265.CrossRef
27.
Zurück zum Zitat Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford and E.V. Pereloma, Microstructures and Mechanical Properties of Dualphase Steel Produced by Laboratory Simulated Stripcasting, Mater. Des., 2015, 88, p 537–549.CrossRef Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford and E.V. Pereloma, Microstructures and Mechanical Properties of Dualphase Steel Produced by Laboratory Simulated Stripcasting, Mater. Des., 2015, 88, p 537–549.CrossRef
28.
Zurück zum Zitat B. Nawaz, Z. Yang and F. Zhang, Effect of Intercritical Temperature on the Strain Hardening of Dual-Phase Bainite/Ferrite Steel, Mater. Sci. Technol., 2020, 36, p 1614–1620.CrossRef B. Nawaz, Z. Yang and F. Zhang, Effect of Intercritical Temperature on the Strain Hardening of Dual-Phase Bainite/Ferrite Steel, Mater. Sci. Technol., 2020, 36, p 1614–1620.CrossRef
29.
Zurück zum Zitat N. Ishikawa, K. Yasuda and H. Sueyoshi, Micro- Scopic Deformation and Strain Hardening Analysis of Ferrite–Bainite Dual-Phase Steels Using Micro-Grid Method, Acta Mater., 2015, 97, p 257–268.CrossRef N. Ishikawa, K. Yasuda and H. Sueyoshi, Micro- Scopic Deformation and Strain Hardening Analysis of Ferrite–Bainite Dual-Phase Steels Using Micro-Grid Method, Acta Mater., 2015, 97, p 257–268.CrossRef
30.
Zurück zum Zitat G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng. A., 1999, 273–275, p 40–57.CrossRef G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng. A., 1999, 273–275, p 40–57.CrossRef
31.
Zurück zum Zitat G.R. Speich, D.S. Dabkowski and L.F. Porter, Strength and Toughness of Fe-10ni Alloys Containing C, Cr, Mo, and Co, Metall. Trans., 1973, 4, p 303–315.CrossRef G.R. Speich, D.S. Dabkowski and L.F. Porter, Strength and Toughness of Fe-10ni Alloys Containing C, Cr, Mo, and Co, Metall. Trans., 1973, 4, p 303–315.CrossRef
32.
Zurück zum Zitat X. Mao, X. Huo, X. Sun and Y. Chai, Strengthening Mechanisms of a New 700MPa Hot Rolled Ti-Microalloyed Steel Produced by Compact Strip Production, J. Mater. Process. Technol., 2010, 210, p 1660–1666.CrossRef X. Mao, X. Huo, X. Sun and Y. Chai, Strengthening Mechanisms of a New 700MPa Hot Rolled Ti-Microalloyed Steel Produced by Compact Strip Production, J. Mater. Process. Technol., 2010, 210, p 1660–1666.CrossRef
33.
Zurück zum Zitat L. Pindor, V. Matejka, P. Kozelsk, K. Michalek and G. Gigacher, Investigation into Secondary Phases in Steels Microalloyed with Vanadium and Nitrogen, Ironmak. Steelmak., 2008, 35, p 124–128.CrossRef L. Pindor, V. Matejka, P. Kozelsk, K. Michalek and G. Gigacher, Investigation into Secondary Phases in Steels Microalloyed with Vanadium and Nitrogen, Ironmak. Steelmak., 2008, 35, p 124–128.CrossRef
34.
Zurück zum Zitat G.I. Taylor, The Mechanism of Plastic Deformation of Crystals I-II, Proc. R. Soc. London., 1934, 145, p 112–120. G.I. Taylor, The Mechanism of Plastic Deformation of Crystals I-II, Proc. R. Soc. London., 1934, 145, p 112–120.
35.
Zurück zum Zitat Y. Mazaheri, A. Jahanara, M. Sheikhi and A. Ghatei, High Strength-Elongation Balance in Ultrafine Grained Ferrite-Martensite Dual Phase Steels Developed by Thermomechanical Processing, Mater. Sci. Eng. A., 2019, 72, p 11–34. Y. Mazaheri, A. Jahanara, M. Sheikhi and A. Ghatei, High Strength-Elongation Balance in Ultrafine Grained Ferrite-Martensite Dual Phase Steels Developed by Thermomechanical Processing, Mater. Sci. Eng. A., 2019, 72, p 11–34.
36.
Zurück zum Zitat F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of Dual Phase Steels, Int. J. Mech. Sci., 2003, 45, p 1449–1465.CrossRef F.M. Al-Abbasi and J.A. Nemes, Micromechanical Modeling of Dual Phase Steels, Int. J. Mech. Sci., 2003, 45, p 1449–1465.CrossRef
37.
Zurück zum Zitat Y. Wang, M. Chen, F. Zhou and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915.CrossRef Y. Wang, M. Chen, F. Zhou and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915.CrossRef
38.
Zurück zum Zitat T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Tech., 1999, 15, p 30–36.CrossRef T. Gladman, Precipitation Hardening in Metals, Mater. Sci. Tech., 1999, 15, p 30–36.CrossRef
Metadaten
Titel
Effect of Ferrite/Martensite on Microstructure Evolution and Mechanical Properties of Ultrafine Vanadium Dual-Phase Steel
verfasst von
Bilal Nawaz
Xiaoyan Long
Yanguo Li
Zhinan Yang
Fucheng Zhang
Publikationsdatum
10.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06550-1

Weitere Artikel der Ausgabe 6/2022

Journal of Materials Engineering and Performance 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.