Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2022

27.01.2022 | Technical Article

Influence of Different Ultraviolet Radiation Intensities on the Corrosion Behavior of Type 316 Stainless Steel in a Simulated Salt-Lake Atmospheric Environment

verfasst von: Mingxiao Guo, Hui Feng, Naeem ul Haq Tariq, Xiaohan Li, Junrong Tang, Chen Pan, Zhenyao Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the influence of different ultraviolet (UV) radiation intensities on the corrosion behavior of 316 stainless steel (316 SS) was investigated using an accelerated test method for simulated salt-lake atmospheric corrosion. The corroded specimens were analyzed using scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), x-ray photoelectron spectroscopy (XPS), white light interferometry (WLI), and in situ electrochemical impedance spectroscopy (EIS). The UV radiation restrained the corrosion rate of 316 SS, wherein the influence of UV inhibition initially increased and then decreased when the intensity of UV radiation was increased from 0.25 to 2 mw/cm2. The strongest inhibition effect was observed for the UV radiation intensity of 0.5 mw/cm2. The inhibition effect on the corrosion rate of 316 SS exposed to UV radiation was related to the protection ability of corrosion products. The protection ability of corrosion products improved with an increase in the ratio of [Cr]/{[Cr] + [Fe]}. The maximum pit depth and pit density formed on 316 SS initially exhibited a gradual decrease and then an increase in the UV radiation intensity in the range 0.25-2 mw/cm2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D.B. Blucher, J.E. Svensson, L.G. Johansson et al., The NaCl-Induced Atmospheric Corrosion of Aluminum - The Influence of Carbon Dioxide and Temperature, J. Electrochem. Soc., 2003, 150(3), p B93–B98.CrossRef D.B. Blucher, J.E. Svensson, L.G. Johansson et al., The NaCl-Induced Atmospheric Corrosion of Aluminum - The Influence of Carbon Dioxide and Temperature, J. Electrochem. Soc., 2003, 150(3), p B93–B98.CrossRef
2.
Zurück zum Zitat C.G. Soares, Y. Garbatov, A. Zayed et al., Influence of Environmental Factors on Corrosion of Ship Structures in Marine Atmosphere, Corros. Sci., 2009, 51(9), p 2014–2026.CrossRef C.G. Soares, Y. Garbatov, A. Zayed et al., Influence of Environmental Factors on Corrosion of Ship Structures in Marine Atmosphere, Corros. Sci., 2009, 51(9), p 2014–2026.CrossRef
3.
Zurück zum Zitat C. Qiao, M.N. Wang, L. Hao et al., Temperature and NaCl Deposition Dependent Corrosion of SAC305 Solder Alloy in Simulated Marine Atmosphere, J. Mater. Sci. Technol., 2021, 75, p 252–264.CrossRef C. Qiao, M.N. Wang, L. Hao et al., Temperature and NaCl Deposition Dependent Corrosion of SAC305 Solder Alloy in Simulated Marine Atmosphere, J. Mater. Sci. Technol., 2021, 75, p 252–264.CrossRef
4.
Zurück zum Zitat F. Mansfeld and J.V. Kenkel, Electrochemical Measurements of Time-of-Wetness and Atmospheric Corrosion Rates, Corrosion, 2013, 33(1), p 13–16.CrossRef F. Mansfeld and J.V. Kenkel, Electrochemical Measurements of Time-of-Wetness and Atmospheric Corrosion Rates, Corrosion, 2013, 33(1), p 13–16.CrossRef
5.
Zurück zum Zitat C.L. Li, Y.T. Ma, Y. Li et al., EIS Monitoring Study of Atmospheric Corrosion Under Variable Relative Humidity, Corros. Sci., 2010, 52(1), p 3677–3686.CrossRef C.L. Li, Y.T. Ma, Y. Li et al., EIS Monitoring Study of Atmospheric Corrosion Under Variable Relative Humidity, Corros. Sci., 2010, 52(1), p 3677–3686.CrossRef
6.
Zurück zum Zitat A.P. Yadav, A. Nishikata and T. Tsuru, Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet-Dry Conditions-Influence of Time of Wetness, Corros. Sci., 2004, 46(1), p 169–181.CrossRef A.P. Yadav, A. Nishikata and T. Tsuru, Electrochemical Impedance Study on Galvanized Steel Corrosion Under Cyclic Wet-Dry Conditions-Influence of Time of Wetness, Corros. Sci., 2004, 46(1), p 169–181.CrossRef
7.
Zurück zum Zitat E. Schindelholz, R.G. Kelly, I.S. Cole et al., Comparability and Accuracy of Time of Wetness Sensing Methods Relevant for Atmospheric Corrosion, Corros. Sci., 2013, 67, p 233–241.CrossRef E. Schindelholz, R.G. Kelly, I.S. Cole et al., Comparability and Accuracy of Time of Wetness Sensing Methods Relevant for Atmospheric Corrosion, Corros. Sci., 2013, 67, p 233–241.CrossRef
8.
Zurück zum Zitat M. Mouanga and P. Bercot, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions; Part II: Electrochemical Analyses, Corros. Sci., 2010, 52(12), p 3993–4000.CrossRef M. Mouanga and P. Bercot, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions; Part II: Electrochemical Analyses, Corros. Sci., 2010, 52(12), p 3993–4000.CrossRef
9.
Zurück zum Zitat M. Mouanga, P. Bercot and J.Y. Rauch, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions. Part I: Corrosion Layer Characterization, Corros. Sci., 2010, 52(12), p 3984–3992.CrossRef M. Mouanga, P. Bercot and J.Y. Rauch, Comparison of Corrosion Behaviour of Zinc in NaCl and in NaOH Solutions. Part I: Corrosion Layer Characterization, Corros. Sci., 2010, 52(12), p 3984–3992.CrossRef
10.
Zurück zum Zitat J.B. Zhang, J. Wang and Y.H. Wang, The Deliquescence and Spreading of Sea Salt Particles on Carbon Steel and Atmos Pheric Corrosion, Mar. Sci., 2005, 29(7), p 17–19. J.B. Zhang, J. Wang and Y.H. Wang, The Deliquescence and Spreading of Sea Salt Particles on Carbon Steel and Atmos Pheric Corrosion, Mar. Sci., 2005, 29(7), p 17–19.
11.
Zurück zum Zitat L.Y. Song and Z.Y. Chen, The Role of UV Illumination on the NaCl-Induced Atmospheric Corrosion of Q235 Carbon Steel, Corros. Sci., 2014, 86, p 318–325.CrossRef L.Y. Song and Z.Y. Chen, The Role of UV Illumination on the NaCl-Induced Atmospheric Corrosion of Q235 Carbon Steel, Corros. Sci., 2014, 86, p 318–325.CrossRef
12.
Zurück zum Zitat E.A. Thompson and T.D. Burleigh, Accelerated Corrosion of Zinc Alloys Exposed to Ultraviolet Light, Corros. Eng. Sci. Techn., 2007, 42(3), p 237–241.CrossRef E.A. Thompson and T.D. Burleigh, Accelerated Corrosion of Zinc Alloys Exposed to Ultraviolet Light, Corros. Eng. Sci. Techn., 2007, 42(3), p 237–241.CrossRef
13.
Zurück zum Zitat Y.W. Liu, J. Zhang, Y.H. Wei et al., Effect of Different UV Intensity on Corrosion Behavior of Carbon Steel Exposed to Simulated Nansha Atmospheric Environment, Mater. Chem. Phys., 2009, 237, p 121855.CrossRef Y.W. Liu, J. Zhang, Y.H. Wei et al., Effect of Different UV Intensity on Corrosion Behavior of Carbon Steel Exposed to Simulated Nansha Atmospheric Environment, Mater. Chem. Phys., 2009, 237, p 121855.CrossRef
14.
Zurück zum Zitat C.B. Breslin, D.D. Macdonald, J. Sikora et al., Influence of UV Light on the Passive Behaviour of SS316 - Effect of Prior Illumination, Electrochim. Acta, 1997, 42(1), p 127–136.CrossRef C.B. Breslin, D.D. Macdonald, J. Sikora et al., Influence of UV Light on the Passive Behaviour of SS316 - Effect of Prior Illumination, Electrochim. Acta, 1997, 42(1), p 127–136.CrossRef
15.
Zurück zum Zitat S.O. Moussa and M.G. Hocking, The Photo-Inhibition of Localized Corrosion of 304 Stainless Steel in Sodium Chloride Environment, Corros. Sci., 2001, 43(11), p 2037–2047.CrossRef S.O. Moussa and M.G. Hocking, The Photo-Inhibition of Localized Corrosion of 304 Stainless Steel in Sodium Chloride Environment, Corros. Sci., 2001, 43(11), p 2037–2047.CrossRef
16.
Zurück zum Zitat M.X. Guo, Q. Yin, M.R. Liu et al., Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere, Acta. Metall. (Sin.-Engl.), 2020, 33(6), p 857–870.CrossRef M.X. Guo, Q. Yin, M.R. Liu et al., Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere, Acta. Metall. (Sin.-Engl.), 2020, 33(6), p 857–870.CrossRef
17.
Zurück zum Zitat T. Shinohara, S. Motoda and W. Oshikawa, Evaluation of Corrosivity in Atmospheric Environment by ACM (Atmospheric Corrosion Monitor) Type Corrosion Sensor, Mater. Sci. Forum, 2005, 475, p 61–64.CrossRef T. Shinohara, S. Motoda and W. Oshikawa, Evaluation of Corrosivity in Atmospheric Environment by ACM (Atmospheric Corrosion Monitor) Type Corrosion Sensor, Mater. Sci. Forum, 2005, 475, p 61–64.CrossRef
18.
Zurück zum Zitat D. To, T. Shinohara, O. Umezawa et al., Experimental Investigation on the Corrosivity of Atmosphere through the Atmospheric Corrosion Monitoring (ACM) Sensors, Electrochem. Soc., 2017, 75(29), p 1–10. D. To, T. Shinohara, O. Umezawa et al., Experimental Investigation on the Corrosivity of Atmosphere through the Atmospheric Corrosion Monitoring (ACM) Sensors, Electrochem. Soc., 2017, 75(29), p 1–10.
19.
Zurück zum Zitat D. Mizuno, S. Suzuki, S. Fujita et al., Corrosion Monitoring and Materials Selection for Automotive Environments by Using Atmospheric Corrosion Monitor (ACM) Sensor, Corros. Sci., 2014, 83, p 217–225.CrossRef D. Mizuno, S. Suzuki, S. Fujita et al., Corrosion Monitoring and Materials Selection for Automotive Environments by Using Atmospheric Corrosion Monitor (ACM) Sensor, Corros. Sci., 2014, 83, p 217–225.CrossRef
20.
Zurück zum Zitat A.K. Neufeld, I.S. Cole, A.M. Bond et al., The Initiation Mechanism of Corrosion of Zinc by Sodium Chloride Particle Deposition, Corros. Sci., 2002, 44(3), p 555–572.CrossRef A.K. Neufeld, I.S. Cole, A.M. Bond et al., The Initiation Mechanism of Corrosion of Zinc by Sodium Chloride Particle Deposition, Corros. Sci., 2002, 44(3), p 555–572.CrossRef
21.
Zurück zum Zitat C. Pan, W.Y. Ly, Z.Y. Wang et al., Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere, J. Mater. Sci. Technol., 2017, 33(6), p 587–595.CrossRef C. Pan, W.Y. Ly, Z.Y. Wang et al., Atmospheric Corrosion of Copper Exposed in a Simulated Coastal-Industrial Atmosphere, J. Mater. Sci. Technol., 2017, 33(6), p 587–595.CrossRef
22.
Zurück zum Zitat A. Nishikata, Y. Ichihara and T. Tsuru, An Application of Electorchemical Impedance Spectroscopy to Atmospheric Corrosion Study, Corros. Sci., 1995, 37(6), p 897–911.CrossRef A. Nishikata, Y. Ichihara and T. Tsuru, An Application of Electorchemical Impedance Spectroscopy to Atmospheric Corrosion Study, Corros. Sci., 1995, 37(6), p 897–911.CrossRef
23.
Zurück zum Zitat X.N. Liao, F.H. Cao, A.N. Chen et al., In-Situ Investigation of Atmospheric Corrosion Behavior of Bronze Under Thin Electrolyte Layers Using Electrochemical Technique, T. Nonferr. Metal. Soc., 2012, 22(5), p 1239–1249.CrossRef X.N. Liao, F.H. Cao, A.N. Chen et al., In-Situ Investigation of Atmospheric Corrosion Behavior of Bronze Under Thin Electrolyte Layers Using Electrochemical Technique, T. Nonferr. Metal. Soc., 2012, 22(5), p 1239–1249.CrossRef
24.
Zurück zum Zitat C. Qiao, X. Sun, Y.Z. Wang et al., A Perspective on Effect by Ag Addition to Corrosion Evolution of Pb-Free Sn Solder, Mater. Lett., 2021, 297, p 129935.CrossRef C. Qiao, X. Sun, Y.Z. Wang et al., A Perspective on Effect by Ag Addition to Corrosion Evolution of Pb-Free Sn Solder, Mater. Lett., 2021, 297, p 129935.CrossRef
25.
Zurück zum Zitat W. Lv, C. Pan, W. Su, Z. Wang et al., Atmospheric Corrosion Mechanism of 316 Stainless Steel in Simulated Marine Atmosphere, Corros. Eng. Sci. Technol., 2016, 51(3), p 155–162.CrossRef W. Lv, C. Pan, W. Su, Z. Wang et al., Atmospheric Corrosion Mechanism of 316 Stainless Steel in Simulated Marine Atmosphere, Corros. Eng. Sci. Technol., 2016, 51(3), p 155–162.CrossRef
26.
Zurück zum Zitat D. Kong, X. Ni, C. Dong et al., Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef D. Kong, X. Ni, C. Dong et al., Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef
27.
Zurück zum Zitat R.-H. Jung, H. Tsuchiya and S. Fujimoto, Growth Process of Passive Films on Austenitic Stainless Steels under Wet-dry Cyclic Condition, ISIJ Int., 2012, 52(7), p 1356–1361.CrossRef R.-H. Jung, H. Tsuchiya and S. Fujimoto, Growth Process of Passive Films on Austenitic Stainless Steels under Wet-dry Cyclic Condition, ISIJ Int., 2012, 52(7), p 1356–1361.CrossRef
28.
Zurück zum Zitat T. Ishitsuka and K. Nose, Stability of Protective Oxide Films in Waste Incineration Environment - Solubility Measurement of Oxides in Molten Chlorides, Corros. Sci., 2002, 44(2), p 247–263.CrossRef T. Ishitsuka and K. Nose, Stability of Protective Oxide Films in Waste Incineration Environment - Solubility Measurement of Oxides in Molten Chlorides, Corros. Sci., 2002, 44(2), p 247–263.CrossRef
29.
Zurück zum Zitat K. Asami and K. Hashimoto, Importance of Initial Surface Film in the Degradation of Stainless Steels by Atmospheric Exposure, Corros. Sci., 2003, 45(10), p 2263–2283.CrossRef K. Asami and K. Hashimoto, Importance of Initial Surface Film in the Degradation of Stainless Steels by Atmospheric Exposure, Corros. Sci., 2003, 45(10), p 2263–2283.CrossRef
30.
Zurück zum Zitat Z.X. Li, L.M. Zhang, A.L. Ma et al., Comparative Study on the Cavitation Erosion Behavior of Two Different Rolling Surfaces on 304 Stainless Steel, Tribol. Int., 2021, 159, p 106994.CrossRef Z.X. Li, L.M. Zhang, A.L. Ma et al., Comparative Study on the Cavitation Erosion Behavior of Two Different Rolling Surfaces on 304 Stainless Steel, Tribol. Int., 2021, 159, p 106994.CrossRef
31.
Zurück zum Zitat S. Fujimoto, T. Yamada and T. Shibata, Improvement of Pitting Corrosion Resistance of Type 304 Stainless Steel by Modification of Passive Film with Ultraviolet Light Irradiation, J. Electrochem. Soc., 1998, 145(5), p L79–L81.CrossRef S. Fujimoto, T. Yamada and T. Shibata, Improvement of Pitting Corrosion Resistance of Type 304 Stainless Steel by Modification of Passive Film with Ultraviolet Light Irradiation, J. Electrochem. Soc., 1998, 145(5), p L79–L81.CrossRef
Metadaten
Titel
Influence of Different Ultraviolet Radiation Intensities on the Corrosion Behavior of Type 316 Stainless Steel in a Simulated Salt-Lake Atmospheric Environment
verfasst von
Mingxiao Guo
Hui Feng
Naeem ul Haq Tariq
Xiaohan Li
Junrong Tang
Chen Pan
Zhenyao Wang
Publikationsdatum
27.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06527-0

Weitere Artikel der Ausgabe 6/2022

Journal of Materials Engineering and Performance 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.