Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2022

14.01.2022 | Technical Article

Experimental Investigation and Prediction of Mild Steel Turning Performances Using Hybrid Deep Convolutional Neural Network-Based Manta-Ray Foraging Optimizer

verfasst von: Thangavel Palaniappan, Prakasam Subramaniam

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In machining industries, sustainable production activities are reduced because of the tool wear effect. The machining input parameters are mainly responsible for the effect of flank wear attained in the tool and the workpiece's surface quality. This work aims to determine and predict the machining performances of EN2-BS970/Mild steel by varying the input parameters such as cutting speed (V), feed (F), nose radius (r), and depth of cut (d). The hybrid Deep Convolutional Neural Network-based Manta-Ray Optimization (DCNN-MRO) is used to predict the machining outcomes, and it is performed in Matlab software version 2020a. The input machining parameters are designed by response surface methodology of box behnken design performed in Design-Expert software version 11. The experimented different cutting forces are feed force (Fx), radial force (Fy), cutting force (Fz), and the machining performances are tool flank wear, surface roughness, and Tool chip thickness. In which, the machining input parameter, namely cutting speed effectively influences the turning outcomes. The effect of tool flank wear and surface roughness by varying the cutting forces are also analyzed. The observed optimal surface roughness is 3.105 \(\mu m\), tool wear rate is 0.139mm, and tool chip thickness is 0.11mm. The measured outcomes are closer to the predicted outcomes obtained from hybrid DCNN. The average RMSE obtained from the proposed DCNN-MRFO is 0.03, and the non-hybrid DCNN is 0.3.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Aouici, M.A. Yallese, B. Fnides and K. Chaoui, Modelling Optimization of Hard Turning of x38CrMoV5-1 Steel with CBN Tool Machining Parameters Effects on Flank Wear and Surface Roughness, J. Mech. Sci. Technol., 2011, 25(11), p 2843–2851. CrossRef H. Aouici, M.A. Yallese, B. Fnides and K. Chaoui, Modelling Optimization of Hard Turning of x38CrMoV5-1 Steel with CBN Tool Machining Parameters Effects on Flank Wear and Surface Roughness, J. Mech. Sci. Technol., 2011, 25(11), p 2843–2851. CrossRef
2.
Zurück zum Zitat S. Kumar, and B. Singh, A New Approach to Explore Tool Chatter in Turning Operation on the Lathe. Australian J. Mech. Eng. 1–20 (2019) S. Kumar, and B. Singh, A New Approach to Explore Tool Chatter in Turning Operation on the Lathe. Australian J. Mech. Eng. 1–20 (2019)
3.
Zurück zum Zitat S. Dinesh, V. Vijayan, A. Parthiban, C. Saravanan, and B.S. Kumar, Modeling and optimization of machining parameters for turning of mild steel using single-point cutting tool made of P20 tool steel, In Advances in Industrial Automation and Smart Manufacturing. Springer, Singapore, 2021, p. 285–295. S. Dinesh, V. Vijayan, A. Parthiban, C. Saravanan, and B.S. Kumar, Modeling and optimization of machining parameters for turning of mild steel using single-point cutting tool made of P20 tool steel, In Advances in Industrial Automation and Smart Manufacturing. Springer, Singapore, 2021, p. 285–295.
4.
Zurück zum Zitat M. Rafighi, M. Özdemir, S. Al Shehabi, et al., Sustainable Hard Turning of High Chromium AISI D2 Tool Steel Using CBN and Ceramic Inserts. Trans. Indian Inst. Met. 2021, 74, p 1639–1653.CrossRef M. Rafighi, M. Özdemir, S. Al Shehabi, et al., Sustainable Hard Turning of High Chromium AISI D2 Tool Steel Using CBN and Ceramic Inserts. Trans. Indian Inst. Met. 2021, 74, p 1639–1653.CrossRef
5.
Zurück zum Zitat J. Rajaparthiban, M. Ravichandran, B. Stalin, P.R. Kumar and V. Mohanavel, Machining of EN31 Steel Using Carbide Insert–A Statistical Approach, Materials Today: Proceedings, 2020, 22, p 2559–2564. J. Rajaparthiban, M. Ravichandran, B. Stalin, P.R. Kumar and V. Mohanavel, Machining of EN31 Steel Using Carbide Insert–A Statistical Approach, Materials Today: Proceedings, 2020, 22, p 2559–2564.
6.
Zurück zum Zitat K. Arunkarthikeyan and K. Balamurugan, Experimental studies on deep cryo treated plus tempered tungsten carbide inserts in turning operation. In Advances in industrial automation and smart manufacturing. Springer, Singapore, 2021. 313-323. K. Arunkarthikeyan and K. Balamurugan, Experimental studies on deep cryo treated plus tempered tungsten carbide inserts in turning operation. In Advances in industrial automation and smart manufacturing. Springer, Singapore, 2021. 313-323.
7.
Zurück zum Zitat A. Das, M. Kamal, S.R. Das, S.K. Patel, A. Panda, M. Rafighi and B.B. Biswal, Comparative assessment between AlTiN and AlTiSiN coated carbide tools towards machinability improvement of AISI D6 steel in dry hard turning. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, p.09544062211037373. A. Das, M. Kamal, S.R. Das, S.K. Patel, A. Panda, M. Rafighi and B.B. Biswal, Comparative assessment between AlTiN and AlTiSiN coated carbide tools towards machinability improvement of AISI D6 steel in dry hard turning. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, p.09544062211037373.
8.
Zurück zum Zitat M.E. Korkmaz, N. Yaşar and M. Günay, Numerical and Experimental Investigation of Cutting Forces in Turning of Nimonic 80A Superalloy, Eng. Sci. Technol. Int. J., 2020, 23(3), p 664–673. M.E. Korkmaz, N. Yaşar and M. Günay, Numerical and Experimental Investigation of Cutting Forces in Turning of Nimonic 80A Superalloy, Eng. Sci. Technol. Int. J., 2020, 23(3), p 664–673.
9.
Zurück zum Zitat L.B. Abhang and M. Hameedullah, Modeling and analysis of tool wear based on cutting force and chip-tool interface temperatures in turning, Advanced manufacturing and materials science. Springer, Cham, 2018, p 411–420CrossRef L.B. Abhang and M. Hameedullah, Modeling and analysis of tool wear based on cutting force and chip-tool interface temperatures in turning, Advanced manufacturing and materials science. Springer, Cham, 2018, p 411–420CrossRef
10.
Zurück zum Zitat I.P. Okokpujie, O.S. Ohunakin, C.A. Bolu and K.O. Okokpujie, Experimental Data-Set for Prediction of Tool Wear During Turning of Al-1061 Alloy by High Speed Steel Cutting Tools, Data Brief, 2018, 18, p 1196–1203. CrossRef I.P. Okokpujie, O.S. Ohunakin, C.A. Bolu and K.O. Okokpujie, Experimental Data-Set for Prediction of Tool Wear During Turning of Al-1061 Alloy by High Speed Steel Cutting Tools, Data Brief, 2018, 18, p 1196–1203. CrossRef
11.
Zurück zum Zitat A.B. Bijithmon and N.G. Smitha, Optimization of Surface Roughness of EN24T Steel Using Genetic Algorithm in Turning Operation, Int. J. Eng. Res. Technol., 2017, 6(5), p 504–510. A.B. Bijithmon and N.G. Smitha, Optimization of Surface Roughness of EN24T Steel Using Genetic Algorithm in Turning Operation, Int. J. Eng. Res. Technol., 2017, 6(5), p 504–510.
12.
Zurück zum Zitat N.C. Ghuge and A.M. Mahalle, Experimental Investigation on the Performance of Soyabean Oil and Blassocut-4000 During Turning of AISI in Terms of Cutting Forces, Int. J. Scientific Res. Sci. Eng. Technol. (IJSRSET), 2016, 2(3), p 330–333. N.C. Ghuge and A.M. Mahalle, Experimental Investigation on the Performance of Soyabean Oil and Blassocut-4000 During Turning of AISI in Terms of Cutting Forces, Int. J. Scientific Res. Sci. Eng. Technol. (IJSRSET), 2016, 2(3), p 330–333.
13.
Zurück zum Zitat Z. Zhu, S. To, W.L. Zhu, P. Huang and X. Zhou, Cutting Forces in Fast-/Slow Tool Servo Diamond Turning of Micro-Structured Surfaces, Int. J. Mach. Tools Manuf, 2019, 136, p 62–75. CrossRef Z. Zhu, S. To, W.L. Zhu, P. Huang and X. Zhou, Cutting Forces in Fast-/Slow Tool Servo Diamond Turning of Micro-Structured Surfaces, Int. J. Mach. Tools Manuf, 2019, 136, p 62–75. CrossRef
14.
Zurück zum Zitat Y. Wei, M.R. Kim, D.W. Lee, C. Park and S.S. Park, Effects of Micro Textured Sapphire Tool Regarding Cutting Forces in Turning Operations, Int. J. Precis.Eng. Manuf. Green Technol., 2017, 4(2), p 141–147. CrossRef Y. Wei, M.R. Kim, D.W. Lee, C. Park and S.S. Park, Effects of Micro Textured Sapphire Tool Regarding Cutting Forces in Turning Operations, Int. J. Precis.Eng. Manuf. Green Technol., 2017, 4(2), p 141–147. CrossRef
15.
Zurück zum Zitat M. Dumas, G. Kermouche, F. Valiorgue, A.V. Robaeys, F. Lefebvre, A. Brosse, H. Karaouni and J. Rech, Turning-Induced Surface Integrity for a Fillet Radius in a 316L Austenitic Stainless Steel, J. Manuf. Process., 2021, 68, p 222–230. CrossRef M. Dumas, G. Kermouche, F. Valiorgue, A.V. Robaeys, F. Lefebvre, A. Brosse, H. Karaouni and J. Rech, Turning-Induced Surface Integrity for a Fillet Radius in a 316L Austenitic Stainless Steel, J. Manuf. Process., 2021, 68, p 222–230. CrossRef
16.
Zurück zum Zitat R.A. Laghari, J. Li, Z. Xie and S.Q. Wang, Modeling and Optimization of Tool Wear and Surface Roughness in Turning of Al/Sicp Using Response Surface Methodology, 3D Res., 2018, 9(4), p 46. CrossRef R.A. Laghari, J. Li, Z. Xie and S.Q. Wang, Modeling and Optimization of Tool Wear and Surface Roughness in Turning of Al/Sicp Using Response Surface Methodology, 3D Res., 2018, 9(4), p 46. CrossRef
17.
Zurück zum Zitat M.D. Selvam, P. Senthil and N.M. Sivaram, Parametric Optimization for Surface Roughness of AISI 4340 Steel During Turning Under Near Dry Machining Condition, Int. J. Mach. Mach. Mater., 2017, 19(6), p 554–569. M.D. Selvam, P. Senthil and N.M. Sivaram, Parametric Optimization for Surface Roughness of AISI 4340 Steel During Turning Under Near Dry Machining Condition, Int. J. Mach. Mach. Mater., 2017, 19(6), p 554–569.
18.
Zurück zum Zitat S.S. Babu and B.K. Vinayagam, Surface Roughness Prediction Model Using Adaptive Particle Swarm Optimization (APSO) Algorithm, J. Intell. Fuzzy Syst., 2015, 28(1), p 345–360. CrossRef S.S. Babu and B.K. Vinayagam, Surface Roughness Prediction Model Using Adaptive Particle Swarm Optimization (APSO) Algorithm, J. Intell. Fuzzy Syst., 2015, 28(1), p 345–360. CrossRef
19.
Zurück zum Zitat A. Şahinoğlu and M. Rafighi, Investigation of Vibration, Sound Intensity, Machine Current and Surface Roughness Values of AISI 4140 During Machining on the Lathe, Arab J Sci Eng, 2020, 45, p 765–778. CrossRef A. Şahinoğlu and M. Rafighi, Investigation of Vibration, Sound Intensity, Machine Current and Surface Roughness Values of AISI 4140 During Machining on the Lathe, Arab J Sci Eng, 2020, 45, p 765–778. CrossRef
20.
Zurück zum Zitat S. Atla and M.S. Surya, Influence of Cutting Fluids on Tool Wear and Surface Roughness During Turning of Aisi 316 Austenitic Stainless Steel, IJERT, 2017, 6(07), p 112–115. S. Atla and M.S. Surya, Influence of Cutting Fluids on Tool Wear and Surface Roughness During Turning of Aisi 316 Austenitic Stainless Steel, IJERT, 2017, 6(07), p 112–115.
21.
Zurück zum Zitat M. Mia and N.R. Dhar, Optimization of Surface Roughness and Cutting Temperature in Highpressure Coolant-Assisted Hard Turning Using Taguchi Method, Int. J. Adv. Manuf. Technol., 2017, 88(1–4), p 739–753. CrossRef M. Mia and N.R. Dhar, Optimization of Surface Roughness and Cutting Temperature in Highpressure Coolant-Assisted Hard Turning Using Taguchi Method, Int. J. Adv. Manuf. Technol., 2017, 88(1–4), p 739–753. CrossRef
22.
Zurück zum Zitat A. Şahinoğlu and M. Rafighi, Optimization of Cutting Parameters with Respect to Roughness for Machining of Hardened AISI 1040 Steel, Mater. Test., 2020, 62(1), p 85–95. CrossRef A. Şahinoğlu and M. Rafighi, Optimization of Cutting Parameters with Respect to Roughness for Machining of Hardened AISI 1040 Steel, Mater. Test., 2020, 62(1), p 85–95. CrossRef
23.
Zurück zum Zitat F. Bayraktar and F. Kara, Investigation of the Effect on Surface Roughness of Cryogenic Process Applied to Cutting Tool, Int. J. Anal. Exp. Finite Element Anal., 2020, 7(2), p 19–27. F. Bayraktar and F. Kara, Investigation of the Effect on Surface Roughness of Cryogenic Process Applied to Cutting Tool, Int. J. Anal. Exp. Finite Element Anal., 2020, 7(2), p 19–27.
24.
Zurück zum Zitat A. Das, S.K. Patel, B.B. Biswal, N. Sahoo and A. Pradhan, Performance Evaluation of Various Cutting Fluids Using MQL Technique in Hard Turning of AISI 4340 Alloy Steel, Measurement, 2020, 150, p 107079. CrossRef A. Das, S.K. Patel, B.B. Biswal, N. Sahoo and A. Pradhan, Performance Evaluation of Various Cutting Fluids Using MQL Technique in Hard Turning of AISI 4340 Alloy Steel, Measurement, 2020, 150, p 107079. CrossRef
25.
Zurück zum Zitat A.A. Selaimia, H. Bensouilah, M.A. Yallese and I.K. Meddour, Modeling and optimization in Dry Face Milling of X2CrNi18-9 Austenitic Stainless Steel Using RMS and Desirability Approach, Measurement, 2017, 107, p 53–67. CrossRef A.A. Selaimia, H. Bensouilah, M.A. Yallese and I.K. Meddour, Modeling and optimization in Dry Face Milling of X2CrNi18-9 Austenitic Stainless Steel Using RMS and Desirability Approach, Measurement, 2017, 107, p 53–67. CrossRef
26.
Zurück zum Zitat F. Kara, Optimization of Cutting Parameters in Finishing Milling of Hardox 400 Steel, Int. J. Anal. Exp. Finite Element Anal., 2018, 5(3), p 44–49. F. Kara, Optimization of Cutting Parameters in Finishing Milling of Hardox 400 Steel, Int. J. Anal. Exp. Finite Element Anal., 2018, 5(3), p 44–49.
27.
Zurück zum Zitat B.S. Prasad and M.P. Babu, Correlation Between Vibration Amplitude and Tool Wear in Turning: Numerical and Experimental Analysis, Eng. Sci. Technol. Int. J., 2017, 20(1), p 197–211. B.S. Prasad and M.P. Babu, Correlation Between Vibration Amplitude and Tool Wear in Turning: Numerical and Experimental Analysis, Eng. Sci. Technol. Int. J., 2017, 20(1), p 197–211.
28.
Zurück zum Zitat D.S.C. Kishore, K.P. Rao and A. Mahamani, Investigation of Cutting Force, Surface Roughness and Flank Wear in Turning of In-situ Al6061-TiC Metal Matrix Composite, Procedia Mater. Sci., 2014, 6, p 1040–1050. CrossRef D.S.C. Kishore, K.P. Rao and A. Mahamani, Investigation of Cutting Force, Surface Roughness and Flank Wear in Turning of In-situ Al6061-TiC Metal Matrix Composite, Procedia Mater. Sci., 2014, 6, p 1040–1050. CrossRef
29.
Zurück zum Zitat M. Kuntoğlu and H. Sağlam, Investigation of Progressive Tool Wear for Determining of Optimized Machining Parameters in Turning, Measurement, 2019, 140, p 427–436. CrossRef M. Kuntoğlu and H. Sağlam, Investigation of Progressive Tool Wear for Determining of Optimized Machining Parameters in Turning, Measurement, 2019, 140, p 427–436. CrossRef
30.
Zurück zum Zitat D. Manivel and R. Gandhinathan, Optimization of Surface Roughness and Tool Wear in Hard Turning of Austempered Ductile Iron (Grade 3) Using Taguchi Method, Measurement, 2016, 93, p 108–116. CrossRef D. Manivel and R. Gandhinathan, Optimization of Surface Roughness and Tool Wear in Hard Turning of Austempered Ductile Iron (Grade 3) Using Taguchi Method, Measurement, 2016, 93, p 108–116. CrossRef
31.
Zurück zum Zitat M. Mia, P.R. Dey, M.S. Hossain, M.T. Arafat, M. Asaduzzaman, M.S. Ullah and S.T. Zobaer, Taguchi S/N Based Optimization of Machining Parameters for Surface Roughness, Tool Wear and Material Removal Rate in Hard Turning Under MQL Cutting Condition, Measurement, 2018, 122, p 380–391. CrossRef M. Mia, P.R. Dey, M.S. Hossain, M.T. Arafat, M. Asaduzzaman, M.S. Ullah and S.T. Zobaer, Taguchi S/N Based Optimization of Machining Parameters for Surface Roughness, Tool Wear and Material Removal Rate in Hard Turning Under MQL Cutting Condition, Measurement, 2018, 122, p 380–391. CrossRef
32.
Zurück zum Zitat E.O. Ezugwua, D.A. Fadera, J. Bonneya, R.B. Da Silva and W.F. Salesa, Modelling the Correation between Cutting and Process Parameters in High Speed Machining of Inconel 718 Alloy Using an Artificial Neural Network, Int. J. Mach. Tools Manuf., 2005, 45, p 1375–1385. CrossRef E.O. Ezugwua, D.A. Fadera, J. Bonneya, R.B. Da Silva and W.F. Salesa, Modelling the Correation between Cutting and Process Parameters in High Speed Machining of Inconel 718 Alloy Using an Artificial Neural Network, Int. J. Mach. Tools Manuf., 2005, 45, p 1375–1385. CrossRef
33.
Zurück zum Zitat J. Senveter, S. Klancnik, J. Balic and F. Cus, Prediction of Surface Roughness Using A Feed-Forward Neural Network, Manag. Prod. Eng. Rev., 2010, 1(2), p 47–55. J. Senveter, S. Klancnik, J. Balic and F. Cus, Prediction of Surface Roughness Using A Feed-Forward Neural Network, Manag. Prod. Eng. Rev., 2010, 1(2), p 47–55.
34.
Zurück zum Zitat T. Sk and S. Shankar, Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2020, 234(1), p 329–342. CrossRef T. Sk and S. Shankar, Tool wear prediction in hard turning of EN8 steel using cutting force and surface roughness with artificial neural network, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2020, 234(1), p 329–342. CrossRef
35.
Zurück zum Zitat A. Salimi, A. Erdem and M. Rafighi, Applying a Multi Sensor System to Predict and Simulate the Tool Wear Using of Artificial Neural Networks, Scientia Iranica, 2017, 24(6), p 2864–2874. A. Salimi, A. Erdem and M. Rafighi, Applying a Multi Sensor System to Predict and Simulate the Tool Wear Using of Artificial Neural Networks, Scientia Iranica, 2017, 24(6), p 2864–2874.
36.
Zurück zum Zitat S.O. Sada, Improving the Predictive Accuracy of Artificial Neural Network (ANN) Approach in a Mild Steel Turning Operation, Int. J. Adv. Manuf. Technol., 2021, 112, p 2389–2398CrossRef S.O. Sada, Improving the Predictive Accuracy of Artificial Neural Network (ANN) Approach in a Mild Steel Turning Operation, Int. J. Adv. Manuf. Technol., 2021, 112, p 2389–2398CrossRef
37.
Zurück zum Zitat G.S. Babu, P. Zhao and X.L. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life, In International conference on database systems for advanced applications Springer, Cham. 2016 April, p 214-228 G.S. Babu, P. Zhao and X.L. Li, Deep convolutional neural network based regression approach for estimation of remaining useful life, In International conference on database systems for advanced applications Springer, Cham. 2016 April, p 214-228
38.
Zurück zum Zitat Ö. Erkan, B. Işık, A. Çiçek and F. Kara, Prediction of Damage Factor in End Milling of Glass Fibre Reinforced Plastic Composites Using Artificial Neural Network, Appl. Compos. Mater., 2013, 20(4), p 517–536. CrossRef Ö. Erkan, B. Işık, A. Çiçek and F. Kara, Prediction of Damage Factor in End Milling of Glass Fibre Reinforced Plastic Composites Using Artificial Neural Network, Appl. Compos. Mater., 2013, 20(4), p 517–536. CrossRef
39.
Zurück zum Zitat W. Zhao, Z. Zhang and L. Wang, Manta Ray Foraging Optimization: An Effective Bio-Inspired Optimizer for Engineering Applications, Eng. Appl. Artif. Intell., 2020, 87, p 103300. CrossRef W. Zhao, Z. Zhang and L. Wang, Manta Ray Foraging Optimization: An Effective Bio-Inspired Optimizer for Engineering Applications, Eng. Appl. Artif. Intell., 2020, 87, p 103300. CrossRef
40.
Zurück zum Zitat B. Sheng, T. Pan, Y. Luo and K. Jermsittiparsert, System Identification of the PEMFCs based on Balanced Manta-Ray Foraging Optimization algorithm, Energy Rep., 2020, 6, p 2887–2896. CrossRef B. Sheng, T. Pan, Y. Luo and K. Jermsittiparsert, System Identification of the PEMFCs based on Balanced Manta-Ray Foraging Optimization algorithm, Energy Rep., 2020, 6, p 2887–2896. CrossRef
41.
Zurück zum Zitat F. Kara, K. Aslantas and A. Çiçek, ANN and Multiple Regression Method-Based Modelling of Cutting Forces in Orthogonal Machining of AISI 316L Stainless Steel, Neural Comput. Appl., 2015, 26(1), p 237–250. CrossRef F. Kara, K. Aslantas and A. Çiçek, ANN and Multiple Regression Method-Based Modelling of Cutting Forces in Orthogonal Machining of AISI 316L Stainless Steel, Neural Comput. Appl., 2015, 26(1), p 237–250. CrossRef
Metadaten
Titel
Experimental Investigation and Prediction of Mild Steel Turning Performances Using Hybrid Deep Convolutional Neural Network-Based Manta-Ray Foraging Optimizer
verfasst von
Thangavel Palaniappan
Prakasam Subramaniam
Publikationsdatum
14.01.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06552-z

Weitere Artikel der Ausgabe 6/2022

Journal of Materials Engineering and Performance 6/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.