Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2024

13.03.2023 | Technical Article

Effect of Frictional Contact Surface on Maximum Pressing Load during Equal Channel Angular Pressing Process

verfasst von: Behzad Abbaszadeh, Mohammad Morad Sheikhi, Mohammad Meghdad Fallah, Mehdi Eskandarzade

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Equal channel angular pressing (ECAP) is one of the advanced manufacturing methods for the production of nanostructured samples. The ECAPed materials showed exceptional mechanical properties with simultaneous high strength and good elongation features. Recently, the application of ECAP method for the production of industrial samples has widely been reported. Due to the required high pressing load in ECAP process, the length of the produced samples is limited. This study investigates the rooms for the reduction in the pressing load by change in frictional surfaces. Here, a novel design of ECAP punch and die is proposed, where most of the friction surfaces are changing from ‘soft sample-to-brittle die’ to ‘brittle die-to-brittle punch’ contact surfaces. By changing the contact surfaces between punch and die, the opportunity for the preparation of frictional surfaces is provided and the total frictional surfaces is reduced. The results of the numerical analysis and experimental measurements showed that about 2.2-9.8% reduction in the maximum required pressing load is feasible. Further reduction is also possible by more surface preparation. Optical microscopy is used to investigate the contact surfaces after the process, and scanning and transmission electron microscopies are used to analyze the rate of the grain refinement of the samples after conventional and novel ECAP processes. The experimental finding is supported by 3D finite element analysis (FEM). The calculated maximum required pressing force in novel and conventional ECAP dies is in good agreement with the experimental measurements. The FEM analysis revealed that the reduction in the pressing load by the modification of frictional surfaces is a practical approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, An Investigation of Microstructural Evolution During Equal-Channel Angular Pressing, Acta Mater., 1997, 45(11), p 4733–4741.CrossRef Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, An Investigation of Microstructural Evolution During Equal-Channel Angular Pressing, Acta Mater., 1997, 45(11), p 4733–4741.CrossRef
2.
Zurück zum Zitat J. Sun et al., Achieving Excellent Ductility in High-Strength Mg-10.6Gd-2 Ag Alloy via Equal Channel Angular Pressing, J. Alloys Compd., 2020, 817, p 152688.CrossRef J. Sun et al., Achieving Excellent Ductility in High-Strength Mg-10.6Gd-2 Ag Alloy via Equal Channel Angular Pressing, J. Alloys Compd., 2020, 817, p 152688.CrossRef
3.
Zurück zum Zitat H.S. Kim, M.H. Seo, and S.I. Hong, On the Die Corner Gap Formation in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2000, 291(1–2), p 86–90.CrossRef H.S. Kim, M.H. Seo, and S.I. Hong, On the Die Corner Gap Formation in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2000, 291(1–2), p 86–90.CrossRef
4.
Zurück zum Zitat A.B. Sankuru, M. Hariram, K. Gudimetla, B. Ravisankar, and S.P. KB, SP KB, Optimization of Processing Temperature and Back Pressure of Equal Channel Angular Pressing for Achieving Crack-Free Fine Grained Magnesium, Mater. Today Proc., 2021, 47, p 4611–4616.CrossRef A.B. Sankuru, M. Hariram, K. Gudimetla, B. Ravisankar, and S.P. KB, SP KB, Optimization of Processing Temperature and Back Pressure of Equal Channel Angular Pressing for Achieving Crack-Free Fine Grained Magnesium, Mater. Today Proc., 2021, 47, p 4611–4616.CrossRef
5.
Zurück zum Zitat S. Wang, W. Liang, Y. Wang, L. Bian, and K. Chen, A Modified Die for Equal Channel Angular Pressing, J. Mater. Process. Technol., 2009, 209(7), p 3182–3186.CrossRef S. Wang, W. Liang, Y. Wang, L. Bian, and K. Chen, A Modified Die for Equal Channel Angular Pressing, J. Mater. Process. Technol., 2009, 209(7), p 3182–3186.CrossRef
6.
Zurück zum Zitat N. Sadasivan, M. Balasubramanian, R. Venkatesh, S. Vigneshram, and T. Sunil, Influence of Equal Channel Angular Pressing in an Acute Angle Die with a Back Pressure Notch on Grain Refinement, Torsion and Mechanical Properties Of Aluminium, Materwiss. Werksttech., 2019, 50(2), p 155–164.CrossRef N. Sadasivan, M. Balasubramanian, R. Venkatesh, S. Vigneshram, and T. Sunil, Influence of Equal Channel Angular Pressing in an Acute Angle Die with a Back Pressure Notch on Grain Refinement, Torsion and Mechanical Properties Of Aluminium, Materwiss. Werksttech., 2019, 50(2), p 155–164.CrossRef
7.
Zurück zum Zitat V.S. Rao, B.P. Kashyap, N. Prabhu, and P.D. Hodgson, T-shaped Equi-Channel Angular Pressing of Pb-Sn Eutectic and Its Tensile Properties, Mater. Sci. Eng. A, 2008, 486(1–2), p 341–349.CrossRef V.S. Rao, B.P. Kashyap, N. Prabhu, and P.D. Hodgson, T-shaped Equi-Channel Angular Pressing of Pb-Sn Eutectic and Its Tensile Properties, Mater. Sci. Eng. A, 2008, 486(1–2), p 341–349.CrossRef
8.
Zurück zum Zitat S. Rusz, L. Čížek, L.A. Dobrzański, and S. Tylšar, ECAP Methods Application on Selected Non-Ferrous Metals and Alloys, Arch. Mater. Sci. Eng., 2010, 43(2), p 69–76. S. Rusz, L. Čížek, L.A. Dobrzański, and S. Tylšar, ECAP Methods Application on Selected Non-Ferrous Metals and Alloys, Arch. Mater. Sci. Eng., 2010, 43(2), p 69–76.
9.
Zurück zum Zitat A. Azushima and K. Aoki, Properties of Ultrafine-Grained Steel by Repeated Shear Deformation of Side Extrusion Process, Mater. Sci. Eng. A, 2002, 337(1–2), p 45–49.CrossRef A. Azushima and K. Aoki, Properties of Ultrafine-Grained Steel by Repeated Shear Deformation of Side Extrusion Process, Mater. Sci. Eng. A, 2002, 337(1–2), p 45–49.CrossRef
10.
Zurück zum Zitat A. Ma, Y. Nishida, K. Suzuki, I. Shigematsu, and N. Saito, Characteristics of Plastic Deformation by Rotary-Die Equal-Channel Angular Pressing, Scr. Mater., 2005, 52(6), p 433–437.CrossRef A. Ma, Y. Nishida, K. Suzuki, I. Shigematsu, and N. Saito, Characteristics of Plastic Deformation by Rotary-Die Equal-Channel Angular Pressing, Scr. Mater., 2005, 52(6), p 433–437.CrossRef
11.
Zurück zum Zitat K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon, Development of a Multi-pass Facility for Equal-Channel Angular Pressing to High Total Strains, Mater. Sci. Eng. A, 2000, 281(1–2), p 82–87.CrossRef K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon, Development of a Multi-pass Facility for Equal-Channel Angular Pressing to High Total Strains, Mater. Sci. Eng. A, 2000, 281(1–2), p 82–87.CrossRef
12.
Zurück zum Zitat A.A. Mukhametgalina et al., Ultrasonic Treatment of Ti-5Al-05 V Alloy Subjected to Equal-Channel Angular Pressing, Met. Mater. Int., 2022, 28(5), p 1257–1263.CrossRef A.A. Mukhametgalina et al., Ultrasonic Treatment of Ti-5Al-05 V Alloy Subjected to Equal-Channel Angular Pressing, Met. Mater. Int., 2022, 28(5), p 1257–1263.CrossRef
13.
Zurück zum Zitat Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-fine Grained Materials, Scr. Mater., 1996, 35(2), p 143–146.CrossRef Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-fine Grained Materials, Scr. Mater., 1996, 35(2), p 143–146.CrossRef
14.
Zurück zum Zitat A.I. Rudskoi, A.M. Zolotov, R.A. Parshikov, and E.Y. Raskatov, Friction Problems During ECA-Pressing, Mater. Today Proc., 2020, 30, p 683–687.CrossRef A.I. Rudskoi, A.M. Zolotov, R.A. Parshikov, and E.Y. Raskatov, Friction Problems During ECA-Pressing, Mater. Today Proc., 2020, 30, p 683–687.CrossRef
15.
Zurück zum Zitat M. Eskandarzade and M.N. Ershadi, Experimental and Numerical Investigation of the Frictional Forces in Equal Channel Angular Pressing, Uludağ Univ. J. Fac. Eng., 2021, 26(1), p 65–78.CrossRef M. Eskandarzade and M.N. Ershadi, Experimental and Numerical Investigation of the Frictional Forces in Equal Channel Angular Pressing, Uludağ Univ. J. Fac. Eng., 2021, 26(1), p 65–78.CrossRef
16.
Zurück zum Zitat V.A. de Souza, I. Watanabe, and A. Yanagida, Numerical Estimation of Frictional Effects in Equal Channel Angular Extrusion, Mater. Trans., 2016, 57(9), p 1399–1403.CrossRef V.A. de Souza, I. Watanabe, and A. Yanagida, Numerical Estimation of Frictional Effects in Equal Channel Angular Extrusion, Mater. Trans., 2016, 57(9), p 1399–1403.CrossRef
17.
Zurück zum Zitat A. Aminnudin, P. Pratikto, A. Purnowidodo, and Y.S. Irawan, The Analysis of Friction Effect on Equal Channel Angular Pressing (ECAP) Process on Aluminium 5052 to Homogeneity of Strain Distribution, East. Eur. J. Enterp. Technol., 2018, 2(1(92)), p 57–62. A. Aminnudin, P. Pratikto, A. Purnowidodo, and Y.S. Irawan, The Analysis of Friction Effect on Equal Channel Angular Pressing (ECAP) Process on Aluminium 5052 to Homogeneity of Strain Distribution, East. Eur. J. Enterp. Technol., 2018, 2(1(92)), p 57–62.
18.
Zurück zum Zitat F. Djavanroodi and M. Ebrahimi, Effect of Die Channel Angle, Friction and Back Pressure in the Equal Channel Angular Pressing Using 3D Finite Element Simulation, Mater. Sci. Eng. A, 2010, 527(4–5), p 1230–1235.CrossRef F. Djavanroodi and M. Ebrahimi, Effect of Die Channel Angle, Friction and Back Pressure in the Equal Channel Angular Pressing Using 3D Finite Element Simulation, Mater. Sci. Eng. A, 2010, 527(4–5), p 1230–1235.CrossRef
19.
Zurück zum Zitat J.-P. Mathieu, S. Suwas, A. Eberhardt, L.S. Tóth, and P. Moll, A New Design for Equal Channel Angular Extrusion, J. Mater. Process. Technol., 2006, 173(1), p 29–33.CrossRef J.-P. Mathieu, S. Suwas, A. Eberhardt, L.S. Tóth, and P. Moll, A New Design for Equal Channel Angular Extrusion, J. Mater. Process. Technol., 2006, 173(1), p 29–33.CrossRef
20.
Zurück zum Zitat Z.A. Khan, U. Chakkingal, and P. Venugopal, Analysis of Forming Loads, Microstructure Development and Mechanical Property Evolution During Equal Channel Angular Extrusion of a Commercial Grade Aluminum Alloy, J. Mater. Process. Technol., 2003, 135(1), p 59–67.CrossRef Z.A. Khan, U. Chakkingal, and P. Venugopal, Analysis of Forming Loads, Microstructure Development and Mechanical Property Evolution During Equal Channel Angular Extrusion of a Commercial Grade Aluminum Alloy, J. Mater. Process. Technol., 2003, 135(1), p 59–67.CrossRef
21.
Zurück zum Zitat M. Eskandarzade, A. Masoumi, and G. Faraji, Numerical and Analytical Investigation of an Ultrasonic Assisted ECAP Process, J. Theor. Appl. Vib. Acoust., 2016, 2(2), p 18. M. Eskandarzade, A. Masoumi, and G. Faraji, Numerical and Analytical Investigation of an Ultrasonic Assisted ECAP Process, J. Theor. Appl. Vib. Acoust., 2016, 2(2), p 18.
22.
Zurück zum Zitat S. Dumoulin, H.J. Roven, J.C. Werenskiold, and H.S. Valberg, Finite Element Modeling of Equal Channel Angular Pressing: Effect of Material Properties, Friction and Die Geometry, Mater. Sci. Eng. A, 2005, 410, p 248–251.CrossRef S. Dumoulin, H.J. Roven, J.C. Werenskiold, and H.S. Valberg, Finite Element Modeling of Equal Channel Angular Pressing: Effect of Material Properties, Friction and Die Geometry, Mater. Sci. Eng. A, 2005, 410, p 248–251.CrossRef
23.
Zurück zum Zitat M. Ebrahimi, Numerical Analysis of Conventional and Modified Equal Channel Angular Pressing, Trans. Indian Inst. Met., 2019, 72(9), p 2263–2273.CrossRef M. Ebrahimi, Numerical Analysis of Conventional and Modified Equal Channel Angular Pressing, Trans. Indian Inst. Met., 2019, 72(9), p 2263–2273.CrossRef
24.
Zurück zum Zitat R. Bhandari, P. Biswas, A. Pathania, M. Mallik, and M. Kumar Mondal, Equal Channel Angular Pressing Die Design Through Finite Element Analysis Method for Non-strain Hardening Material, Can. Metall. Q., 2022, 61, p 1–20.CrossRef R. Bhandari, P. Biswas, A. Pathania, M. Mallik, and M. Kumar Mondal, Equal Channel Angular Pressing Die Design Through Finite Element Analysis Method for Non-strain Hardening Material, Can. Metall. Q., 2022, 61, p 1–20.CrossRef
25.
Zurück zum Zitat S. Nazari Tiji, A. Asgari, H. Gholipour, and F. Djavanroodi, Modeling of Equal Channel Forward Extrusion Force Using Response Surface Approach, Proc. Inst. Mech. Eng. Part. B. J. Eng. Manuf., 2018, 232(4), p 713–719.CrossRef S. Nazari Tiji, A. Asgari, H. Gholipour, and F. Djavanroodi, Modeling of Equal Channel Forward Extrusion Force Using Response Surface Approach, Proc. Inst. Mech. Eng. Part. B. J. Eng. Manuf., 2018, 232(4), p 713–719.CrossRef
26.
Zurück zum Zitat M. Ebrahimi, F. Pashmforoush, and C. Gode, Evaluating Influence Degree of Equal-Channel Angular Pressing Parameters Based on Finite Element Analysis and Response Surface Methodology, J. Braz. Soc. Mech. Sci. Eng., 2019, 41(2), p 95.CrossRef M. Ebrahimi, F. Pashmforoush, and C. Gode, Evaluating Influence Degree of Equal-Channel Angular Pressing Parameters Based on Finite Element Analysis and Response Surface Methodology, J. Braz. Soc. Mech. Sci. Eng., 2019, 41(2), p 95.CrossRef
27.
Zurück zum Zitat R.A. Parshikov and A.M. Zolotov, Influence of Contact Friction on the Kinematics of Metal Flow During Equal Channel Angular Pressing, Key Eng. Mater., 2019, 822, p 171–177.CrossRef R.A. Parshikov and A.M. Zolotov, Influence of Contact Friction on the Kinematics of Metal Flow During Equal Channel Angular Pressing, Key Eng. Mater., 2019, 822, p 171–177.CrossRef
28.
Zurück zum Zitat I. Balasundar and T. Raghu, Effect of Friction Model in Numerical Analysis of Equal Channel Angular Pressing Process, Mater. Des., 2010, 31(1), p 449–457.CrossRef I. Balasundar and T. Raghu, Effect of Friction Model in Numerical Analysis of Equal Channel Angular Pressing Process, Mater. Des., 2010, 31(1), p 449–457.CrossRef
29.
Zurück zum Zitat R. Jivan, M. Eskandarzade, S. Bewsher, M. Leighton, M. Mohammadpour, and S. Saremi-Yarahmadi, Application of Solid Lubricant for Enhanced Frictional Efficiency of Deep Drawing Process, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 236(1), p 624–634.CrossRef R. Jivan, M. Eskandarzade, S. Bewsher, M. Leighton, M. Mohammadpour, and S. Saremi-Yarahmadi, Application of Solid Lubricant for Enhanced Frictional Efficiency of Deep Drawing Process, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 236(1), p 624–634.CrossRef
30.
Zurück zum Zitat A.S. Miavaghi, H. Kangarlou, and M. Eskandarzade, Comparison Between Frictional Behavior of the Soft and Brittle Materials at Different Contact Pressures, Leban. Sci. J., 2017, 18(1), p 98.CrossRef A.S. Miavaghi, H. Kangarlou, and M. Eskandarzade, Comparison Between Frictional Behavior of the Soft and Brittle Materials at Different Contact Pressures, Leban. Sci. J., 2017, 18(1), p 98.CrossRef
31.
Zurück zum Zitat A.-E. Jiménez and M.-D. Bermúdez, Friction and wear, in Tribology for Engineers, (Elsevier, 2011), pp. 33–63 A.-E. Jiménez and M.-D. Bermúdez, Friction and wear, in Tribology for Engineers, (Elsevier, 2011), pp. 33–63
32.
Zurück zum Zitat Abaqus 6.14, Abaqus Theory Guide (2020) Abaqus 6.14, Abaqus Theory Guide (2020)
33.
Zurück zum Zitat A.A. Mendes Filho, E.F. Prados, G.T. Valio, J.B. Rubert, V.L. Sordi, and M. Ferrante, Severe Plastic Deformation by Equal Channel Angular Pressing: Product Quality and Operational Details, Mater. Res., 2011, 14(3), p 335–339.CrossRef A.A. Mendes Filho, E.F. Prados, G.T. Valio, J.B. Rubert, V.L. Sordi, and M. Ferrante, Severe Plastic Deformation by Equal Channel Angular Pressing: Product Quality and Operational Details, Mater. Res., 2011, 14(3), p 335–339.CrossRef
34.
Zurück zum Zitat F. Djavanroodi and M. Ebrahimi, Effect of Die Parameters and Material Properties in ECAP with Parallel Channels, Mater. Sci. Eng. A, 2010, 527(29–30), p 7593–7599.CrossRef F. Djavanroodi and M. Ebrahimi, Effect of Die Parameters and Material Properties in ECAP with Parallel Channels, Mater. Sci. Eng. A, 2010, 527(29–30), p 7593–7599.CrossRef
35.
Zurück zum Zitat L. Hua, X. Hu, and X. Han, Microstructure Evolution of Annealed 7075 Aluminum Alloy and Its Influence on Room-Temperature Plasticity, Mater. Des., 2020, 196, p 109192.CrossRef L. Hua, X. Hu, and X. Han, Microstructure Evolution of Annealed 7075 Aluminum Alloy and Its Influence on Room-Temperature Plasticity, Mater. Des., 2020, 196, p 109192.CrossRef
36.
Zurück zum Zitat D.R. Fang et al., Effect of Equal Channel Angular Pressing on Tensile Properties and Fracture Modes of Casting Al-Cu alloys, Mater. Sci. Eng. A, 2006, 426(1–2), p 305–313.CrossRef D.R. Fang et al., Effect of Equal Channel Angular Pressing on Tensile Properties and Fracture Modes of Casting Al-Cu alloys, Mater. Sci. Eng. A, 2006, 426(1–2), p 305–313.CrossRef
37.
Zurück zum Zitat S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, and K. Jayasankar, Microstructural and Mechanical Properties of Al 7075 Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 533, p 50–54.CrossRef S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, and K. Jayasankar, Microstructural and Mechanical Properties of Al 7075 Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 533, p 50–54.CrossRef
38.
Zurück zum Zitat M. Cabibbo, Microstructure Strengthening Mechanisms in Different Equal Channel Angular Pressed Aluminum Alloys, Mater. Sci. Eng. A, 2013, 560, p 413–432.CrossRef M. Cabibbo, Microstructure Strengthening Mechanisms in Different Equal Channel Angular Pressed Aluminum Alloys, Mater. Sci. Eng. A, 2013, 560, p 413–432.CrossRef
Metadaten
Titel
Effect of Frictional Contact Surface on Maximum Pressing Load during Equal Channel Angular Pressing Process
verfasst von
Behzad Abbaszadeh
Mohammad Morad Sheikhi
Mohammad Meghdad Fallah
Mehdi Eskandarzade
Publikationsdatum
13.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08039-5

Weitere Artikel der Ausgabe 2/2024

Journal of Materials Engineering and Performance 2/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.