Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

22.10.2021

Effect of Heat Treatment on Corrosion Performance of Mg-12Gd-3Y-1Sm-0.8Al Alloy

verfasst von: Ziyi Chen, Quanan Li, Xiaoya Chen, Hongxi Zhu, Qian Zhang, Jian Bao, Xiangyu Li

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, static mass analysis method and electrochemical test experiment were used to study the corrosion resistance of Mg-12Gd-3Y-1Sm-0.8Al alloy in different heat treatment states. Optical microscope, scanning electron microscope and x-ray diffractometer were used to analyze microstructure. The result shows: The microstructure of different samples are composed of α-Mg, Mg5Gd, Mg24Y5, Mg41Sm5 and Al2RE phases. Heat treatment can change the morphology and distribution of the precipitates, and the precipitates can affect the corrosion behavior as a cathode, thereby improving the corrosion resistance of the alloy in 3.5% NaCl solution. The relative corrosion rates of the different samples can be ranked as T6>T6-18h>T4>As-cast. After aging treatment, the fine and continuous precipitates act as a barrier to prevent the propagation of corrosion. At this time, the alloy has the strongest corrosion resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Zhou, C. Liu, Y. Gao, S. Jiang and Z. Chen, Mechanical Properties of the Mg-Gd-Y-Zn-Zr Alloys with Different Morphologies of Long-period Stacking Ordered Phases, J. Mater. Eng. Perform., 2018, 27, p 6237–6245.CrossRef X. Zhou, C. Liu, Y. Gao, S. Jiang and Z. Chen, Mechanical Properties of the Mg-Gd-Y-Zn-Zr Alloys with Different Morphologies of Long-period Stacking Ordered Phases, J. Mater. Eng. Perform., 2018, 27, p 6237–6245.CrossRef
2.
Zurück zum Zitat C.P. Tang, X.Z. Wang, W.H. Liu, D. Feng, G.L. Zuo, D. Li, X.Y. Li, X. Chen, Q. Li and X. Liu, Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg-Gd-Based Alloy, J. Mater. Eng. Perform., 2020, 29, p 8414–8421.CrossRef C.P. Tang, X.Z. Wang, W.H. Liu, D. Feng, G.L. Zuo, D. Li, X.Y. Li, X. Chen, Q. Li and X. Liu, Effect of Deformation Conditions on Dynamic Mechanical Behavior of a Mg-Gd-Based Alloy, J. Mater. Eng. Perform., 2020, 29, p 8414–8421.CrossRef
3.
Zurück zum Zitat B. Chen, W.M. Zhou, S. Li, X.L. Li and C. Lu, Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy, J. Mater. Eng. Perform., 2013, 22, p 2458–2466.CrossRef B. Chen, W.M. Zhou, S. Li, X.L. Li and C. Lu, Hot Compression Deformation Behavior and Processing Maps of Mg-Gd-Y-Zr Alloy, J. Mater. Eng. Perform., 2013, 22, p 2458–2466.CrossRef
4.
Zurück zum Zitat M. Zhang, K. Peng, J. Chen and Y. Deng, Heat-resistant Magnesium Alloys and Their Development, Chin. J. Nonferrous., 2004, 14(9), p 1443–1450. M. Zhang, K. Peng, J. Chen and Y. Deng, Heat-resistant Magnesium Alloys and Their Development, Chin. J. Nonferrous., 2004, 14(9), p 1443–1450.
5.
Zurück zum Zitat S.M. He, Q.Z. Xiao, M.P. Li et al., Microstructure, Mechanical Properties, Creep and Corrosion Resistance of Mg-Gd-Y-Zr(Ca) Alloys, Mater. Sci. Forum, 2007, 546, p 101–104.CrossRef S.M. He, Q.Z. Xiao, M.P. Li et al., Microstructure, Mechanical Properties, Creep and Corrosion Resistance of Mg-Gd-Y-Zr(Ca) Alloys, Mater. Sci. Forum, 2007, 546, p 101–104.CrossRef
6.
Zurück zum Zitat C. Li, Q.A. Li, X.Y. Zhang and J.L. Bu, Effects of Sm on Microstructure and Mechanical Properties of Mg-5.5Al-0.5Y Alloy, Adv. Mater. Res., 2011, 146, p 267–271. C. Li, Q.A. Li, X.Y. Zhang and J.L. Bu, Effects of Sm on Microstructure and Mechanical Properties of Mg-5.5Al-0.5Y Alloy, Adv. Mater. Res., 2011, 146, p 267–271.
7.
Zurück zum Zitat S. Liang, D. Guan, L. Chen, Z.H. Gao, H.X. Tang, X.T. Tong and R. Xiao, Precipitation and Its Effect on Age-hardening Behavior of As-cast Mg-Gd-Y Alloy, Mater. Des., 2011, 32(1), p 361–364.CrossRef S. Liang, D. Guan, L. Chen, Z.H. Gao, H.X. Tang, X.T. Tong and R. Xiao, Precipitation and Its Effect on Age-hardening Behavior of As-cast Mg-Gd-Y Alloy, Mater. Des., 2011, 32(1), p 361–364.CrossRef
8.
Zurück zum Zitat M.E. Drits, Z.A. Sviderskaya, L.L. Rokhlin and N.I. Nikitina, Effect of Alloying on the Properties of Mg−Gd Alloys, Met. Sci. Heat Treat., 1979, 21(11), p 887–889.CrossRef M.E. Drits, Z.A. Sviderskaya, L.L. Rokhlin and N.I. Nikitina, Effect of Alloying on the Properties of Mg−Gd Alloys, Met. Sci. Heat Treat., 1979, 21(11), p 887–889.CrossRef
9.
Zurück zum Zitat I.A. Anyanwu, S. Kamado and Y. Kojima, Aging Characteristics and High Temperature Tensile Properties of Mg-Gd-Y-Zr Alloys, Mater. Trans., 2001, 42(7), p 1206–1211.CrossRef I.A. Anyanwu, S. Kamado and Y. Kojima, Aging Characteristics and High Temperature Tensile Properties of Mg-Gd-Y-Zr Alloys, Mater. Trans., 2001, 42(7), p 1206–1211.CrossRef
10.
Zurück zum Zitat J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu and F.H. Wang, Significantly Improved Corrosion Resistance of Mg-15Gd-2Zn-0.39Zr Alloys: Effect of Heat-treatment, J. Mater. Sci. Technol., 2019, 35(08), p 132–142.CrossRef J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu and F.H. Wang, Significantly Improved Corrosion Resistance of Mg-15Gd-2Zn-0.39Zr Alloys: Effect of Heat-treatment, J. Mater. Sci. Technol., 2019, 35(08), p 132–142.CrossRef
11.
Zurück zum Zitat G. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 2000, 1(1), p 11–33.CrossRef G. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 2000, 1(1), p 11–33.CrossRef
12.
Zurück zum Zitat B.L. Mordike and T. Ebert, Magnesium-Properties-Applications-Potential, Mater. Sci. Eng: A., 2001, 302(1), p 37–45.CrossRef B.L. Mordike and T. Ebert, Magnesium-Properties-Applications-Potential, Mater. Sci. Eng: A., 2001, 302(1), p 37–45.CrossRef
13.
Zurück zum Zitat S.C. Maria del Rosario, B. Carsten, M.L. Chamini, M. Marta, Z. Tristan, P. Daniel, Z.L. Mikhail and K. Karl Ulrich, Effect of Heat Treatment on the Corrosion Behavior of Mg-10Gd Alloy in 0.5% NaCl Solution, Front. Mater. Sci., 2020, 7, p 1–16. S.C. Maria del Rosario, B. Carsten, M.L. Chamini, M. Marta, Z. Tristan, P. Daniel, Z.L. Mikhail and K. Karl Ulrich, Effect of Heat Treatment on the Corrosion Behavior of Mg-10Gd Alloy in 0.5% NaCl Solution, Front. Mater. Sci., 2020, 7, p 1–16.
14.
Zurück zum Zitat F.M. Lu, A.B. Ma, J.H. Jiang, Y. Guo, D.H. Yang, D. Song and J.Q. Chen, Significantly Improved Corrosion Resistance of Heat-treated Mg-Al-Gd Alloy Containing Profuse Needle-like Precipitates Within Grains, Corrs. Sci., 2015, 94(5), p 171–178.CrossRef F.M. Lu, A.B. Ma, J.H. Jiang, Y. Guo, D.H. Yang, D. Song and J.Q. Chen, Significantly Improved Corrosion Resistance of Heat-treated Mg-Al-Gd Alloy Containing Profuse Needle-like Precipitates Within Grains, Corrs. Sci., 2015, 94(5), p 171–178.CrossRef
15.
Zurück zum Zitat S. Yu, R.L. Jia, T. Zhang, F.H. Wang, J. Hou and H.X. Zhang, Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy, Acta Metall. Sin.-Engl. Lett., 2019, 32, p 433–442.CrossRef S. Yu, R.L. Jia, T. Zhang, F.H. Wang, J. Hou and H.X. Zhang, Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy, Acta Metall. Sin.-Engl. Lett., 2019, 32, p 433–442.CrossRef
16.
Zurück zum Zitat M. Yang, Y.H. Liu, J.A. Liu and Y.L. Song, Effect of T6 Heat Treatment on Corrosion Resistance and Mechanical Properties of AM50 Magnesium Alloy, Mater. Res. Innov., 2016, 19(10), p 259–264. M. Yang, Y.H. Liu, J.A. Liu and Y.L. Song, Effect of T6 Heat Treatment on Corrosion Resistance and Mechanical Properties of AM50 Magnesium Alloy, Mater. Res. Innov., 2016, 19(10), p 259–264.
17.
Zurück zum Zitat G.L. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38, p 138–153.CrossRef G.L. Makar and J. Kruger, Corrosion of Magnesium, Int. Mater. Rev., 1993, 38, p 138–153.CrossRef
18.
Zurück zum Zitat A.D. Sudholz, K. Gusieva, X.B. Chen, B.C. Muddle, M.A. Gibson and N. Birbilis, Electrochemical Behaviour and Corrosion of Mg-Y Alloys, Corrosion Sci., 2011, 53(6), p 2277–2282.CrossRef A.D. Sudholz, K. Gusieva, X.B. Chen, B.C. Muddle, M.A. Gibson and N. Birbilis, Electrochemical Behaviour and Corrosion of Mg-Y Alloys, Corrosion Sci., 2011, 53(6), p 2277–2282.CrossRef
19.
Zurück zum Zitat G. Ben-Hamua, D. Eliezer, S.K. Shin and S. Cohen, The Relation Between Microstructure and Corrosion Behavior of Mg–Y–RE–Zr Alloys, J. Alloy. Compd., 2007, 431(1), p 269–276.CrossRef G. Ben-Hamua, D. Eliezer, S.K. Shin and S. Cohen, The Relation Between Microstructure and Corrosion Behavior of Mg–Y–RE–Zr Alloys, J. Alloy. Compd., 2007, 431(1), p 269–276.CrossRef
20.
Zurück zum Zitat S. Liang, D. Guan and X. Tan, The Relation Between Heat Treatment and Corrosion Behavior of Mg–Gd–Y–Zr Alloy, Mater. Des., 2011, 32(3), p 1194–1199.CrossRef S. Liang, D. Guan and X. Tan, The Relation Between Heat Treatment and Corrosion Behavior of Mg–Gd–Y–Zr Alloy, Mater. Des., 2011, 32(3), p 1194–1199.CrossRef
21.
Zurück zum Zitat G.L. Makar and J. Kruger, Corrosion Studies of Rapidly Solidified Magnesium Alloys, J. Electrochem. Soc., 1990, 137(2), p 414.CrossRef G.L. Makar and J. Kruger, Corrosion Studies of Rapidly Solidified Magnesium Alloys, J. Electrochem. Soc., 1990, 137(2), p 414.CrossRef
22.
Zurück zum Zitat X. Liu, T. Zhang, Y.W. Shao and F. Wang, Effect of Alternating Voltage Treatment on the Corrosion Resistance of Pure Magnesium, Corros. Sci., 2009, 51(8), p 1772–1779.CrossRef X. Liu, T. Zhang, Y.W. Shao and F. Wang, Effect of Alternating Voltage Treatment on the Corrosion Resistance of Pure Magnesium, Corros. Sci., 2009, 51(8), p 1772–1779.CrossRef
23.
Zurück zum Zitat T. Zhang, Y. Shao, G. Meng, Z. Cui and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53(5), p 1960–1968.CrossRef T. Zhang, Y. Shao, G. Meng, Z. Cui and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy: I-relation Between the Microstructure and Corrosion Behavior, Corros. Sci., 2011, 53(5), p 1960–1968.CrossRef
24.
Zurück zum Zitat J. Li, Q. Jiang, H. Su and Y. Li, Effect of Heat Treatment on Corrosion Behavior of AZ63 Magnesium Alloy in 35 wt% Sodium Chloride Solution, Corros. Sci., 2016, 111, p 288–301.CrossRef J. Li, Q. Jiang, H. Su and Y. Li, Effect of Heat Treatment on Corrosion Behavior of AZ63 Magnesium Alloy in 35 wt% Sodium Chloride Solution, Corros. Sci., 2016, 111, p 288–301.CrossRef
25.
Zurück zum Zitat G.A. Zhang, Y. Zeng, X.P. Guo, F. Jiang, D.Y. Shi and Z.Y. Chen, Electrochemical Corrosion Behaviour of Carbon Steel Under Dynamic High Pressure H2S/CO2 Enviroment, Corros. Sci., 2012, 65, p 37–47.CrossRef G.A. Zhang, Y. Zeng, X.P. Guo, F. Jiang, D.Y. Shi and Z.Y. Chen, Electrochemical Corrosion Behaviour of Carbon Steel Under Dynamic High Pressure H2S/CO2 Enviroment, Corros. Sci., 2012, 65, p 37–47.CrossRef
26.
Zurück zum Zitat F. Cao, G. Song and A. Atrens, Corrosion and Passivation of Magnesium Alloys, Corrs. Sci., 2016, 111, p 835–845.CrossRef F. Cao, G. Song and A. Atrens, Corrosion and Passivation of Magnesium Alloys, Corrs. Sci., 2016, 111, p 835–845.CrossRef
27.
Zurück zum Zitat I.J. Skar, Corrosion and Corrosion Prevention of Magnesium Alloys, Mater. Corros., 1999, 50(1), p 2–6.CrossRef I.J. Skar, Corrosion and Corrosion Prevention of Magnesium Alloys, Mater. Corros., 1999, 50(1), p 2–6.CrossRef
28.
Zurück zum Zitat Z. Szklarz and Ł Rogal, Influence of Heat Treatment on the Microstructure and Corrosion Behavior of Thixo-Cast Mg-Y-Nd-Zr, J. Mater. Eng. Perform., 2020, 29, p 6181–6195.CrossRef Z. Szklarz and Ł Rogal, Influence of Heat Treatment on the Microstructure and Corrosion Behavior of Thixo-Cast Mg-Y-Nd-Zr, J. Mater. Eng. Perform., 2020, 29, p 6181–6195.CrossRef
29.
Zurück zum Zitat Y. Gui and Q. Li, Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-2Nd-3Sm-0.5Zr Alloys, Int. J. Electrochem. Sci., 2019, 14(2), p 1342–1357.CrossRef Y. Gui and Q. Li, Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-2Nd-3Sm-0.5Zr Alloys, Int. J. Electrochem. Sci., 2019, 14(2), p 1342–1357.CrossRef
30.
Zurück zum Zitat Y.Y. Lv and L.F. Zhang, Corrosion and protection of magnesium alloys, Adv. Mater. Res., 2015, 1120, p 1078–1082.CrossRef Y.Y. Lv and L.F. Zhang, Corrosion and protection of magnesium alloys, Adv. Mater. Res., 2015, 1120, p 1078–1082.CrossRef
31.
Zurück zum Zitat A. Kania, R. Nowosielski, A. Gawlas-Mucha and R. Babilas, Mechanical and Corrosion Properties of Mg-based Alloys with Gd Addition, Mater., 2019, 12(11), p 1211.CrossRef A. Kania, R. Nowosielski, A. Gawlas-Mucha and R. Babilas, Mechanical and Corrosion Properties of Mg-based Alloys with Gd Addition, Mater., 2019, 12(11), p 1211.CrossRef
32.
Zurück zum Zitat F. Chong, M.Z. Li, Y. Hou, H.Y. Wang, X.Y. Li and L.Q. Fan, Effect of Ca on Corrosion Resistance Behavior of As-cast AZ91 Magnesium Alloys, Rare Metal Mat. Eng., 2015, 44(1), p 41–47.CrossRef F. Chong, M.Z. Li, Y. Hou, H.Y. Wang, X.Y. Li and L.Q. Fan, Effect of Ca on Corrosion Resistance Behavior of As-cast AZ91 Magnesium Alloys, Rare Metal Mat. Eng., 2015, 44(1), p 41–47.CrossRef
33.
Zurück zum Zitat G. Song, A.L. Bowles and D.H. Stjohn, Corrosion Resistance of Aged Die Cast Magnesium Alloy AZ91D, Adv. Eng. Mater., 2004, 366(1), p 74–86. G. Song, A.L. Bowles and D.H. Stjohn, Corrosion Resistance of Aged Die Cast Magnesium Alloy AZ91D, Adv. Eng. Mater., 2004, 366(1), p 74–86.
34.
Zurück zum Zitat Y. Han, J. Pin, C. Xiao and Q. Zeng, Effects of Heat Treatments on Corrosion Behavior of Mg AT72 Alloy, Mater. Sci. Forum., 2013, 748, p 230–237. Y. Han, J. Pin, C. Xiao and Q. Zeng, Effects of Heat Treatments on Corrosion Behavior of Mg AT72 Alloy, Mater. Sci. Forum., 2013, 748, p 230–237.
35.
Zurück zum Zitat X. Ma, Q. Tong, Y. Li and B. Hou, Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys, Int. J. Electrochem., 2016, 2016, p 1–9.CrossRef X. Ma, Q. Tong, Y. Li and B. Hou, Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys, Int. J. Electrochem., 2016, 2016, p 1–9.CrossRef
36.
Zurück zum Zitat G. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 2010, 1(1), p 11–33.CrossRef G. Song and A. Atrens, Corrosion Mechanisms of Magnesium Alloys, Adv. Eng. Mater., 2010, 1(1), p 11–33.CrossRef
37.
Zurück zum Zitat A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17(4), p 400–453.CrossRef A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17(4), p 400–453.CrossRef
38.
Zurück zum Zitat A. Pardo, M.C. Merinoa, A.E. Coy and R. Arrabal, Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt.% NaCl, Corros. Sci., 2008, 50(3), p 823–834.CrossRef A. Pardo, M.C. Merinoa, A.E. Coy and R. Arrabal, Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt.% NaCl, Corros. Sci., 2008, 50(3), p 823–834.CrossRef
39.
Zurück zum Zitat G. Song, A. Atrens, X. Wu and B. Zhang, Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride, Corros. Sci., 1998, 40(10), p 1769–1791.CrossRef G. Song, A. Atrens, X. Wu and B. Zhang, Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride, Corros. Sci., 1998, 40(10), p 1769–1791.CrossRef
40.
Zurück zum Zitat G. Song, A. Atrens and M. Dargusch, Influence of Microstructure on the Corrosion of Diecast AZ91D, Corros. Sci., 1998, 41(2), p 249–273.CrossRef G. Song, A. Atrens and M. Dargusch, Influence of Microstructure on the Corrosion of Diecast AZ91D, Corros. Sci., 1998, 41(2), p 249–273.CrossRef
41.
Zurück zum Zitat Z.L. Liu, X.C. Wu, X.Q. Wu, H.J. Xie and J. Xie, Effects of Al Content on the Corrosion Properties of Mg–4Y–xAl Alloys, Mater. Corros., 2020, 71(7), p 1216–1225.CrossRef Z.L. Liu, X.C. Wu, X.Q. Wu, H.J. Xie and J. Xie, Effects of Al Content on the Corrosion Properties of Mg–4Y–xAl Alloys, Mater. Corros., 2020, 71(7), p 1216–1225.CrossRef
Metadaten
Titel
Effect of Heat Treatment on Corrosion Performance of Mg-12Gd-3Y-1Sm-0.8Al Alloy
verfasst von
Ziyi Chen
Quanan Li
Xiaoya Chen
Hongxi Zhu
Qian Zhang
Jian Bao
Xiangyu Li
Publikationsdatum
22.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06347-2

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.