Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

12.10.2021

Temperature and Stress Evaluation during Friction Stir Welding of Inconel 718 Alloy Using Finite Element Numerical Simulation

verfasst von: Ranamay Saha, Pankaj Biswas

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current work aims to carry out a dynamic explicit nonlinear finite element simulation to analyze the temperature and residual stress distribution during friction stir welding process of Inconel 718 alloy. The computational modeling has been done in the ABAQUS® explicit software. Features such as arbitrary Lagrangian-Eulerian formulation, adaptive meshing, mesh sensitivity analysis and mass scaling have been incorporated in order to develop a reliable and computationally efficient FE model. A finite sliding property was used to define the interaction between tool bottom surface and plate upper surface. The tool-workpiece contact was defined with coulomb friction model with temperature-dependent friction coefficient value. Furthermore, a small experimental work was carried out in order to validate the numerically obtained thermal profiles. Results showed that similar temperature profiles were generated across the workpiece. However, temperatures in advancing side were slightly on a higher side. Mechanical response of the Inconel plates was also studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z.Y. Ma, A.H. Feng, D.L. Chen and J. Shen, Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Crit. Rev. Solid State Mater. Sci., 2017, 43, p 1–65. Z.Y. Ma, A.H. Feng, D.L. Chen and J. Shen, Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Crit. Rev. Solid State Mater. Sci., 2017, 43, p 1–65.
2.
Zurück zum Zitat G. Çam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2011, 56, p 1–48.CrossRef G. Çam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2011, 56, p 1–48.CrossRef
3.
Zurück zum Zitat C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tools Manuf., 2003, 43, p 1319–1326.CrossRef C.M. Chen and R. Kovacevic, Finite Element Modeling of Friction Stir Welding—Thermal and Thermomechanical Analysis, Int. J. Mach. Tools Manuf., 2003, 43, p 1319–1326.CrossRef
4.
Zurück zum Zitat M. Yu, W. Li, J. Li and Y. Chao, Modelling of Entire Friction Stir Welding Process by Explicit Finite Element Method, Mater. Sci. Technol., 2012, 28, p 812–817.CrossRef M. Yu, W. Li, J. Li and Y. Chao, Modelling of Entire Friction Stir Welding Process by Explicit Finite Element Method, Mater. Sci. Technol., 2012, 28, p 812–817.CrossRef
5.
Zurück zum Zitat K. Kumar, Numerical Simulation of Friction Stir Butt Welding Processes For Az91 Magnesium Alloy, Int. J. Res. Eng. Technol., 2014, 03, p 101–109. K. Kumar, Numerical Simulation of Friction Stir Butt Welding Processes For Az91 Magnesium Alloy, Int. J. Res. Eng. Technol., 2014, 03, p 101–109.
6.
Zurück zum Zitat P. Pankaj, P.S. Sawarkar, A. Tiwari, P. Biswas and S. Pal, Three Dimensional Fe Thermal Analysis for Friction Stir Welding of Low Carbon Steel, Mater. Today: Proc., 2021, 41, p 902–907. P. Pankaj, P.S. Sawarkar, A. Tiwari, P. Biswas and S. Pal, Three Dimensional Fe Thermal Analysis for Friction Stir Welding of Low Carbon Steel, Mater. Today: Proc., 2021, 41, p 902–907.
7.
Zurück zum Zitat K.N. Salloomi, F.I. Hussein and S.N.M. Al-Sumaidae, Temperature and Stress Evaluation during Three Different Phases of Friction Stir Welding of AA 7075-T651 Alloy’, Modell. Simul. Eng., 2020, 2020, p 1–11.CrossRef K.N. Salloomi, F.I. Hussein and S.N.M. Al-Sumaidae, Temperature and Stress Evaluation during Three Different Phases of Friction Stir Welding of AA 7075-T651 Alloy’, Modell. Simul. Eng., 2020, 2020, p 1–11.CrossRef
8.
Zurück zum Zitat Z. Zhang, J.T. Chen, Z.W. Zhang and H.W. Zhang, Coupled Thermo-Mechanical Model Based Comparison of Friction Stir Welding Processes of AA2024-T3 in Different Thicknesses, J. Mater. Sci., 2011, 46, p 5815–5821.CrossRef Z. Zhang, J.T. Chen, Z.W. Zhang and H.W. Zhang, Coupled Thermo-Mechanical Model Based Comparison of Friction Stir Welding Processes of AA2024-T3 in Different Thicknesses, J. Mater. Sci., 2011, 46, p 5815–5821.CrossRef
9.
Zurück zum Zitat M. Assidi, L. Fourment, S. Guerdoux and T. Nelson, Friction Model For Friction Stir Welding Process Simulation: Calibrations From Welding Experiments, Int. J. Mach. Tools Manuf., 2010, 50, p 143–55.CrossRef M. Assidi, L. Fourment, S. Guerdoux and T. Nelson, Friction Model For Friction Stir Welding Process Simulation: Calibrations From Welding Experiments, Int. J. Mach. Tools Manuf., 2010, 50, p 143–55.CrossRef
10.
Zurück zum Zitat R. Jain, S.K. Pal and S.B. Singh, A Study on the Variation of Forces and Temperature in a Friction Stir Welding Process: A Finite Element Approach, J. Manuf. Process., 2016, 23(23), p 278–286.CrossRef R. Jain, S.K. Pal and S.B. Singh, A Study on the Variation of Forces and Temperature in a Friction Stir Welding Process: A Finite Element Approach, J. Manuf. Process., 2016, 23(23), p 278–286.CrossRef
11.
Zurück zum Zitat Y.J. Chao, X. Qi and W. Tang, Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies, J. Manuf. Sci. Eng., 2003, 125, p 138–145.CrossRef Y.J. Chao, X. Qi and W. Tang, Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies, J. Manuf. Sci. Eng., 2003, 125, p 138–145.CrossRef
12.
Zurück zum Zitat H. Schmidt, J. Hattel and J. Wert, A Local Model For The Thermomechanical Conditions in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2005, 13, p 77–93.CrossRef H. Schmidt, J. Hattel and J. Wert, A Local Model For The Thermomechanical Conditions in Friction Stir Welding, Modell. Simul. Mater. Sci. Eng., 2005, 13, p 77–93.CrossRef
13.
Zurück zum Zitat S. Mandal, J. Rice and A.A. Elmustafa, Experimental and Numerical Investigation of the Plunge Stage In Friction Stir Welding, J. Mater. Process. Technol., 2008, 203, p 411–419.CrossRef S. Mandal, J. Rice and A.A. Elmustafa, Experimental and Numerical Investigation of the Plunge Stage In Friction Stir Welding, J. Mater. Process. Technol., 2008, 203, p 411–419.CrossRef
14.
Zurück zum Zitat W.Y. Li, M. Yu, J.L. Li and D.L. Gao, Explicit Finite Element Analysis of the Plunge Stage of Tool in Friction Stir Welding, Mater. Sci. Forum, 2009, 620–622, p 233–236.CrossRef W.Y. Li, M. Yu, J.L. Li and D.L. Gao, Explicit Finite Element Analysis of the Plunge Stage of Tool in Friction Stir Welding, Mater. Sci. Forum, 2009, 620–622, p 233–236.CrossRef
15.
Zurück zum Zitat E. Uhlmann, M. Graf von der Schulenburg and R. Zettier, Finite Element Modeling and Cutting Simulation of Inconel 718, CIRP Annals, 2007, 56, p 61–64.CrossRef E. Uhlmann, M. Graf von der Schulenburg and R. Zettier, Finite Element Modeling and Cutting Simulation of Inconel 718, CIRP Annals, 2007, 56, p 61–64.CrossRef
16.
Zurück zum Zitat F. Al-Badour, N. Merah, A. Shuaib and A. Bazoune, Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys, Int. J. Adv. Manuf. Technol., 2014, 72, p 607–617.CrossRef F. Al-Badour, N. Merah, A. Shuaib and A. Bazoune, Thermo-Mechanical Finite Element Model of Friction Stir Welding of Dissimilar Alloys, Int. J. Adv. Manuf. Technol., 2014, 72, p 607–617.CrossRef
17.
Zurück zum Zitat M. Riahi and H. Nazari, Analysis of Transient Temperature and Residual Thermal Stresses in Friction Stir Welding of Aluminum Alloy 6061-T6 via Numerical Simulation, Int. J. Adv. Manuf. Technol., 2011, 55, p 143–152.CrossRef M. Riahi and H. Nazari, Analysis of Transient Temperature and Residual Thermal Stresses in Friction Stir Welding of Aluminum Alloy 6061-T6 via Numerical Simulation, Int. J. Adv. Manuf. Technol., 2011, 55, p 143–152.CrossRef
18.
Zurück zum Zitat H. Li, D. Mackenzie and R. Hamilton, Multi-Physics Simulation of Friction Stir Welding Process, Eng Comput, 2010, 27, p 967–985.CrossRef H. Li, D. Mackenzie and R. Hamilton, Multi-Physics Simulation of Friction Stir Welding Process, Eng Comput, 2010, 27, p 967–985.CrossRef
20.
Zurück zum Zitat I. Hernando, M.A. Renderos, M. Cortina, J. Exequiel Ruiz, J.I. Arrizubieta and A. Lamikiz, Inconel 718 Laser Welding Simulation Tool Based on a Moving Heat Source and Phase Change, Procedia CIRP, 2018, 74, p 674–678.CrossRef I. Hernando, M.A. Renderos, M. Cortina, J. Exequiel Ruiz, J.I. Arrizubieta and A. Lamikiz, Inconel 718 Laser Welding Simulation Tool Based on a Moving Heat Source and Phase Change, Procedia CIRP, 2018, 74, p 674–678.CrossRef
21.
Zurück zum Zitat C.A. Hernández, V.H. Ferrer and J.E. Mancilla, Three-Dimensional Numerical Modeling of the Friction Stir Welding of Dissimilar Steels, Int. J. Adv. Manuf. Technol., 2017, 93, p 1567–1581.CrossRef C.A. Hernández, V.H. Ferrer and J.E. Mancilla, Three-Dimensional Numerical Modeling of the Friction Stir Welding of Dissimilar Steels, Int. J. Adv. Manuf. Technol., 2017, 93, p 1567–1581.CrossRef
22.
Zurück zum Zitat X.K. Zhu and Y.J. Chao, Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304l Stainless Steel, J. Mater. Process. Technol., 2004, 146, p 263–272.CrossRef X.K. Zhu and Y.J. Chao, Numerical Simulation of Transient Temperature and Residual Stresses in Friction Stir Welding of 304l Stainless Steel, J. Mater. Process. Technol., 2004, 146, p 263–272.CrossRef
23.
Zurück zum Zitat R. Nandan, G.G. Roy, T.J. Lienert and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 526–537.CrossRef R. Nandan, G.G. Roy, T.J. Lienert and T. DebRoy, Numerical Modelling of 3D Plastic Flow and Heat Transfer During Friction Stir Welding of Stainless Steel, Sci. Technol. Weld. Join., 2006, 11, p 526–537.CrossRef
Metadaten
Titel
Temperature and Stress Evaluation during Friction Stir Welding of Inconel 718 Alloy Using Finite Element Numerical Simulation
verfasst von
Ranamay Saha
Pankaj Biswas
Publikationsdatum
12.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06313-y

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.