Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

12.11.2021

Investigation on Hydrogen Embrittlement Sensitivity of Hot-Rolled and Annealed Microstructure to AISI 430 Ferritic Stainless Steel

verfasst von: Tao Wang, Wenjie Lv, Wentao Xiao, Kun Wang, Huiyun Zhang, Wei Liang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper studied the influence of hot rolling and annealing processes on the hydrogen embrittlement sensitivity of AISI 430 ferritic stainless steel and the changes in hydrogen-induced fracture modes through electrochemical hydrogen charging experiments. The tensile test results show that the hot-rolled specimen has the highest hydrogen embrittlement sensitivity, and the highest yield strength and tensile strength. After the heat treatment, the yield strength of all specimens was significantly increased after hydrogen charging, which was attributed to the hydrogen-induced dislocation pinning effect. The fracture morphology analysis revealed that the hot-rolled specimen was dominated by intergranular fracture, accompanied by cleavage fracture, predominantly by the hydrogen-enhanced decohesion (HEDE) mechanism, while the fracture modes of annealed specimen were cleavage fracture and quasi-cleavage fracture due to the hydrogen-enhanced localized plasticity (HELP) and hydrogen-enhanced decohesion (HEDE) mechanisms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Dutta, A Review on Production, Storage of Hydrogen and Its Utilization as an Energy Resource, J. Ind. Eng. Chem., 2014, 20(4), p 1148–1156. CrossRef S. Dutta, A Review on Production, Storage of Hydrogen and Its Utilization as an Energy Resource, J. Ind. Eng. Chem., 2014, 20(4), p 1148–1156. CrossRef
2.
Zurück zum Zitat X. Xing, R. Cheng, G. Cui, J. Liu, J. Gou, C. Yang, Z. Li and F. Yang, Quantification of the Temperature Threshold of Hydrogen Embrittlement in X90 Pipeline Steel, Mater. Sci. Eng. A, 2021, 800, p 140118. CrossRef X. Xing, R. Cheng, G. Cui, J. Liu, J. Gou, C. Yang, Z. Li and F. Yang, Quantification of the Temperature Threshold of Hydrogen Embrittlement in X90 Pipeline Steel, Mater. Sci. Eng. A, 2021, 800, p 140118. CrossRef
3.
Zurück zum Zitat C. Zhou, B. Ye, Y. Song, T. Cui, P. Xu and L. Zhang, Effects of Internal Hydrogen and Surface-Absorbed Hydrogen on the Hydrogen Embrittlement of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2019, 44(40), p 22547–22558. CrossRef C. Zhou, B. Ye, Y. Song, T. Cui, P. Xu and L. Zhang, Effects of Internal Hydrogen and Surface-Absorbed Hydrogen on the Hydrogen Embrittlement of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2019, 44(40), p 22547–22558. CrossRef
4.
Zurück zum Zitat E. Ohaeri, J. Omale, K.M.M. Rahman and J. Szpunar, Effect of Post-processing Annealing Treatments on Microstructure Development and Hydrogen Embrittlement in API 5L X70 Pipeline Steel, Mater. Charact., 2020, 161, p 110124. CrossRef E. Ohaeri, J. Omale, K.M.M. Rahman and J. Szpunar, Effect of Post-processing Annealing Treatments on Microstructure Development and Hydrogen Embrittlement in API 5L X70 Pipeline Steel, Mater. Charact., 2020, 161, p 110124. CrossRef
5.
Zurück zum Zitat Q. Deng, W. Zhao, W. Jiang, T. Zhang, T. Li and Y. Zhao, Hydrogen Embrittlement Susceptibility and Safety Control of Reheated CGHAZ in X80 Welded Pipeline, J. Mater. Eng. Perform., 2018, 27(4), p 1654–1663. CrossRef Q. Deng, W. Zhao, W. Jiang, T. Zhang, T. Li and Y. Zhao, Hydrogen Embrittlement Susceptibility and Safety Control of Reheated CGHAZ in X80 Welded Pipeline, J. Mater. Eng. Perform., 2018, 27(4), p 1654–1663. CrossRef
6.
Zurück zum Zitat X. Chen, L. Ma, C. Zhou, Y. Hong, H. Tao, J. Zheng and L. Zhang, Improved Resistance to Hydrogen Environment Embrittlement of Warm-Deformed 304 Austenitic Stainless Steel in High-pressure Hydrogen Atmosphere, Corros. Sci., 2019, 148, p 159–170. CrossRef X. Chen, L. Ma, C. Zhou, Y. Hong, H. Tao, J. Zheng and L. Zhang, Improved Resistance to Hydrogen Environment Embrittlement of Warm-Deformed 304 Austenitic Stainless Steel in High-pressure Hydrogen Atmosphere, Corros. Sci., 2019, 148, p 159–170. CrossRef
7.
Zurück zum Zitat I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross and K.E. Nygren, Hydrogen Embrittlement Understood, Metall. Mater. Trans. B, 2015, 46(3), p 1085–1103. CrossRef I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross and K.E. Nygren, Hydrogen Embrittlement Understood, Metall. Mater. Trans. B, 2015, 46(3), p 1085–1103. CrossRef
8.
Zurück zum Zitat S. Wang, A. Nagao, P. Sofronis and I.M. Robertson, Assessment of the Impact of Hydrogen on the Stress Developed Ahead of a Fatigue Crack, Acta Mater., 2019, 174, p 181–188. CrossRef S. Wang, A. Nagao, P. Sofronis and I.M. Robertson, Assessment of the Impact of Hydrogen on the Stress Developed Ahead of a Fatigue Crack, Acta Mater., 2019, 174, p 181–188. CrossRef
9.
Zurück zum Zitat C. Zhou, Q. Huang, Q. Guo, J. Zheng, X. Chen, J. Zhu and L. Zhang, Sulphide Stress Cracking Behaviour of the Dissimilar Metal Welded Joint of X60 Pipeline Steel and Inconel 625 Alloy, Corros. Sci., 2016, 110, p 242–252. CrossRef C. Zhou, Q. Huang, Q. Guo, J. Zheng, X. Chen, J. Zhu and L. Zhang, Sulphide Stress Cracking Behaviour of the Dissimilar Metal Welded Joint of X60 Pipeline Steel and Inconel 625 Alloy, Corros. Sci., 2016, 110, p 242–252. CrossRef
10.
Zurück zum Zitat A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J. Rivera-Díaz-del-Castillo and E.I. Galindo-Nava, Quantification of Hydrogen Trapping in Multiphase Steels: Part I-Point Traps in Martensite, Acta Mater., 2020, 194, p 118–133. CrossRef A. Turk, G.R. Joshi, M. Gintalas, M. Callisti, P.E.J. Rivera-Díaz-del-Castillo and E.I. Galindo-Nava, Quantification of Hydrogen Trapping in Multiphase Steels: Part I-Point Traps in Martensite, Acta Mater., 2020, 194, p 118–133. CrossRef
11.
Zurück zum Zitat A. Turk, S.D. Pu, D. Bombač, P.E.J. Rivera-Díaz-del-Castillo and E.I. Galindo-Nava, Quantification of Hydrogen Trapping in Multiphase Steels: Part II–Effect of Austenite Morphology, Acta Mater., 2020, 197, p 253–268. CrossRef A. Turk, S.D. Pu, D. Bombač, P.E.J. Rivera-Díaz-del-Castillo and E.I. Galindo-Nava, Quantification of Hydrogen Trapping in Multiphase Steels: Part II–Effect of Austenite Morphology, Acta Mater., 2020, 197, p 253–268. CrossRef
12.
Zurück zum Zitat C.D. Beachem, A New Model for Hydrogen-Assisted Cracking (hydrogen “embrittlement”), Metall. Mater. Trans. B, 1972, 3(2), p 441–455. CrossRef C.D. Beachem, A New Model for Hydrogen-Assisted Cracking (hydrogen “embrittlement”), Metall. Mater. Trans. B, 1972, 3(2), p 441–455. CrossRef
13.
Zurück zum Zitat A.R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Trans. Am. Soc. Met., 1960, 52, p 54–80. A.R. Troiano, The Role of Hydrogen and Other Interstitials in the Mechanical Behavior of Metals, Trans. Am. Soc. Met., 1960, 52, p 54–80.
14.
Zurück zum Zitat R.A. Oriani, Whitney Award Lecture-1987: Hydrogen-The Versatile Embrittler, Corrosion, 1987, 43(7), p 390–397. CrossRef R.A. Oriani, Whitney Award Lecture-1987: Hydrogen-The Versatile Embrittler, Corrosion, 1987, 43(7), p 390–397. CrossRef
15.
Zurück zum Zitat I.M. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68(6), p 671–692. CrossRef I.M. Robertson, The Effect of Hydrogen on Dislocation Dynamics, Eng. Fract. Mech., 2001, 68(6), p 671–692. CrossRef
16.
Zurück zum Zitat M. Wasim, M.B. Djukic and T.D. Ngo, Influence of Hydrogen-Enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel, Eng. Fail. Anal., 2021, 123, p 105312. CrossRef M. Wasim, M.B. Djukic and T.D. Ngo, Influence of Hydrogen-Enhanced Plasticity and Decohesion Mechanisms of Hydrogen Embrittlement on the Fracture Resistance of Steel, Eng. Fail. Anal., 2021, 123, p 105312. CrossRef
17.
Zurück zum Zitat M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak and B. Rajicic, The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion, Eng. Fract. Mech., 2019, 216, p 106528. CrossRef M.B. Djukic, G.M. Bakic, V.S. Zeravcic, A. Sedmak and B. Rajicic, The Synergistic Action and Interplay of Hydrogen Embrittlement Mechanisms in Steels and Iron: Localized Plasticity and Decohesion, Eng. Fract. Mech., 2019, 216, p 106528. CrossRef
18.
Zurück zum Zitat Y. Ogawa, D. Birenis, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz and A. Thøgersen, The Role of Intergranular Fracture on Hydrogen-Assisted Fatigue Crack Propagation in Pure Iron at a Low Stress Intensity Range, Mater. Sci. Eng. A, 2018, 733, p 316–328. CrossRef Y. Ogawa, D. Birenis, H. Matsunaga, O. Takakuwa, J. Yamabe, Ø. Prytz and A. Thøgersen, The Role of Intergranular Fracture on Hydrogen-Assisted Fatigue Crack Propagation in Pure Iron at a Low Stress Intensity Range, Mater. Sci. Eng. A, 2018, 733, p 316–328. CrossRef
19.
Zurück zum Zitat P. Novak, R. Yuan, B.P. Somerday, P. Sofronis and R.O. Ritchie, A Statistical, Physical-Based, Micro-mechanical Model of Hydrogen-Induced Intergranular Fracture in Steel, J. Mech. Phys. Solids, 2010, 58(2), p 206–226. CrossRef P. Novak, R. Yuan, B.P. Somerday, P. Sofronis and R.O. Ritchie, A Statistical, Physical-Based, Micro-mechanical Model of Hydrogen-Induced Intergranular Fracture in Steel, J. Mech. Phys. Solids, 2010, 58(2), p 206–226. CrossRef
20.
Zurück zum Zitat M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki and D. Raabe, Hydrogen-Assisted Decohesion and Localized Plasticity in Dual-phase Steel, Acta Mater., 2014, 70, p 174–187. CrossRef M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki and D. Raabe, Hydrogen-Assisted Decohesion and Localized Plasticity in Dual-phase Steel, Acta Mater., 2014, 70, p 174–187. CrossRef
21.
Zurück zum Zitat M. Jedrychowski, J. Tarasiuk, B. Bacroix and S. Wronski, Electron Backscatter Diffraction Investigation of Local Misorientations and Orientation Gradients in Connection with Evolution of Grain Boundary Structures in Deformed and Annealed Zirconium. A New Approach in Grain Boundary Analysis, J. Appl. Crystallogr., 2013, 753, p 93–96. M. Jedrychowski, J. Tarasiuk, B. Bacroix and S. Wronski, Electron Backscatter Diffraction Investigation of Local Misorientations and Orientation Gradients in Connection with Evolution of Grain Boundary Structures in Deformed and Annealed Zirconium. A New Approach in Grain Boundary Analysis, J. Appl. Crystallogr., 2013, 753, p 93–96.
22.
Zurück zum Zitat M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527(10), p 2738–2746. CrossRef M. Calcagnotto, D. Ponge, E. Demir and D. Raabe, Orientation Gradients and Geometrically Necessary Dislocations in Ultrafine Grained Dual-phase Steels Studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 2010, 527(10), p 2738–2746. CrossRef
23.
Zurück zum Zitat Q. Liu and N. Hansen, Geometrically Necessary Boundaries and Incidental Dislocation Boundaries Formed During Cold Deformation, Scr. Metall. Mater., 1995, 32(8), p 1289–1295. CrossRef Q. Liu and N. Hansen, Geometrically Necessary Boundaries and Incidental Dislocation Boundaries Formed During Cold Deformation, Scr. Metall. Mater., 1995, 32(8), p 1289–1295. CrossRef
24.
Zurück zum Zitat J. Lufrano and P. Sofronis, Enhanced Hydrogen Concentrations Ahead of Rounded Notches and Cracks-Competition Between Plastic Strain and Hydrostatic Stress, Acta Mater., 1998, 46(5), p 1519–1526. CrossRef J. Lufrano and P. Sofronis, Enhanced Hydrogen Concentrations Ahead of Rounded Notches and Cracks-Competition Between Plastic Strain and Hydrostatic Stress, Acta Mater., 1998, 46(5), p 1519–1526. CrossRef
25.
Zurück zum Zitat N. Bandyopadhyay, J. Kameda and C.J. McMahon, Hydrogen-Induced Cracking in 4340-type Steel: Effects of Composition, Yield Strength, and H2 Pressure, Metall. Trans. A, 1983, 14(4), p 881–888. CrossRef N. Bandyopadhyay, J. Kameda and C.J. McMahon, Hydrogen-Induced Cracking in 4340-type Steel: Effects of Composition, Yield Strength, and H2 Pressure, Metall. Trans. A, 1983, 14(4), p 881–888. CrossRef
26.
Zurück zum Zitat Y. Murakami, T. Kanezaki and Y. Mine, Hydrogen Effect against Hydrogen Embrittlement, Metall. Mater. Trans. A, 2010, 41(10), p 2548–2562. CrossRef Y. Murakami, T. Kanezaki and Y. Mine, Hydrogen Effect against Hydrogen Embrittlement, Metall. Mater. Trans. A, 2010, 41(10), p 2548–2562. CrossRef
27.
Zurück zum Zitat I.H. Katzarov, D.L. Pashov and A.T. Paxton, Hydrogen Embrittlement I. Analysis of Hydrogen-Enhanced Localized Plasticity: Effect of Hydrogen on the Velocity of Screw Dislocations in α-Fe, Phys. Rev. Mater., 2017, 1(3), p 033602. CrossRef I.H. Katzarov, D.L. Pashov and A.T. Paxton, Hydrogen Embrittlement I. Analysis of Hydrogen-Enhanced Localized Plasticity: Effect of Hydrogen on the Velocity of Screw Dislocations in α-Fe, Phys. Rev. Mater., 2017, 1(3), p 033602. CrossRef
28.
Zurück zum Zitat S. Taketomi, R. Matsumoto and S. Hagihara, Molecular Statics Simulation of the Effect of Hydrogen Concentration on 112 < 111 > Edge Dislocation Mobility in Alpha Iron, ISIJ Int., 2017, 57(11), p 2058–2064. CrossRef S. Taketomi, R. Matsumoto and S. Hagihara, Molecular Statics Simulation of the Effect of Hydrogen Concentration on 112 < 111 > Edge Dislocation Mobility in Alpha Iron, ISIJ Int., 2017, 57(11), p 2058–2064. CrossRef
29.
Zurück zum Zitat W.J. Qi, R.G. Song, X. Qi, H. Li, Z.X. Wang, C. Wang and J.R. Jin, Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States, J. Mater. Eng. Perform., 2015, 24(9), p 3343–3355. CrossRef W.J. Qi, R.G. Song, X. Qi, H. Li, Z.X. Wang, C. Wang and J.R. Jin, Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States, J. Mater. Eng. Perform., 2015, 24(9), p 3343–3355. CrossRef
30.
Zurück zum Zitat M. Okayasu and T. Fujiwara, Effects of Microstructural Characteristics on the Hydrogen Embrittlement Characteristics of Austenitic, Ferritic, and γ–α Duplex Stainless Steels, Mater. Sci. Eng. A, 2021, 807, p 140851. CrossRef M. Okayasu and T. Fujiwara, Effects of Microstructural Characteristics on the Hydrogen Embrittlement Characteristics of Austenitic, Ferritic, and γ–α Duplex Stainless Steels, Mater. Sci. Eng. A, 2021, 807, p 140851. CrossRef
31.
Zurück zum Zitat C.L. Lai, L.W. Tsay and C. Chen, Effect of Microstructure on Hydrogen Embrittlement of Various Stainless Steels, Mater. Sci. Eng. A, 2013, 584, p 14–20. CrossRef C.L. Lai, L.W. Tsay and C. Chen, Effect of Microstructure on Hydrogen Embrittlement of Various Stainless Steels, Mater. Sci. Eng. A, 2013, 584, p 14–20. CrossRef
32.
Zurück zum Zitat D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang and X. Wang, The Experiment Study to Assess the Impact of Hydrogen Blended Natural Gas on the Tensile Properties and Damage Mechanism of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2021, 46(10), p 7402–7414. CrossRef D. Zhou, T. Li, D. Huang, Y. Wu, Z. Huang, W. Xiao, Q. Wang and X. Wang, The Experiment Study to Assess the Impact of Hydrogen Blended Natural Gas on the Tensile Properties and Damage Mechanism of X80 Pipeline Steel, Int. J. Hydrog. Energy, 2021, 46(10), p 7402–7414. CrossRef
33.
Zurück zum Zitat E. Malitckii, Y. Yagodzinskyy, P. Lehto, H. Remes, J. Romu and H. Hänninen, Hydrogen Effects on Mechanical Properties of 18%Cr Ferritic Stainless Steel, Mater. Sci. Eng. A, 2017, 700, p 331–337.CrossRef E. Malitckii, Y. Yagodzinskyy, P. Lehto, H. Remes, J. Romu and H. Hänninen, Hydrogen Effects on Mechanical Properties of 18%Cr Ferritic Stainless Steel, Mater. Sci. Eng. A, 2017, 700, p 331–337.CrossRef
34.
Zurück zum Zitat M. Maxelon, A. Pundt, W. Pyckhout-Hintzen and R. Kirchheim, Small Angle Neutron Scattering of Hydrogen Segregation at Dislocations in Palladium, Scr. Mater., 2001, 44(5), p 817–822.CrossRef M. Maxelon, A. Pundt, W. Pyckhout-Hintzen and R. Kirchheim, Small Angle Neutron Scattering of Hydrogen Segregation at Dislocations in Palladium, Scr. Mater., 2001, 44(5), p 817–822.CrossRef
35.
Zurück zum Zitat R. Kirchheim, Reducing Grain Boundary, Dislocation Line and Vacancy Formation Energies by Solute Segregation: II. Experimental Evidence and Consequences, Acta Mater., 2007, 55(15), p 5139–5148.CrossRef R. Kirchheim, Reducing Grain Boundary, Dislocation Line and Vacancy Formation Energies by Solute Segregation: II. Experimental Evidence and Consequences, Acta Mater., 2007, 55(15), p 5139–5148.CrossRef
36.
Zurück zum Zitat V.G. Gavriljuk, V.N. Shivanyuk and J. Foct, Diagnostic Experimental Results on the Hydrogen Embrittlement of Austenitic Steels, Acta Mater., 2003, 51(5), p 1293–1305. CrossRef V.G. Gavriljuk, V.N. Shivanyuk and J. Foct, Diagnostic Experimental Results on the Hydrogen Embrittlement of Austenitic Steels, Acta Mater., 2003, 51(5), p 1293–1305. CrossRef
37.
Zurück zum Zitat V.G. Gavriljuk, V.N. Shivanyuk and B.D. Shanina, Change in the Electron Structure Caused by C, N and H Atoms in Iron and Its Effect on their Interaction with Dislocations, Acta Mater., 2005, 53(19), p 5017–5024. CrossRef V.G. Gavriljuk, V.N. Shivanyuk and B.D. Shanina, Change in the Electron Structure Caused by C, N and H Atoms in Iron and Its Effect on their Interaction with Dislocations, Acta Mater., 2005, 53(19), p 5017–5024. CrossRef
38.
Zurück zum Zitat S. Moriya, H. Matsui and H. Kimura, The Effect of Hydrogen on the Mechanical Properties of High Purity Iron II. Effect of Quenched-in Hydrogen Below Room Temperature, Mater. Sci. Eng., 1979, 40(2), p 217–225. CrossRef S. Moriya, H. Matsui and H. Kimura, The Effect of Hydrogen on the Mechanical Properties of High Purity Iron II. Effect of Quenched-in Hydrogen Below Room Temperature, Mater. Sci. Eng., 1979, 40(2), p 217–225. CrossRef
39.
Zurück zum Zitat O. Di Pietro, G. Napoli, M. Gaggiotti, R. Marini, G. Stornelli and A. Schino, Analysis of Plastic Forming Parameters In Aisi 441 Stainless Steel, Acta Metall. Slovaca, 2020, 26, p 178–183. CrossRef O. Di Pietro, G. Napoli, M. Gaggiotti, R. Marini, G. Stornelli and A. Schino, Analysis of Plastic Forming Parameters In Aisi 441 Stainless Steel, Acta Metall. Slovaca, 2020, 26, p 178–183. CrossRef
40.
Zurück zum Zitat M.L. Martin, M.J. Connolly, F.W. DelRio and A.J. Slifka, Hydrogen Embrittlement in Ferritic Steels, Appl. Phys. Rev., 2020, 7(4), p 041301. CrossRef M.L. Martin, M.J. Connolly, F.W. DelRio and A.J. Slifka, Hydrogen Embrittlement in Ferritic Steels, Appl. Phys. Rev., 2020, 7(4), p 041301. CrossRef
41.
Zurück zum Zitat S.S.M. Tavares, I.N. Bastos, J.M. Pardal, T.R. Montenegro and M.R. da Silva, Slow Strain Rate Tensile Test Results of New Multiphase 17%Cr Stainless Steel Under Hydrogen Cathodic Charging, Int. J. Hydrog. Energy, 2015, 40(47), p 16992–16999. CrossRef S.S.M. Tavares, I.N. Bastos, J.M. Pardal, T.R. Montenegro and M.R. da Silva, Slow Strain Rate Tensile Test Results of New Multiphase 17%Cr Stainless Steel Under Hydrogen Cathodic Charging, Int. J. Hydrog. Energy, 2015, 40(47), p 16992–16999. CrossRef
42.
Zurück zum Zitat R. Kirchheim, Revisiting Hydrogen Embrittlement Models and Hydrogen-Induced Homogeneous Nucleation of Dislocations, Scr. Mater., 2010, 62(2), p 67–70. CrossRef R. Kirchheim, Revisiting Hydrogen Embrittlement Models and Hydrogen-Induced Homogeneous Nucleation of Dislocations, Scr. Mater., 2010, 62(2), p 67–70. CrossRef
43.
Zurück zum Zitat X. Ren, Q. Zhou, W. Chu, J. Li, Y. Su and L. Qiao, The Mechanism of Nucleation of Hydrogen Blister in Metals, Chinese Sci. Bull., 2007, 52(14), p 2000–2005. CrossRef X. Ren, Q. Zhou, W. Chu, J. Li, Y. Su and L. Qiao, The Mechanism of Nucleation of Hydrogen Blister in Metals, Chinese Sci. Bull., 2007, 52(14), p 2000–2005. CrossRef
44.
Zurück zum Zitat S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto and I.M. Robertson, Hydrogen-Induced Intergranular Failure of Iron, Acta Mater., 2014, 69, p 275–282. CrossRef S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto and I.M. Robertson, Hydrogen-Induced Intergranular Failure of Iron, Acta Mater., 2014, 69, p 275–282. CrossRef
45.
Zurück zum Zitat M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis and I.M. Robertson, On the Formation and Nature of Quasi-Cleavage Fracture Surfaces in Hydrogen Embrittled Steels, Acta Mater., 2011, 59(4), p 1601–1606. CrossRef M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis and I.M. Robertson, On the Formation and Nature of Quasi-Cleavage Fracture Surfaces in Hydrogen Embrittled Steels, Acta Mater., 2011, 59(4), p 1601–1606. CrossRef
46.
Zurück zum Zitat A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis and I.M. Robertson, The Role of Hydrogen in Hydrogen Embrittlement Fracture of Lath Martensitic Steel, Acta Mater., 2012, 60(13), p 5182–5189. CrossRef A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis and I.M. Robertson, The Role of Hydrogen in Hydrogen Embrittlement Fracture of Lath Martensitic Steel, Acta Mater., 2012, 60(13), p 5182–5189. CrossRef
Metadaten
Titel
Investigation on Hydrogen Embrittlement Sensitivity of Hot-Rolled and Annealed Microstructure to AISI 430 Ferritic Stainless Steel
verfasst von
Tao Wang
Wenjie Lv
Wentao Xiao
Kun Wang
Huiyun Zhang
Wei Liang
Publikationsdatum
12.11.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06332-9

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.