Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

29.10.2021

Corrosion, Corrosion Fatigue, and Protection of Magnesium Alloys: Mechanisms, Measurements, and Mitigation

verfasst von: Temitope Olumide Olugbade, Babatunde Olamide Omiyale, Oluwole Timothy Ojo

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnesium (Mg) alloys are non-toxic, biodegradable, and biocompatible special metallic biomaterials for biomedical applications, but less corrosion-resistant in physiological and chloride-containing environments. This often limits their use as potential biomedical implants due to loss of their mechanical integrity. This can be addressed by adopting several approaches such as surface modifications and coatings as well as pre-treatments including anodization, microarc oxidation, and electrodeposition. To further provide insights into better ways to improve the corrosion resistance of Mg alloys in saline and physiological environments, the present work provides a comprehensive overview of the electrochemical properties of Mg alloys as a biodegradable material. More importantly, the corrosion and corrosion fatigue mechanisms in surface-modified Mg alloys are explicitly reviewed. The significant influence of alloying on the corrosion resistance behaviors of biodegradable Mg alloys is also reviewed and discussed explicitly. The different methods of measuring the corrosion rates of Mg and its alloys are reviewed and summarized. As potential implant materials, the recent progress and developments on Mg alloys in the biomedical fields and their resulting corrosion properties are discussed and the research trends for future works are highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Gunde, A.C. Hänzi, A.S. Sologubenko and P.J. Uggowitzer, High-Strength Magnesium Alloys for Degradable Implant Applications, Mater. Sci. Eng. A., 2011, 528, p 1047–1054.CrossRef P. Gunde, A.C. Hänzi, A.S. Sologubenko and P.J. Uggowitzer, High-Strength Magnesium Alloys for Degradable Implant Applications, Mater. Sci. Eng. A., 2011, 528, p 1047–1054.CrossRef
2.
Zurück zum Zitat M. Niinomi, M. Nakai and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8, p 3888–3903.CrossRef M. Niinomi, M. Nakai and J. Hieda, Development of New Metallic Alloys for Biomedical Applications, Acta Biomater., 2012, 8, p 3888–3903.CrossRef
3.
Zurück zum Zitat Y. Okazaki and E. Gotoh, Metal Release from Stainless Steel, Co-Cr-Mo-Ni-Fe and Ni-Ti Alloys in Vascular Implants, Corros. Sci., 2008, 50, p 3429–3438.CrossRef Y. Okazaki and E. Gotoh, Metal Release from Stainless Steel, Co-Cr-Mo-Ni-Fe and Ni-Ti Alloys in Vascular Implants, Corros. Sci., 2008, 50, p 3429–3438.CrossRef
4.
Zurück zum Zitat M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734.CrossRef M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734.CrossRef
5.
Zurück zum Zitat R.K. Singh Raman, N. Birbilis and J. Efthimiadis, Corrosion of Mg Alloy AZ91—The Role of Microstructure, Corros. Eng. Sci. Technol., 2004, 39, p 346–350.CrossRef R.K. Singh Raman, N. Birbilis and J. Efthimiadis, Corrosion of Mg Alloy AZ91—The Role of Microstructure, Corros. Eng. Sci. Technol., 2004, 39, p 346–350.CrossRef
6.
Zurück zum Zitat N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja and A. Lewenstam, Magnesium: An Update on Physiological, Clinical and Analytical Aspects, Clin. Chim. Acta., 2000, 294, p 1–26.CrossRef N.-E.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja and A. Lewenstam, Magnesium: An Update on Physiological, Clinical and Analytical Aspects, Clin. Chim. Acta., 2000, 294, p 1–26.CrossRef
7.
Zurück zum Zitat F.I. Wolf and A. Cittadini, Chemistry and Biochemistry of Magnesium, Mol Aspect Med., 2003, 24, p 3–9.CrossRef F.I. Wolf and A. Cittadini, Chemistry and Biochemistry of Magnesium, Mol Aspect Med., 2003, 24, p 3–9.CrossRef
8.
Zurück zum Zitat E. Ma and J. Xu, Biodegradable Alloys: The Glass Window of Opportunities, Nat. Mater., 2009, 8, p 855–857.CrossRef E. Ma and J. Xu, Biodegradable Alloys: The Glass Window of Opportunities, Nat. Mater., 2009, 8, p 855–857.CrossRef
9.
Zurück zum Zitat B. Zberg, P.J. Uggowitzer and J.F. Loffler, MgZnCa Glasses Without Clinically Observable Hydrogen Evolution for Biodegradable Implants, Nat. Mater., 2009, 8, p 887–891.CrossRef B. Zberg, P.J. Uggowitzer and J.F. Loffler, MgZnCa Glasses Without Clinically Observable Hydrogen Evolution for Biodegradable Implants, Nat. Mater., 2009, 8, p 887–891.CrossRef
10.
Zurück zum Zitat F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth et al., In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26, p 3557–3563.CrossRef F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth et al., In Vivo Corrosion of Four Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26, p 3557–3563.CrossRef
11.
Zurück zum Zitat F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2011, 6, p 1680–1692.CrossRef F. Witte, The History of Biodegradable Magnesium Implants: A Review, Acta Biomater., 2011, 6, p 1680–1692.CrossRef
12.
Zurück zum Zitat F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch et al., In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27, p 1013–1018.CrossRef F. Witte, J. Fischer, J. Nellesen, H.-A. Crostack, V. Kaese, A. Pisch et al., In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27, p 1013–1018.CrossRef
13.
Zurück zum Zitat S.F. Kraus, A.C. Fischerauer, P.J. Hänzi, J.F. Witzer, A.M. Löffler and F. Weinberg, Magnesium Alloys for Temporary Implants in Osteosynthesis, In Vivo Studies of Their Degradation and Interaction with Bone, Acta Biomater., 2012, 8, p 1230–1238. S.F. Kraus, A.C. Fischerauer, P.J. Hänzi, J.F. Witzer, A.M. Löffler and F. Weinberg, Magnesium Alloys for Temporary Implants in Osteosynthesis, In Vivo Studies of Their Degradation and Interaction with Bone, Acta Biomater., 2012, 8, p 1230–1238.
14.
Zurück zum Zitat M.B. Kannan and R.K.S. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306–2314.CrossRef M.B. Kannan and R.K.S. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306–2314.CrossRef
15.
Zurück zum Zitat N. Kirkland, M. Staiger, D. Nisbet, C. Davies and N. Birbilis, Performance-Driven Design of Biocompatible Mg Alloys, JOM., 2011, 63, p 28–34.CrossRef N. Kirkland, M. Staiger, D. Nisbet, C. Davies and N. Birbilis, Performance-Driven Design of Biocompatible Mg Alloys, JOM., 2011, 63, p 28–34.CrossRef
16.
Zurück zum Zitat B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung and A. Haverich, Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?, Heart, 2003, 89, p 651–656.CrossRef B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung and A. Haverich, Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?, Heart, 2003, 89, p 651–656.CrossRef
17.
Zurück zum Zitat N.T. Kirkland, J. Lespagnol, N. Birbilis and M.P. Staiger, A Survey of Bio-Corrosion Rates of Magnesium Alloys, Corros. Sci., 2010, 52, p 287–291.CrossRef N.T. Kirkland, J. Lespagnol, N. Birbilis and M.P. Staiger, A Survey of Bio-Corrosion Rates of Magnesium Alloys, Corros. Sci., 2010, 52, p 287–291.CrossRef
18.
Zurück zum Zitat G. Song, Control of Biodegradation of Biocompatible Magnesium Alloys, Corros. Sci., 2007, 49, p 1696–1701.CrossRef G. Song, Control of Biodegradation of Biocompatible Magnesium Alloys, Corros. Sci., 2007, 49, p 1696–1701.CrossRef
19.
Zurück zum Zitat S. Jafari, R.K.S. Raman and C.H.J. Davies, Corrosion Fatigue of a Magnesium Alloy in Modified Simulated Body Fluid, Eng. Fract. Mech., 2015, 137, p 2–11.CrossRef S. Jafari, R.K.S. Raman and C.H.J. Davies, Corrosion Fatigue of a Magnesium Alloy in Modified Simulated Body Fluid, Eng. Fract. Mech., 2015, 137, p 2–11.CrossRef
20.
Zurück zum Zitat H. Amel-Farzad, M.T. Peivandi and S.M.R. Yusof-Sani, In-Body Corrosion Fatigue Failure of a Stainless Steel Orthopaedic Implant with a Rare Collection of Different Damage Mechanisms, Eng. Fail Anal., 2007, 14, p 1205–1217.CrossRef H. Amel-Farzad, M.T. Peivandi and S.M.R. Yusof-Sani, In-Body Corrosion Fatigue Failure of a Stainless Steel Orthopaedic Implant with a Rare Collection of Different Damage Mechanisms, Eng. Fail Anal., 2007, 14, p 1205–1217.CrossRef
21.
Zurück zum Zitat B. Aksakal, Ö.S. Yildirim and H. Gul, Metallurgical Failure Analysis of Various Implant Materials Used in Orthopedic Applications, J. Fail. Anal. Prev., 2004, 4, p 17–23.CrossRef B. Aksakal, Ö.S. Yildirim and H. Gul, Metallurgical Failure Analysis of Various Implant Materials Used in Orthopedic Applications, J. Fail. Anal. Prev., 2004, 4, p 17–23.CrossRef
22.
Zurück zum Zitat C.R.F. Azevedo, Failure Analysis of a Commercially Pure Titanium Plate for Osteosynthesis, Eng. Fail Anal., 2003, 10, p 153–164.CrossRef C.R.F. Azevedo, Failure Analysis of a Commercially Pure Titanium Plate for Osteosynthesis, Eng. Fail Anal., 2003, 10, p 153–164.CrossRef
23.
Zurück zum Zitat L. Choudhary and R.K.S. Raman, Magnesium Alloys As Body Implants: Fracture Mechanism Under Dynamic and Static Loadings in a Physiological Environment, Acta Biomater., 2012, 8, p 916–923.CrossRef L. Choudhary and R.K.S. Raman, Magnesium Alloys As Body Implants: Fracture Mechanism Under Dynamic and Static Loadings in a Physiological Environment, Acta Biomater., 2012, 8, p 916–923.CrossRef
24.
Zurück zum Zitat M.B. Kannan and R.K.S. Raman, Evaluating the Stress Corrosion Cracking Susceptibility of Mg-Al-Zn Alloy in Modified-Simulated Body Fluid for Orthopaedic Implant Application, Scr. Mater., 2008, 59, p 175–178.CrossRef M.B. Kannan and R.K.S. Raman, Evaluating the Stress Corrosion Cracking Susceptibility of Mg-Al-Zn Alloy in Modified-Simulated Body Fluid for Orthopaedic Implant Application, Scr. Mater., 2008, 59, p 175–178.CrossRef
25.
Zurück zum Zitat L. Choudhary, J. Szmerling, R. Goldwasser and R.K.S. Raman, Investigations into Stress Corrosion Cracking Behaviour of AZ91D Magnesium Alloy in Physiological Environment, Proc. Eng., 2011, 10, p 518–523.CrossRef L. Choudhary, J. Szmerling, R. Goldwasser and R.K.S. Raman, Investigations into Stress Corrosion Cracking Behaviour of AZ91D Magnesium Alloy in Physiological Environment, Proc. Eng., 2011, 10, p 518–523.CrossRef
26.
Zurück zum Zitat L. Choudhary and R.K.S. Raman, Mechanical Integrity of Magnesium Alloys in a Physiological Environment: Slow Strain Rate Testing Based Study, Eng. Fract. Mech., 2013, 103, p 94–102.CrossRef L. Choudhary and R.K.S. Raman, Mechanical Integrity of Magnesium Alloys in a Physiological Environment: Slow Strain Rate Testing Based Study, Eng. Fract. Mech., 2013, 103, p 94–102.CrossRef
27.
Zurück zum Zitat L. Choudhary and R.K.S. Raman, Threshold Stress Intensity for Stress Corrosion Cracking (KISCC) of a Magnesium Alloy in Physiological Environment, Mater. Sci. Forum., 2011, 690, p 487–490.CrossRef L. Choudhary and R.K.S. Raman, Threshold Stress Intensity for Stress Corrosion Cracking (KISCC) of a Magnesium Alloy in Physiological Environment, Mater. Sci. Forum., 2011, 690, p 487–490.CrossRef
28.
Zurück zum Zitat Y. Murakami and K.J. Miller, What is Fatigue Damage? A View Point from the Observation of Low Cycle Fatigue Process, Int. J. Fatigue., 2005, 27, p 991–1005.CrossRef Y. Murakami and K.J. Miller, What is Fatigue Damage? A View Point from the Observation of Low Cycle Fatigue Process, Int. J. Fatigue., 2005, 27, p 991–1005.CrossRef
29.
Zurück zum Zitat A. Winzer, W. Atrens, V.S. Dietzel, G. Raja, K.U. Song and U. Kainer, Characterisation of Stress Corrosion Cracking (SCC) of Mg-Al Alloys, Mater. Sci. Eng. A, 2008, 488, p 339–351.CrossRef A. Winzer, W. Atrens, V.S. Dietzel, G. Raja, K.U. Song and U. Kainer, Characterisation of Stress Corrosion Cracking (SCC) of Mg-Al Alloys, Mater. Sci. Eng. A, 2008, 488, p 339–351.CrossRef
30.
Zurück zum Zitat M.B. Kannan, W. Dietzel, R.K.S. Raman and P. Lyon, Hydrogen-Induced-Cracking in Magnesium Alloy Under Cathodic Polarization, Scr. Mater., 2007, 57, p 579–581.CrossRef M.B. Kannan, W. Dietzel, R.K.S. Raman and P. Lyon, Hydrogen-Induced-Cracking in Magnesium Alloy Under Cathodic Polarization, Scr. Mater., 2007, 57, p 579–581.CrossRef
31.
Zurück zum Zitat T.E. Abioye, I.S. Omotehinse, I.O. Oladele, T.O. Olugbade and T.I. Ogedengbe, Effects of Post-weld Heat Treatments on the Microstructure, Mechanical and Corrosion Properties of Gas Metal Arc Welded 304 Stainless Steel, World J. Eng., 2020, 17, p 87–96.CrossRef T.E. Abioye, I.S. Omotehinse, I.O. Oladele, T.O. Olugbade and T.I. Ogedengbe, Effects of Post-weld Heat Treatments on the Microstructure, Mechanical and Corrosion Properties of Gas Metal Arc Welded 304 Stainless Steel, World J. Eng., 2020, 17, p 87–96.CrossRef
32.
Zurück zum Zitat T.E. Abioye, T.O. Olugbade and T.I. Ogedengbe, Welding of Dissimilar Metals Using Gas Metal Arc and Laser Welding Techniques: A Review, J. Emerg. Trends Eng. Appl. Sci. (JETEAS), 2017, 8, p 225–228. T.E. Abioye, T.O. Olugbade and T.I. Ogedengbe, Welding of Dissimilar Metals Using Gas Metal Arc and Laser Welding Techniques: A Review, J. Emerg. Trends Eng. Appl. Sci. (JETEAS), 2017, 8, p 225–228.
33.
Zurück zum Zitat T. Mohammed, T.O. Olugbade and I. Nwankwo, Determination of the Effect of Oil Exploration on Galvanized Steel in Niger Delta, Nigeria, J. Sci. Res. Rep., 2016, 10, p 1–9. T. Mohammed, T.O. Olugbade and I. Nwankwo, Determination of the Effect of Oil Exploration on Galvanized Steel in Niger Delta, Nigeria, J. Sci. Res. Rep., 2016, 10, p 1–9.
34.
Zurück zum Zitat T. Olugbade, J. Lu, Effects of Materials Modification on the Mechanical and Corrosion Properties of AISI 316 Stainless Steel. In 12th International Conference on Fatigue Damage of Structural Materials, Cape Cod, Hyannis, USA (2018). T. Olugbade, J. Lu, Effects of Materials Modification on the Mechanical and Corrosion Properties of AISI 316 Stainless Steel. In 12th International Conference on Fatigue Damage of Structural Materials, Cape Cod, Hyannis, USA (2018).
35.
Zurück zum Zitat C. Dang, Y. Yao, T.O. Olugbade, J. Li and L. Wang, Effect of Multi-interfacial Structure on Fracture Resistance of Composite TiSiN/Ag/TiSiN Multilayer Coating, Thin Solid Films, 2018, 653, p 107–112.CrossRef C. Dang, Y. Yao, T.O. Olugbade, J. Li and L. Wang, Effect of Multi-interfacial Structure on Fracture Resistance of Composite TiSiN/Ag/TiSiN Multilayer Coating, Thin Solid Films, 2018, 653, p 107–112.CrossRef
36.
Zurück zum Zitat C. Dang, T.O. Olugbade, S. Fan, H. Zhang, L.L. Gao, J. Li and Y. Lu, Direct Quantification of Mechanical Responses of TiSiN/Ag Multilayer Coatings Through Uniaxial Compression of Micropillars, Vacuum, 2018, 156, p 310–316.CrossRef C. Dang, T.O. Olugbade, S. Fan, H. Zhang, L.L. Gao, J. Li and Y. Lu, Direct Quantification of Mechanical Responses of TiSiN/Ag Multilayer Coatings Through Uniaxial Compression of Micropillars, Vacuum, 2018, 156, p 310–316.CrossRef
37.
Zurück zum Zitat T.O. Olugbade, T.E. Abioye, P.K. Farayibi, N.G. Olaiya, B.O. Omiyale and T.I. Ogedengbe, Electrochemical Properties of MgZnCa-Based Thin Film Metallic Glasses Fabricated via Magnetron Sputtering Deposition Coated on a Stainless Steel Substrate, Anal. Lett., 2021, 54, p 1588–1602.CrossRef T.O. Olugbade, T.E. Abioye, P.K. Farayibi, N.G. Olaiya, B.O. Omiyale and T.I. Ogedengbe, Electrochemical Properties of MgZnCa-Based Thin Film Metallic Glasses Fabricated via Magnetron Sputtering Deposition Coated on a Stainless Steel Substrate, Anal. Lett., 2021, 54, p 1588–1602.CrossRef
38.
Zurück zum Zitat T.O. Olugbade, O.T. Ojo, B.O. Omiyale, E.O. Olutomilola and B.J. Olorunfemi, A Review on the Corrosion Fatigue Strength of Surface-Modified Stainless Steels, J. Braz. Soc. Mech. Sci. Eng., 2021, 43, p 421.CrossRef T.O. Olugbade, O.T. Ojo, B.O. Omiyale, E.O. Olutomilola and B.J. Olorunfemi, A Review on the Corrosion Fatigue Strength of Surface-Modified Stainless Steels, J. Braz. Soc. Mech. Sci. Eng., 2021, 43, p 421.CrossRef
39.
Zurück zum Zitat T.E. Abioye, D.G. McCartney and A.T. Clare, Laser Cladding Of Inconel 625 Wire For Corrosion Protection, J. Mater. Process. Technol., 2015, 217, p 232–240.CrossRef T.E. Abioye, D.G. McCartney and A.T. Clare, Laser Cladding Of Inconel 625 Wire For Corrosion Protection, J. Mater. Process. Technol., 2015, 217, p 232–240.CrossRef
40.
Zurück zum Zitat H. Zu, K. Chau, T.O. Olugbade, L. Pan, D.H. Chow, L. Huang, L. Zheng, W. Tong, X. Li, Z. Chen, X. He, R. Zhang, J. Mi, Y. Li, B. Dai, J. Wang, J. Xu, K. Liu, J. Lu and L. Qin, Comparison of Modified Injection Molding and Conventional Machining in Biodegradable Behavior of Perforated Cannulated Magnesium Hip Stents, J. Mater. Sci. Technol., 2021, 63, p 145–160.CrossRef H. Zu, K. Chau, T.O. Olugbade, L. Pan, D.H. Chow, L. Huang, L. Zheng, W. Tong, X. Li, Z. Chen, X. He, R. Zhang, J. Mi, Y. Li, B. Dai, J. Wang, J. Xu, K. Liu, J. Lu and L. Qin, Comparison of Modified Injection Molding and Conventional Machining in Biodegradable Behavior of Perforated Cannulated Magnesium Hip Stents, J. Mater. Sci. Technol., 2021, 63, p 145–160.CrossRef
41.
Zurück zum Zitat T. Olugbade and J. Lu, Enhanced Corrosion Properties of Nanostructured 316 Stainless Steel in 0.6 M NaCl Solution, J. Bio Tribo-Corros., 2019, 5, p 38.CrossRef T. Olugbade and J. Lu, Enhanced Corrosion Properties of Nanostructured 316 Stainless Steel in 0.6 M NaCl Solution, J. Bio Tribo-Corros., 2019, 5, p 38.CrossRef
42.
Zurück zum Zitat T.O. Olugbade, Electrochemical Characterization of the Corrosion of Mild Steel in Saline Following Mechanical Deformation, Anal. Lett., 2021, 54, p 1055–1067.CrossRef T.O. Olugbade, Electrochemical Characterization of the Corrosion of Mild Steel in Saline Following Mechanical Deformation, Anal. Lett., 2021, 54, p 1055–1067.CrossRef
43.
Zurück zum Zitat T. Olugbade, J. Lu, Improving the Passivity and Corrosion Behaviour of Mechanically Surface-Treated 301 Stainless Steel. In International Conference on Nanostructured Materials (NANO 2020), 117, Australia (2020). T. Olugbade, J. Lu, Improving the Passivity and Corrosion Behaviour of Mechanically Surface-Treated 301 Stainless Steel. In International Conference on Nanostructured Materials (NANO 2020), 117, Australia (2020).
44.
Zurück zum Zitat T. Olugbade, Datasets on the Corrosion Behaviour of Nanostructured AISI 316 Stainless Steel Treated by SMAT, Data-in-brief, 2019, 25, p 104033.CrossRef T. Olugbade, Datasets on the Corrosion Behaviour of Nanostructured AISI 316 Stainless Steel Treated by SMAT, Data-in-brief, 2019, 25, p 104033.CrossRef
45.
Zurück zum Zitat T.O. Olugbade and J. Lu, Characterization of the Corrosion of Nanostructured 17–4 PH Stainless Steel by Surface Mechanical Attrition Treatment (SMAT), Anal. Lett., 2019, 52, p 2454–2471.CrossRef T.O. Olugbade and J. Lu, Characterization of the Corrosion of Nanostructured 17–4 PH Stainless Steel by Surface Mechanical Attrition Treatment (SMAT), Anal. Lett., 2019, 52, p 2454–2471.CrossRef
46.
Zurück zum Zitat T. Olugbade, C. Liu and J. Lu, Enhanced Passivation Layer by Cr Diffusion of 301 Stainless Steel Facilitated by SMAT, Adv. Eng. Mater., 2019, 21, p 1900125.CrossRef T. Olugbade, C. Liu and J. Lu, Enhanced Passivation Layer by Cr Diffusion of 301 Stainless Steel Facilitated by SMAT, Adv. Eng. Mater., 2019, 21, p 1900125.CrossRef
47.
Zurück zum Zitat T.O. Olugbade and J. Lu, Literature Review on the Mechanical Properties of Materials After Surface Mechanical Attrition Treatment (SMAT), Nano, Mater. Sci., 2020, 2, p 3–31. T.O. Olugbade and J. Lu, Literature Review on the Mechanical Properties of Materials After Surface Mechanical Attrition Treatment (SMAT), Nano, Mater. Sci., 2020, 2, p 3–31.
48.
Zurück zum Zitat K. Martin and F. Gerrit, Wrank W, Corrosion Fatigue Assessment of Creep-Resistant Magnesium Alloys DieMag422 and AE42, Eng. Fract. Mech., 2017, 185, p 33–45.CrossRef K. Martin and F. Gerrit, Wrank W, Corrosion Fatigue Assessment of Creep-Resistant Magnesium Alloys DieMag422 and AE42, Eng. Fract. Mech., 2017, 185, p 33–45.CrossRef
49.
Zurück zum Zitat A.K. Sabrina, BMd. Shahnewaz, M. Yukio, M. Yoshiharu and K. Toshikatsu, Corrosion Fatigue Behavior of Die-Cast and Shot-Blasted AM60 Magnesium Alloy, Mater. Sci. Eng. A., 2011, 528, p 1961–1966.CrossRef A.K. Sabrina, BMd. Shahnewaz, M. Yukio, M. Yoshiharu and K. Toshikatsu, Corrosion Fatigue Behavior of Die-Cast and Shot-Blasted AM60 Magnesium Alloy, Mater. Sci. Eng. A., 2011, 528, p 1961–1966.CrossRef
50.
Zurück zum Zitat H. Xiu-li, W. Ying-hui, H. Li-feng, Y. Zhi-feng, G. Chun-li and H. Peng-ju, Corrosion Fatigue Behavior of Epoxy-Coated Mg-3Al-1Zn Alloy in Gear Oil, Trans. Nonferrous Met. Soc. China., 2014, 2014(24), p 3429–3440. H. Xiu-li, W. Ying-hui, H. Li-feng, Y. Zhi-feng, G. Chun-li and H. Peng-ju, Corrosion Fatigue Behavior of Epoxy-Coated Mg-3Al-1Zn Alloy in Gear Oil, Trans. Nonferrous Met. Soc. China., 2014, 2014(24), p 3429–3440.
51.
Zurück zum Zitat B.M. Shahnewaz and M. Yoshiharu, Corrosion Fatigue Behavior of Conversion Coated and Painted AZ61 Magnesium Alloy, Int. J. Fatigue., 2011, 33, p 1548–1556.CrossRef B.M. Shahnewaz and M. Yoshiharu, Corrosion Fatigue Behavior of Conversion Coated and Painted AZ61 Magnesium Alloy, Int. J. Fatigue., 2011, 33, p 1548–1556.CrossRef
52.
Zurück zum Zitat BMd. Shahnewaz, M. Yoshiharu, M. Tsutomu and I. Shinpei, Corrosion Fatigue Behavior of Extruded Magnesium Alloy AZ61 Under Three Different Corrosive Environments, Int. J. Fatigue, 2008, 30, p 1756–1765.CrossRef BMd. Shahnewaz, M. Yoshiharu, M. Tsutomu and I. Shinpei, Corrosion Fatigue Behavior of Extruded Magnesium Alloy AZ61 Under Three Different Corrosive Environments, Int. J. Fatigue, 2008, 30, p 1756–1765.CrossRef
53.
Zurück zum Zitat X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi and L.J. Chen, Corrosion Fatigue Behaviors of Two Biomedical Mg Alloys—AZ91D and WE43—In Simulated Body fluid, Acta Biomater., 2010, 6, p 4605–4613.CrossRef X.N. Gu, W.R. Zhou, Y.F. Zheng, Y. Cheng, S.C. Wei, S.P. Zhong, T.F. Xi and L.J. Chen, Corrosion Fatigue Behaviors of Two Biomedical Mg Alloys—AZ91D and WE43—In Simulated Body fluid, Acta Biomater., 2010, 6, p 4605–4613.CrossRef
54.
Zurück zum Zitat P. Wittke, M. Klein, F. Walther, Corrosion Fatigue Behaviour of Creep-Resistant Magnesium Alloy Mg-4Al-2Ba-2Ca. In XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17), Procedia Eng. vol. 74, pp. 78–83 (2014). P. Wittke, M. Klein, F. Walther, Corrosion Fatigue Behaviour of Creep-Resistant Magnesium Alloy Mg-4Al-2Ba-2Ca. In XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17), Procedia Eng. vol. 74, pp. 78–83 (2014).
55.
Zurück zum Zitat R.R.K. Singh, J. Sajjad and E.H. Shervin, Corrosion Fatigue Fracture of Magnesium Alloys in Bioimplant Applications: A Review, Eng. Fract. Mech., 2015, 137, p 97–108.CrossRef R.R.K. Singh, J. Sajjad and E.H. Shervin, Corrosion Fatigue Fracture of Magnesium Alloys in Bioimplant Applications: A Review, Eng. Fract. Mech., 2015, 137, p 97–108.CrossRef
56.
Zurück zum Zitat J. Sajjad, R.R.K. Singh, H. Chris and J. Davies, Corrosion Fatigue of a Magnesium Alloy in Modified Simulated Body fluid, Eng. Fract. Mech., 2015, 137, p 2–11.CrossRef J. Sajjad, R.R.K. Singh, H. Chris and J. Davies, Corrosion Fatigue of a Magnesium Alloy in Modified Simulated Body fluid, Eng. Fract. Mech., 2015, 137, p 2–11.CrossRef
57.
Zurück zum Zitat E.H. Shervin and R.R.K. Singh, Corrosion Fatigue of a Magnesium Alloy Under Appropriate Human Physiological Conditions for Bio-Implant Applications, Eng. Fract. Mech., 2017, 186, p 134–142.CrossRef E.H. Shervin and R.R.K. Singh, Corrosion Fatigue of a Magnesium Alloy Under Appropriate Human Physiological Conditions for Bio-Implant Applications, Eng. Fract. Mech., 2017, 186, p 134–142.CrossRef
58.
Zurück zum Zitat A.A. Renato and C.L.O. Mara, Corrosion Fatigue of Biomedical Metallic Alloys: Mechanisms and Mitigation, Acta Biomater., 2012, 8, p 937–962.CrossRef A.A. Renato and C.L.O. Mara, Corrosion Fatigue of Biomedical Metallic Alloys: Mechanisms and Mitigation, Acta Biomater., 2012, 8, p 937–962.CrossRef
59.
Zurück zum Zitat X.L. He, Y.H. Wei, L.F. Hou, Z.F. Yan, C.L. Guo and P.J. Han, Investigation on Corrosion Fatigue Property of Epoxy Coated AZ31 Magnesium Alloy in Sodium Sulfate Solution, Theor. Appl. Fract. Mech., 2014, 70, p 39–48.CrossRef X.L. He, Y.H. Wei, L.F. Hou, Z.F. Yan, C.L. Guo and P.J. Han, Investigation on Corrosion Fatigue Property of Epoxy Coated AZ31 Magnesium Alloy in Sodium Sulfate Solution, Theor. Appl. Fract. Mech., 2014, 70, p 39–48.CrossRef
60.
Zurück zum Zitat S. Ishihara, K. Masud, T. Namito, S. Sunada and H. Notoya, On Corrosion Fatigue Strength of the Anodized and Painted Mg Alloy, Int. J. Fatigue., 2014, 66, p 252–258.CrossRef S. Ishihara, K. Masud, T. Namito, S. Sunada and H. Notoya, On Corrosion Fatigue Strength of the Anodized and Painted Mg Alloy, Int. J. Fatigue., 2014, 66, p 252–258.CrossRef
61.
Zurück zum Zitat J. Sajjad, R.K. Singh, H.J. Chris, J. Davies, J.J. Hofstetter, J. Peter, J. Uggowitzer and F.L. Jörg, Stress Corrosion Cracking and Corrosion Fatigue Characterisation of MgZn1Ca0.3 (ZX10) in a Simulated Physiological Environment, J. Mech. Behav. Biomed. Mater., 2017, 65, p 634–643.CrossRef J. Sajjad, R.K. Singh, H.J. Chris, J. Davies, J.J. Hofstetter, J. Peter, J. Uggowitzer and F.L. Jörg, Stress Corrosion Cracking and Corrosion Fatigue Characterisation of MgZn1Ca0.3 (ZX10) in a Simulated Physiological Environment, J. Mech. Behav. Biomed. Mater., 2017, 65, p 634–643.CrossRef
62.
Zurück zum Zitat S. Ishihara, T. Namito, H. Notoya and A. Okada, The Corrosion Fatigue Resistance of an Electrolytically-Plated Magnesium Alloy, Int. J. Fatigue., 2010, 32, p 1299–1305.CrossRef S. Ishihara, T. Namito, H. Notoya and A. Okada, The Corrosion Fatigue Resistance of an Electrolytically-Plated Magnesium Alloy, Int. J. Fatigue., 2010, 32, p 1299–1305.CrossRef
63.
Zurück zum Zitat S. Jalota, S.B. Bhaduri and A.C. Tas, Using a Synthetic Body Fluid (SBF) Solution of 27 mM HCO3− to Make Bone Substitutes More Osteointegrative, Mater. Sci. Eng. C, 2008, 28, p 129–140.CrossRef S. Jalota, S.B. Bhaduri and A.C. Tas, Using a Synthetic Body Fluid (SBF) Solution of 27 mM HCO3− to Make Bone Substitutes More Osteointegrative, Mater. Sci. Eng. C, 2008, 28, p 129–140.CrossRef
64.
Zurück zum Zitat A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura, Preparation and Assessment of Revised Simulated Body Fluids, J. Biomed. Mater. Res., 2003, 65A, p 188–195.CrossRef A. Oyane, H.-M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura, Preparation and Assessment of Revised Simulated Body Fluids, J. Biomed. Mater. Res., 2003, 65A, p 188–195.CrossRef
65.
Zurück zum Zitat A. Yamamoto and S. Hiromoto, Effect of Inorganic Salts, Amino Acids and Proteins on the Degradation of Pure Magnesium In Vitro, Mater. Sci. Eng. C., 2009, 29, p 1559–1568.CrossRef A. Yamamoto and S. Hiromoto, Effect of Inorganic Salts, Amino Acids and Proteins on the Degradation of Pure Magnesium In Vitro, Mater. Sci. Eng. C., 2009, 29, p 1559–1568.CrossRef
66.
Zurück zum Zitat Y. Xin, T. Hu and P.K. Chu, Influence of Test Solutions on In Vitro Studies of Biomedical Magnesium Alloys, J. Electrochem. Soc., 2010, 157, p C238–C243.CrossRef Y. Xin, T. Hu and P.K. Chu, Influence of Test Solutions on In Vitro Studies of Biomedical Magnesium Alloys, J. Electrochem. Soc., 2010, 157, p C238–C243.CrossRef
67.
Zurück zum Zitat T. Kokubo and H. Takadama, How Useful is SBF in Predicting in vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.CrossRef T. Kokubo and H. Takadama, How Useful is SBF in Predicting in vivo Bone Bioactivity?, Biomaterials, 2006, 27, p 2907–2915.CrossRef
68.
Zurück zum Zitat Y. Xin, T. Hu and P.K. Chu, In Vitro Studies of Biomedical Magnesium Alloys in a Simulated Physiological Environment: A Review, Acta Biomater., 2011, 7, p 1452–1459.CrossRef Y. Xin, T. Hu and P.K. Chu, In Vitro Studies of Biomedical Magnesium Alloys in a Simulated Physiological Environment: A Review, Acta Biomater., 2011, 7, p 1452–1459.CrossRef
69.
Zurück zum Zitat L. Yang, H. Hort, R. Willumeit and F. Feyerabend, Effects of Corrosion Environment and Proteins on Magnesium Corrosion, Corros. Eng. Sci. Technol., 2012, 47, p 335–339.CrossRef L. Yang, H. Hort, R. Willumeit and F. Feyerabend, Effects of Corrosion Environment and Proteins on Magnesium Corrosion, Corros. Eng. Sci. Technol., 2012, 47, p 335–339.CrossRef
70.
Zurück zum Zitat J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian et al., High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance, JOM., 2014, 66, p 566–572.CrossRef J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian et al., High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance, JOM., 2014, 66, p 566–572.CrossRef
71.
Zurück zum Zitat R. Rettig and S. Virtanen, Time-Dependent Electrochemical Characterization of the Corrosion of a Magnesium Rare-Earth Alloy in Simulated Body Fluids, J. Biomed. Mater. Res. A., 2008, 85A, p 167–175.CrossRef R. Rettig and S. Virtanen, Time-Dependent Electrochemical Characterization of the Corrosion of a Magnesium Rare-Earth Alloy in Simulated Body Fluids, J. Biomed. Mater. Res. A., 2008, 85A, p 167–175.CrossRef
72.
Zurück zum Zitat P. Jiang, C. Blawert, J. Bohlen and M.L. Zheludkevich, Corrosion Performance, Corrosion Fatigue Behavior and Mechanical Integrity of an Extruded Mg4Zn0.2Sn Alloy, J. Mater. Sci. Technol., 2020, 59, p 107–116.CrossRef P. Jiang, C. Blawert, J. Bohlen and M.L. Zheludkevich, Corrosion Performance, Corrosion Fatigue Behavior and Mechanical Integrity of an Extruded Mg4Zn0.2Sn Alloy, J. Mater. Sci. Technol., 2020, 59, p 107–116.CrossRef
73.
Zurück zum Zitat P. Jiang, C. Blawert, R. Hou, J. Bohlen, N. Konchakova and M.L. Zheludkevich, A Comprehensive Comparison of the Corrosion Performance, Fatigue Behavior and Mechanical Properties of Micro-alloyed MgZnCa and MgZnGe Alloys, Mater. Des., 2020, 185, p 108285.CrossRef P. Jiang, C. Blawert, R. Hou, J. Bohlen, N. Konchakova and M.L. Zheludkevich, A Comprehensive Comparison of the Corrosion Performance, Fatigue Behavior and Mechanical Properties of Micro-alloyed MgZnCa and MgZnGe Alloys, Mater. Des., 2020, 185, p 108285.CrossRef
74.
Zurück zum Zitat M. Liu, J. Wang, S. Zhu, Y. Zhang, Y. Sun, L. Wang and S. Guan, Corrosion Fatigue of the Extruded Mg-Zn-Y-Nd Alloy in Simulated Body Fluid, J. Magnes. Alloys., 2020, 8, p 231–240.CrossRef M. Liu, J. Wang, S. Zhu, Y. Zhang, Y. Sun, L. Wang and S. Guan, Corrosion Fatigue of the Extruded Mg-Zn-Y-Nd Alloy in Simulated Body Fluid, J. Magnes. Alloys., 2020, 8, p 231–240.CrossRef
75.
Zurück zum Zitat A. Maldar, L. Wang, G. Zhu and X. Zeng, Investigation of the Alloying Effect on Deformation Behavior in Mg by Visco-Plastic Self-Consistent Modeling, J. Magnes. Alloys., 2020, 8, p 210–218.CrossRef A. Maldar, L. Wang, G. Zhu and X. Zeng, Investigation of the Alloying Effect on Deformation Behavior in Mg by Visco-Plastic Self-Consistent Modeling, J. Magnes. Alloys., 2020, 8, p 210–218.CrossRef
76.
Zurück zum Zitat V.K. Bommala, M.G. Krishna and C.T. Rao, Magnesium Matrix Composites for Biomedical Applications: A Review, J. Magnes. Alloys., 2019, 7, p 72–79.CrossRef V.K. Bommala, M.G. Krishna and C.T. Rao, Magnesium Matrix Composites for Biomedical Applications: A Review, J. Magnes. Alloys., 2019, 7, p 72–79.CrossRef
77.
Zurück zum Zitat N. Sezer, Z. Evis and S.M. Kayhan, Review of Magnesium-Based Biomaterials and Their Applications, J. Magnes. Alloys., 2018, 6, p 23–43.CrossRef N. Sezer, Z. Evis and S.M. Kayhan, Review of Magnesium-Based Biomaterials and Their Applications, J. Magnes. Alloys., 2018, 6, p 23–43.CrossRef
78.
Zurück zum Zitat W.Y. Jiang, J.F. Wang, W.K. Zhao, Q.S. Liu, D.M. Jiang and S.F. Guo, Effect of Sn Addition on the Mechanical Properties and Bio-Corrosion Behavior of Cytocompatible Mg-4Zn Based Alloys, J. Magnes. Alloys., 2019, 7, p 15–26.CrossRef W.Y. Jiang, J.F. Wang, W.K. Zhao, Q.S. Liu, D.M. Jiang and S.F. Guo, Effect of Sn Addition on the Mechanical Properties and Bio-Corrosion Behavior of Cytocompatible Mg-4Zn Based Alloys, J. Magnes. Alloys., 2019, 7, p 15–26.CrossRef
79.
Zurück zum Zitat Y. Liu, Y.F. Zheng, X.H. Chen, J.A. Yang, H.B. Pan, D.F. Chen, L.N. Wang, J.L. Zhang, D.H. Zhu, S.L. Wu, K.W.K. Yeung, R.C. Zeng, Y. Han and S.K. Guan, Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design, Adv. Funct. Mater., 2019, 29, p 1–21. Y. Liu, Y.F. Zheng, X.H. Chen, J.A. Yang, H.B. Pan, D.F. Chen, L.N. Wang, J.L. Zhang, D.H. Zhu, S.L. Wu, K.W.K. Yeung, R.C. Zeng, Y. Han and S.K. Guan, Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design, Adv. Funct. Mater., 2019, 29, p 1–21.
80.
Zurück zum Zitat Y. Li, Y. Zhou, Z.M. Shi, J. Venezuela, A. Soltan and A. Atrens, Stress Corrosion Cracking of EV31A in 0.1 M Na2SO4 Saturated with Mg(OH)2, J. Magnes. Alloys., 2018, 6, p 337–345.CrossRef Y. Li, Y. Zhou, Z.M. Shi, J. Venezuela, A. Soltan and A. Atrens, Stress Corrosion Cracking of EV31A in 0.1 M Na2SO4 Saturated with Mg(OH)2, J. Magnes. Alloys., 2018, 6, p 337–345.CrossRef
81.
Zurück zum Zitat M. Sabbaghian, R. Mahmudi and K.S. Shin, Effect of Texture and Twinning on Mechanical Properties and Corrosion Behavior of an Extruded Biodegradable Mg-4Zn Alloy, J. Magnes. Alloys., 2019, 7, p 707–716.CrossRef M. Sabbaghian, R. Mahmudi and K.S. Shin, Effect of Texture and Twinning on Mechanical Properties and Corrosion Behavior of an Extruded Biodegradable Mg-4Zn Alloy, J. Magnes. Alloys., 2019, 7, p 707–716.CrossRef
82.
Zurück zum Zitat W.B. Du, K. Liu, K. Ma, Z.H. Wang and S.B. Li, Effects of Trace Ca/Sn Addition on Corrosion Behaviors of Biodegradable Mg-4Zn-0.2Mn Alloy, J. Magnes. Alloys., 2018, 6, p 1–14.CrossRef W.B. Du, K. Liu, K. Ma, Z.H. Wang and S.B. Li, Effects of Trace Ca/Sn Addition on Corrosion Behaviors of Biodegradable Mg-4Zn-0.2Mn Alloy, J. Magnes. Alloys., 2018, 6, p 1–14.CrossRef
83.
Zurück zum Zitat S. Jafari, S.E. Harandi and R.K. Singh Raman, A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications, JOM., 2015, 67, p 1143–1153.CrossRef S. Jafari, S.E. Harandi and R.K. Singh Raman, A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications, JOM., 2015, 67, p 1143–1153.CrossRef
84.
Zurück zum Zitat R. Bonan and A.W. Asgar, Biodegradable Stents—Where Are We in 2009?, US Cardiol., 2009, 6, p 81–84.CrossRef R. Bonan and A.W. Asgar, Biodegradable Stents—Where Are We in 2009?, US Cardiol., 2009, 6, p 81–84.CrossRef
85.
Zurück zum Zitat Y.F. Zheng, X.N. Gu, Y.L. Xi and D.L. Chai, In Vitro Degradation and Cytotoxicity of Mg/Ca Composites Produced by Powder Metallurgy, Acta Biomater., 2010, 6, p 1783–1791.CrossRef Y.F. Zheng, X.N. Gu, Y.L. Xi and D.L. Chai, In Vitro Degradation and Cytotoxicity of Mg/Ca Composites Produced by Powder Metallurgy, Acta Biomater., 2010, 6, p 1783–1791.CrossRef
86.
Zurück zum Zitat T. Pollock, Weight Loss with Magnesium Alloys, Science, 2010, 328, p 986–987.CrossRef T. Pollock, Weight Loss with Magnesium Alloys, Science, 2010, 328, p 986–987.CrossRef
87.
Zurück zum Zitat M. Razavi, M.H. Fathi and M. Meratian, Microstructure, Mechanical Properties and Bio-Corrosion Evaluation of Biodegradable AZ91-FA Nanocomposites for Biomedical Applications, Mater. Sci. Eng. A, 2010, 527, p 6938–6944.CrossRef M. Razavi, M.H. Fathi and M. Meratian, Microstructure, Mechanical Properties and Bio-Corrosion Evaluation of Biodegradable AZ91-FA Nanocomposites for Biomedical Applications, Mater. Sci. Eng. A, 2010, 527, p 6938–6944.CrossRef
88.
Zurück zum Zitat S. Cai, F. Feng, N. Li, T. Lei and W. Tang, On the Corrosion Behaviour of Newly Developed Biodegradable Mg-Based Metal Matrix Composites Produced by In Situ Reaction, Corros. Sci., 2012, 54, p 270–277.CrossRef S. Cai, F. Feng, N. Li, T. Lei and W. Tang, On the Corrosion Behaviour of Newly Developed Biodegradable Mg-Based Metal Matrix Composites Produced by In Situ Reaction, Corros. Sci., 2012, 54, p 270–277.CrossRef
89.
Zurück zum Zitat G. Manivasagam and S. Suwas, Biodegradable Mg and Mg Based Alloys for Biomedical Implants, Mater. Sci. Technol. Lond., 2014, 30, p 515–520.CrossRef G. Manivasagam and S. Suwas, Biodegradable Mg and Mg Based Alloys for Biomedical Implants, Mater. Sci. Technol. Lond., 2014, 30, p 515–520.CrossRef
90.
Zurück zum Zitat H. Li, Q.M. Peng, X.J. Li, K. Li, Z.S. Han and D.Q. Fang, A New Sand-Wedge-Forming Mechanism in an Extra-Arid Area, Mater. Des., 2014, 58, p 43–51.CrossRef H. Li, Q.M. Peng, X.J. Li, K. Li, Z.S. Han and D.Q. Fang, A New Sand-Wedge-Forming Mechanism in an Extra-Arid Area, Mater. Des., 2014, 58, p 43–51.CrossRef
91.
Zurück zum Zitat N. Hort, Y. Huang, D. Fechner, M. Stormer, C. Blawert, F. Witte, C. Vogt, H. Drucker, R. Willumeit, K.U. Kainer and F. Feyerabend, Magnesium Alloys as Implant Materials—Principles of Property Design for Mg-RE Alloys, Acta Biomater., 2010, 6, p 1714–1725.CrossRef N. Hort, Y. Huang, D. Fechner, M. Stormer, C. Blawert, F. Witte, C. Vogt, H. Drucker, R. Willumeit, K.U. Kainer and F. Feyerabend, Magnesium Alloys as Implant Materials—Principles of Property Design for Mg-RE Alloys, Acta Biomater., 2010, 6, p 1714–1725.CrossRef
92.
Zurück zum Zitat X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang and W.H. Wang, Corrosion of, and Cellular Responses to Mg-Zn-Ca Bulk Metallic Glasses, Biomaterials, 2010, 31, p 1093–1103.CrossRef X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang and W.H. Wang, Corrosion of, and Cellular Responses to Mg-Zn-Ca Bulk Metallic Glasses, Biomaterials, 2010, 31, p 1093–1103.CrossRef
93.
Zurück zum Zitat Y. Cheng, S.P. Zhong, X.N. Gu, Y.F. Zheng and T.F. Xi, Study of Oxidation-Reduction Potential (ORP) on Autothermal Thermophilic Aerobic Digestion Process, Biomaterials, 2009, 30, p 484–498. Y. Cheng, S.P. Zhong, X.N. Gu, Y.F. Zheng and T.F. Xi, Study of Oxidation-Reduction Potential (ORP) on Autothermal Thermophilic Aerobic Digestion Process, Biomaterials, 2009, 30, p 484–498.
94.
Zurück zum Zitat S. Dumoulin, P.C. Skaret, H.J. Roven, Y.J. Chen, Y.J. Li and J.C. Walmsley, Microstructure Evolution of Commercial Pure Titanium During Equal Channel Angular Pressing, Mater. Sci. Eng. A Struct. Mater., 2010, 527, p 789–796.CrossRef S. Dumoulin, P.C. Skaret, H.J. Roven, Y.J. Chen, Y.J. Li and J.C. Walmsley, Microstructure Evolution of Commercial Pure Titanium During Equal Channel Angular Pressing, Mater. Sci. Eng. A Struct. Mater., 2010, 527, p 789–796.CrossRef
95.
Zurück zum Zitat T. Shibata, Y. Nakamura, Y. Tsumura, Y. Tonogai and Y. Ito, Differences in Behavior Among the Chlorides of Seven Rare Earth Elements Administered Intravenously to Rats, Fundam. Appl. Toxicol., 1997, 37, p 106–116.CrossRef T. Shibata, Y. Nakamura, Y. Tsumura, Y. Tonogai and Y. Ito, Differences in Behavior Among the Chlorides of Seven Rare Earth Elements Administered Intravenously to Rats, Fundam. Appl. Toxicol., 1997, 37, p 106–116.CrossRef
96.
Zurück zum Zitat G.J. Dias, M.P. Staiger, N.T. Kirkland, I. Kolbeinsson and T. Woodfield, Mater. Lett., 2010, 64, p 2572–2574.CrossRef G.J. Dias, M.P. Staiger, N.T. Kirkland, I. Kolbeinsson and T. Woodfield, Mater. Lett., 2010, 64, p 2572–2574.CrossRef
97.
Zurück zum Zitat G.J. Dias, M.P. Staiger, N.T. Kirkland, I. Kolbeinsson and T. Woodfield, Int. J. Mod. Phys. B., 2009, 23, p 1002–1008.CrossRef G.J. Dias, M.P. Staiger, N.T. Kirkland, I. Kolbeinsson and T. Woodfield, Int. J. Mod. Phys. B., 2009, 23, p 1002–1008.CrossRef
98.
Zurück zum Zitat N. Kuromoto, R. Simao and G. Soares, J. Mater. Charact., 2007, 58, p 114–121.CrossRef N. Kuromoto, R. Simao and G. Soares, J. Mater. Charact., 2007, 58, p 114–121.CrossRef
100.
Zurück zum Zitat S.A. Ajeel and U.S. Mohammad, The Determination of Optimum Conditions for Anodizing Aluminum Alloy (6063), Eng. Technol., 2008, 26, p 1341–1354. S.A. Ajeel and U.S. Mohammad, The Determination of Optimum Conditions for Anodizing Aluminum Alloy (6063), Eng. Technol., 2008, 26, p 1341–1354.
101.
Zurück zum Zitat Q. Xu, A. Ma, Y. Li, J. Sun, Y. Yuan, J. Jiang and C. Ni, Microstructure Evolution of AZ91 Alloy Processed by a Combination Method of Equal Channel Angular Pressing and Rolling, J. Magnes. Alloys., 2020, 8, p 192–198.CrossRef Q. Xu, A. Ma, Y. Li, J. Sun, Y. Yuan, J. Jiang and C. Ni, Microstructure Evolution of AZ91 Alloy Processed by a Combination Method of Equal Channel Angular Pressing and Rolling, J. Magnes. Alloys., 2020, 8, p 192–198.CrossRef
102.
Zurück zum Zitat G.E. Thompson, The Effect of Current Density on Anodic Film Growth on Al-Cu Alloy. In Proceeding of 2nd International Symposium on Aluminum Surface Science and Technology, Manchester, pp. 21–186, (2000). G.E. Thompson, The Effect of Current Density on Anodic Film Growth on Al-Cu Alloy. In Proceeding of 2nd International Symposium on Aluminum Surface Science and Technology, Manchester, pp. 21–186, (2000).
103.
Zurück zum Zitat M.M. Rahman, E. Garcia-Caurel, A. Santos, L. Marsal, J. Pallarès and J. Ferré-Borrull, Effect of the Anodization Voltage on the Pore-Widening Rate of Nanoporous Anodic Alumina, Nanoscale Res. Lett., 2012, 7, p 474.CrossRef M.M. Rahman, E. Garcia-Caurel, A. Santos, L. Marsal, J. Pallarès and J. Ferré-Borrull, Effect of the Anodization Voltage on the Pore-Widening Rate of Nanoporous Anodic Alumina, Nanoscale Res. Lett., 2012, 7, p 474.CrossRef
104.
Zurück zum Zitat Y. Huang, H. Zeng, C. Zhao, Y. Qu and P. Zhang, Kinetic Models of Controllable Pore Growth of Anodic Aluminum Oxide Membrane, Met. Mater. Int., 2012, 18, p 433–438.CrossRef Y. Huang, H. Zeng, C. Zhao, Y. Qu and P. Zhang, Kinetic Models of Controllable Pore Growth of Anodic Aluminum Oxide Membrane, Met. Mater. Int., 2012, 18, p 433–438.CrossRef
105.
Zurück zum Zitat M.M. Jalilvand, M. Akbarifar, M. Divandari and H. Saghafian, On the Dynamically Formed Oxide Films in Molten Mg, J. Magnes. Alloys., 2020, 8, p 219–230.CrossRef M.M. Jalilvand, M. Akbarifar, M. Divandari and H. Saghafian, On the Dynamically Formed Oxide Films in Molten Mg, J. Magnes. Alloys., 2020, 8, p 219–230.CrossRef
106.
Zurück zum Zitat M. Roshani, A.S. Rouhaghdam, M. Aliofkhazraei and A.H. Astaraee, Optimization of Mechanical Properties for Pulsed Anodizing of Aluminum: The Effect of Electrolyte and Temperature, Surf. Coat. Technol., 2017, 310, p 17–24.CrossRef M. Roshani, A.S. Rouhaghdam, M. Aliofkhazraei and A.H. Astaraee, Optimization of Mechanical Properties for Pulsed Anodizing of Aluminum: The Effect of Electrolyte and Temperature, Surf. Coat. Technol., 2017, 310, p 17–24.CrossRef
107.
Zurück zum Zitat W. Bensalah, M. DePetris-Wery and H.F. Ayedi, Young’s Modulus of Anodic Oxide Layers Formed on Aluminum in Sulphuric Acid Bath, Mater. Lett., 2016, 179, p 82–85.CrossRef W. Bensalah, M. DePetris-Wery and H.F. Ayedi, Young’s Modulus of Anodic Oxide Layers Formed on Aluminum in Sulphuric Acid Bath, Mater. Lett., 2016, 179, p 82–85.CrossRef
108.
Zurück zum Zitat W.J. Stepniowski and Z. Bojar, Synthesis of Anodic Aluminum Oxide (AAO) at Relatively High Temperatures. Study of the Influence of Anodization Conditions on the Alumina Structural Features, Surf. Coat. Technol., 2011, 206, p 256–272.CrossRef W.J. Stepniowski and Z. Bojar, Synthesis of Anodic Aluminum Oxide (AAO) at Relatively High Temperatures. Study of the Influence of Anodization Conditions on the Alumina Structural Features, Surf. Coat. Technol., 2011, 206, p 256–272.CrossRef
109.
Zurück zum Zitat Y. Zhang and T. Lin, Influence of Duty Cycle on Properties of the Superhydrophobic Coating on an Anodized Magnesium Alloy Fabricated by Pulse Electrodeposition, Colloids Surf. A., 2019, 568, p 43–50.CrossRef Y. Zhang and T. Lin, Influence of Duty Cycle on Properties of the Superhydrophobic Coating on an Anodized Magnesium Alloy Fabricated by Pulse Electrodeposition, Colloids Surf. A., 2019, 568, p 43–50.CrossRef
110.
Zurück zum Zitat J. Han, C. Blawert, S. Tang, J. Yang, J. Hu and M. Zheludkevich, Effect of Surface Pre-Treatments on the Formation and Degradation Behaviour of a Calcium Phosphate Coating on Pure Magnesium, Coatings, 2019, 9, p 259.CrossRef J. Han, C. Blawert, S. Tang, J. Yang, J. Hu and M. Zheludkevich, Effect of Surface Pre-Treatments on the Formation and Degradation Behaviour of a Calcium Phosphate Coating on Pure Magnesium, Coatings, 2019, 9, p 259.CrossRef
111.
Zurück zum Zitat N. Aboudzadeh, C. Dehghanian and M. Shokrgozar, Effect of Electrodeposition Parameters and Substrate on Morphology of Si-HA Coating, Surf. Coat. Technol., 2019, 375, p 341–351.CrossRef N. Aboudzadeh, C. Dehghanian and M. Shokrgozar, Effect of Electrodeposition Parameters and Substrate on Morphology of Si-HA Coating, Surf. Coat. Technol., 2019, 375, p 341–351.CrossRef
112.
Zurück zum Zitat W. Wu, Z. Wang, S. Zang, X. Yu, H. Yang and S. Chang, Research Progress on Surface Treatments of Biodegradable Mg Alloys: A Review, ACS Omega, 2020, 5, p 941–947.CrossRef W. Wu, Z. Wang, S. Zang, X. Yu, H. Yang and S. Chang, Research Progress on Surface Treatments of Biodegradable Mg Alloys: A Review, ACS Omega, 2020, 5, p 941–947.CrossRef
113.
Zurück zum Zitat J. Syu, J. Uan, M. Lin and Z. Lin, Optically Transparent Li-Al-CO3 Layered Double Hydroxide Thin Films on an AZ31 Mg Alloy Formed by Electrochemical Deposition and Their Corrosion Resistance in a Dilute Chloride Environment, Corros. Sci., 2013, 68, p 238–248.CrossRef J. Syu, J. Uan, M. Lin and Z. Lin, Optically Transparent Li-Al-CO3 Layered Double Hydroxide Thin Films on an AZ31 Mg Alloy Formed by Electrochemical Deposition and Their Corrosion Resistance in a Dilute Chloride Environment, Corros. Sci., 2013, 68, p 238–248.CrossRef
114.
Zurück zum Zitat H. Bakhsheshi-Rad, A. Ismail, M. Aziz, Z. Hadisi, M. Omidi and X. Chen, Antibacterial Activity and Corrosion Resistance of Ta2O5 Thin Film and Electrospun PCL/MgO-Ag Nanofiber Coatings on Biodegradable Mg Alloy Implants, Ceram. Int., 2019, 45, p 11883–11892.CrossRef H. Bakhsheshi-Rad, A. Ismail, M. Aziz, Z. Hadisi, M. Omidi and X. Chen, Antibacterial Activity and Corrosion Resistance of Ta2O5 Thin Film and Electrospun PCL/MgO-Ag Nanofiber Coatings on Biodegradable Mg Alloy Implants, Ceram. Int., 2019, 45, p 11883–11892.CrossRef
115.
Zurück zum Zitat T.O. Olugbade, Stress Corrosion Cracking and Precipitation Strengthening Mechanism in TWIP Steels: Progress and Prospects, Corros. Rev., 2020, 38, p 473–488.CrossRef T.O. Olugbade, Stress Corrosion Cracking and Precipitation Strengthening Mechanism in TWIP Steels: Progress and Prospects, Corros. Rev., 2020, 38, p 473–488.CrossRef
116.
Zurück zum Zitat W. Xia, N. Li, B. Deng, R. Zheng and Y. Chen, Corrosion Behavior of a sol-gel ZrO2 Pore-Sealing Film Prepared on a Microarc Oxidized Aluminum Alloy, Ceram. Int., 2019, 45, p 11062–11067.CrossRef W. Xia, N. Li, B. Deng, R. Zheng and Y. Chen, Corrosion Behavior of a sol-gel ZrO2 Pore-Sealing Film Prepared on a Microarc Oxidized Aluminum Alloy, Ceram. Int., 2019, 45, p 11062–11067.CrossRef
117.
Zurück zum Zitat Y. Castro and A. Duran, Control of Degradation Rate of Mg Alloys Using Silica Sol−Gel Coatings for Biodegradable Implant Materials, J. Sol-Gel Sci. Technol., 2019, 90, p 198–208.CrossRef Y. Castro and A. Duran, Control of Degradation Rate of Mg Alloys Using Silica Sol−Gel Coatings for Biodegradable Implant Materials, J. Sol-Gel Sci. Technol., 2019, 90, p 198–208.CrossRef
118.
Zurück zum Zitat M. Park, J. Lee, C. Park, S. Lee, H. Seok and Y. Choy, Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium, J. Coat. Technol. Res., 2013, 10, p 695–706.CrossRef M. Park, J. Lee, C. Park, S. Lee, H. Seok and Y. Choy, Polycaprolactone coating with varying thicknesses for controlled corrosion of magnesium, J. Coat. Technol. Res., 2013, 10, p 695–706.CrossRef
119.
Zurück zum Zitat Z. Hu, J. Zhang, S. Xiong and Y. Zhao, Performance of Polymer Solar Cells Fabricated by Dip Coating Process, Sol. Energy Mater. Sol. Cells., 2012, 99, p 221–225.CrossRef Z. Hu, J. Zhang, S. Xiong and Y. Zhao, Performance of Polymer Solar Cells Fabricated by Dip Coating Process, Sol. Energy Mater. Sol. Cells., 2012, 99, p 221–225.CrossRef
120.
Zurück zum Zitat R.O. Hussein, D.O. Northwood and X. Nie, The Effect of Processing Parameters and Substrate Composition on the Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coated Magnesium Alloys, Surf. Coat. Technol., 2013, 237, p 357–368.CrossRef R.O. Hussein, D.O. Northwood and X. Nie, The Effect of Processing Parameters and Substrate Composition on the Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coated Magnesium Alloys, Surf. Coat. Technol., 2013, 237, p 357–368.CrossRef
121.
Zurück zum Zitat L. Zhang, J. Zhang, C. Chen and Y. Gu, Advances in Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications, Corros. Sci., 2015, 91, p 7–28.CrossRef L. Zhang, J. Zhang, C. Chen and Y. Gu, Advances in Microarc Oxidation Coated AZ31 Mg Alloys for Biomedical Applications, Corros. Sci., 2015, 91, p 7–28.CrossRef
122.
Zurück zum Zitat M. Dziaduszewska, M. Shimabukuro, T. Seramak, A. Zielinski and T. Hanawa, Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy, Coatings, 2020, 10, p 745.CrossRef M. Dziaduszewska, M. Shimabukuro, T. Seramak, A. Zielinski and T. Hanawa, Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy, Coatings, 2020, 10, p 745.CrossRef
123.
Zurück zum Zitat L.C. Zhang, L.Y. Chen and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 22, p 1901258.CrossRef L.C. Zhang, L.Y. Chen and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 22, p 1901258.CrossRef
124.
Zurück zum Zitat X.J. Tao, S.J. Li, C.Y. Zheng, J. Fu, Z. Guo, Y.L. Hao, R. Yang and Z.X. Guo, Synthesis of a Porous Oxide Layer on a Multifunctional Biomedical Titanium by Micro-arc Oxidation, Mater. Sci. Eng. C., 2009, 29, p 1923–1934.CrossRef X.J. Tao, S.J. Li, C.Y. Zheng, J. Fu, Z. Guo, Y.L. Hao, R. Yang and Z.X. Guo, Synthesis of a Porous Oxide Layer on a Multifunctional Biomedical Titanium by Micro-arc Oxidation, Mater. Sci. Eng. C., 2009, 29, p 1923–1934.CrossRef
125.
Zurück zum Zitat S.A. Alves, R. Bayón, V.S. de Viteri, M.P. Garcia, A. Igartua, M.H. Fernandes and L.A. Rocha, Tribocorrosion Behavior of Calcium- and Phosphorous-Enriched Titanium Oxide Films and Study of Osteoblast Interactions for Dental Implants, J. Bio- Tribo-Corros., 2015, 1, p 1–21.CrossRef S.A. Alves, R. Bayón, V.S. de Viteri, M.P. Garcia, A. Igartua, M.H. Fernandes and L.A. Rocha, Tribocorrosion Behavior of Calcium- and Phosphorous-Enriched Titanium Oxide Films and Study of Osteoblast Interactions for Dental Implants, J. Bio- Tribo-Corros., 2015, 1, p 1–21.CrossRef
126.
Zurück zum Zitat L. Zaraska, K. Gawlak, M. Gurgul, D. Gilek, M. Kozieł, R.P. Socha and G.D. Sulka, Morphology of Nanoporous Anodic Films Formed on Tin During Anodic Oxidation in Less Commonly Used Acidic and Alkaline Electrolytes, Surf. Coat. Technol., 2019, 362, p 191–199.CrossRef L. Zaraska, K. Gawlak, M. Gurgul, D. Gilek, M. Kozieł, R.P. Socha and G.D. Sulka, Morphology of Nanoporous Anodic Films Formed on Tin During Anodic Oxidation in Less Commonly Used Acidic and Alkaline Electrolytes, Surf. Coat. Technol., 2019, 362, p 191–199.CrossRef
127.
Zurück zum Zitat T. Liu, Q. Yang, N. Guo, Y. Lu and B. Song, Stability of Twins in Mg Alloys—A Short Review, J. Magnes. Alloys., 2020, 8, p 66–77.CrossRef T. Liu, Q. Yang, N. Guo, Y. Lu and B. Song, Stability of Twins in Mg Alloys—A Short Review, J. Magnes. Alloys., 2020, 8, p 66–77.CrossRef
128.
Zurück zum Zitat W. Mu and Y. Han, Characterization and Properties of the MgF2/ZrO 2 Composite Coatings on Magnesium Prepared by Micro-arc Oxidation, Surf Coat Technol., 2008, 202, p 4278–4284.CrossRef W. Mu and Y. Han, Characterization and Properties of the MgF2/ZrO 2 Composite Coatings on Magnesium Prepared by Micro-arc Oxidation, Surf Coat Technol., 2008, 202, p 4278–4284.CrossRef
129.
Zurück zum Zitat Y. Gu, S. Bandopadhyay, C.F. Chen, Y. Guo and C. Ning, Effect of Oxidation Time on the Corrosion Behavior of Micro-arc Oxidation Produced AZ31 Magnesium Alloys in Simulated Body Fluid, J. Alloys Compd., 2012, 543, p 109–117.CrossRef Y. Gu, S. Bandopadhyay, C.F. Chen, Y. Guo and C. Ning, Effect of Oxidation Time on the Corrosion Behavior of Micro-arc Oxidation Produced AZ31 Magnesium Alloys in Simulated Body Fluid, J. Alloys Compd., 2012, 543, p 109–117.CrossRef
130.
Zurück zum Zitat Y. Tang, X. Zhao, K. Jiang, J. Chen and Y. Zuo, The Influences of Duty Cycle on the Bonding Strength of AZ31B Magnesium Alloy by Microarc Oxidation Treatment, Surf. Coat. Technol., 2010, 205, p 1789–1792.CrossRef Y. Tang, X. Zhao, K. Jiang, J. Chen and Y. Zuo, The Influences of Duty Cycle on the Bonding Strength of AZ31B Magnesium Alloy by Microarc Oxidation Treatment, Surf. Coat. Technol., 2010, 205, p 1789–1792.CrossRef
131.
Zurück zum Zitat I.J. Hwang, Y.G. Ko, K.M. Lee and D.H. Shin, Effect of Pulse Frequency on Corrosion Behavior of AZ91 Mg Alloy Treated by Microarc Discharge Oxidation Coating, Mater. Trans., 2011, 52, p 580–583.CrossRef I.J. Hwang, Y.G. Ko, K.M. Lee and D.H. Shin, Effect of Pulse Frequency on Corrosion Behavior of AZ91 Mg Alloy Treated by Microarc Discharge Oxidation Coating, Mater. Trans., 2011, 52, p 580–583.CrossRef
132.
Zurück zum Zitat Y. Gu, C.F. Chen, S. Bandopadhyay, C. Ning, Y. Zhang and Y. Guo, Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258, p 6116–6126.CrossRef Y. Gu, C.F. Chen, S. Bandopadhyay, C. Ning, Y. Zhang and Y. Guo, Corrosion Mechanism and Model of Pulsed DC Microarc Oxidation Treated AZ31 Alloy in Simulated Body Fluid, Appl. Surf. Sci., 2012, 258, p 6116–6126.CrossRef
133.
Zurück zum Zitat Y. Han, S.H. Hong and K. Xu, Structure and In Vitro Bioactivity of Titania-Based Films by Micro-Arc Oxidation, Surf. Coat. Technol., 2003, 168, p 249–258.CrossRef Y. Han, S.H. Hong and K. Xu, Structure and In Vitro Bioactivity of Titania-Based Films by Micro-Arc Oxidation, Surf. Coat. Technol., 2003, 168, p 249–258.CrossRef
134.
Zurück zum Zitat Z. Zhang, G. Wu, A. Atrens and W. Ding, Influence of Trace As Content on the Microstructure and Corrosion Behavior of the AZ91 Alloy in Different Metallurgical Conditions, J. Magnes. Alloys., 2020, 8, p 301–317.CrossRef Z. Zhang, G. Wu, A. Atrens and W. Ding, Influence of Trace As Content on the Microstructure and Corrosion Behavior of the AZ91 Alloy in Different Metallurgical Conditions, J. Magnes. Alloys., 2020, 8, p 301–317.CrossRef
135.
Zurück zum Zitat J.M. Li, Q.W. Zhang, H. Cai, A.J. Wang, J.M. Zhang and X.H. Hua, Controlled Deposition, Electrical and Electrochemical Properties of Electroless Nickel Layers on Microarc Oxidized Magnesium Substrates, Mater. Lett., 2013, 93, p 263–265.CrossRef J.M. Li, Q.W. Zhang, H. Cai, A.J. Wang, J.M. Zhang and X.H. Hua, Controlled Deposition, Electrical and Electrochemical Properties of Electroless Nickel Layers on Microarc Oxidized Magnesium Substrates, Mater. Lett., 2013, 93, p 263–265.CrossRef
136.
Zurück zum Zitat H.F. Guo, M.Z. An, H.B. Huo, S. Xu and L.J. Wu, Microstructure Characteristic of Ceramic Coatings Fabricated on Magnesium Alloys by Micro-arc Oxidation in Alkaline Silicate Solutions, Appl. Surf. Sci., 2006, 252, p 7911–7916.CrossRef H.F. Guo, M.Z. An, H.B. Huo, S. Xu and L.J. Wu, Microstructure Characteristic of Ceramic Coatings Fabricated on Magnesium Alloys by Micro-arc Oxidation in Alkaline Silicate Solutions, Appl. Surf. Sci., 2006, 252, p 7911–7916.CrossRef
137.
Zurück zum Zitat X.G. Han, X.P. Zhu and M.K. Lei, Electrochemical Properties of Microarc Oxidation Films on a Magnesium Alloy Modified by High-Intensity Pulsed Ion Beam, Surf. Coat. Technol., 2011, 206, p 874–878.CrossRef X.G. Han, X.P. Zhu and M.K. Lei, Electrochemical Properties of Microarc Oxidation Films on a Magnesium Alloy Modified by High-Intensity Pulsed Ion Beam, Surf. Coat. Technol., 2011, 206, p 874–878.CrossRef
138.
Zurück zum Zitat A. Seyfoori, S. Mirdamadi, A. Khavandi and Z.S. Raufi, Biodegradation Behavior of Micro-arc Oxidized AZ31 Magnesium Alloys Formed in Two Different Electrolytes, Appl. Surf. Sci., 2012, 261, p 92–100.CrossRef A. Seyfoori, S. Mirdamadi, A. Khavandi and Z.S. Raufi, Biodegradation Behavior of Micro-arc Oxidized AZ31 Magnesium Alloys Formed in Two Different Electrolytes, Appl. Surf. Sci., 2012, 261, p 92–100.CrossRef
139.
Zurück zum Zitat M. Karl and J.R. Kelly, Influence of Loading Frequency on Implant Failure Under Cyclic Fatigue Conditions, Dent. Mater., 2009, 25, p 1426–1432.CrossRef M. Karl and J.R. Kelly, Influence of Loading Frequency on Implant Failure Under Cyclic Fatigue Conditions, Dent. Mater., 2009, 25, p 1426–1432.CrossRef
140.
Zurück zum Zitat P.B. Srinivasan, J. Liang, C. Blawert and W. Dietzel, Environmentally Assisted Cracking Behaviour of Plasma Electrolytic Oxidation Coated AZ31 Magnesium Alloy, Corros. Eng. Sci. Technol., 2011, 46, p 706–711.CrossRef P.B. Srinivasan, J. Liang, C. Blawert and W. Dietzel, Environmentally Assisted Cracking Behaviour of Plasma Electrolytic Oxidation Coated AZ31 Magnesium Alloy, Corros. Eng. Sci. Technol., 2011, 46, p 706–711.CrossRef
141.
Zurück zum Zitat Z. Shi, M. Liu and A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation, Corros. Sci., 2010, 52, p 579–588.CrossRef Z. Shi, M. Liu and A. Atrens, Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation, Corros. Sci., 2010, 52, p 579–588.CrossRef
142.
Zurück zum Zitat W.B. Xue, Z.W. Deng, R.Y. Chen and T.H. Zhang, Growth Regularity of Ceramic Coatings Formed by Microarc Oxidation on Al-Cu-Mg Alloy, Thin Solid Films, 2000, 372, p 114–117.CrossRef W.B. Xue, Z.W. Deng, R.Y. Chen and T.H. Zhang, Growth Regularity of Ceramic Coatings Formed by Microarc Oxidation on Al-Cu-Mg Alloy, Thin Solid Films, 2000, 372, p 114–117.CrossRef
143.
Zurück zum Zitat G. Sundararajan and L.R. Krishna, Mechanisms Underlying the Formation of Thick Alumina Coatings Through the MAO Coating Technology, Surf. Coat. Technol., 2003, 167, p 269–277.CrossRef G. Sundararajan and L.R. Krishna, Mechanisms Underlying the Formation of Thick Alumina Coatings Through the MAO Coating Technology, Surf. Coat. Technol., 2003, 167, p 269–277.CrossRef
144.
Zurück zum Zitat R. Arrabal, J.M. Mota, A. Criado, A. Pardo, M. Mohedano and E. Matykina, Assessment of Duplex Coating Combining Plasma Electrolytic Oxidation and Polymer Layer on AZ31 Magnesium Alloy, Surf. Coat. Technol., 2012, 206, p 4692–4703.CrossRef R. Arrabal, J.M. Mota, A. Criado, A. Pardo, M. Mohedano and E. Matykina, Assessment of Duplex Coating Combining Plasma Electrolytic Oxidation and Polymer Layer on AZ31 Magnesium Alloy, Surf. Coat. Technol., 2012, 206, p 4692–4703.CrossRef
145.
Zurück zum Zitat W. Yang, P. Wang, Y.C. Guo, B.L. Jiang, F. Yang and J.P. Li, Microstructure and Corrosion Resistance of Modified AZ31 Magnesium Alloy Using Microarc Oxidation Combined with Electrophoresis Process, J. Wuhan Univ. Technol., 2013, 28, p 612–616.CrossRef W. Yang, P. Wang, Y.C. Guo, B.L. Jiang, F. Yang and J.P. Li, Microstructure and Corrosion Resistance of Modified AZ31 Magnesium Alloy Using Microarc Oxidation Combined with Electrophoresis Process, J. Wuhan Univ. Technol., 2013, 28, p 612–616.CrossRef
146.
Zurück zum Zitat Y.H. Gu, W.M. Xiong, C.Y. Ning and J. Zhang, Residual Stresses in Microarc Oxidation Ceramic Coatings on Biocompatible AZ31 Magnesium Alloys, J. Mater. Eng. Perform., 2012, 21, p 1085–1090.CrossRef Y.H. Gu, W.M. Xiong, C.Y. Ning and J. Zhang, Residual Stresses in Microarc Oxidation Ceramic Coatings on Biocompatible AZ31 Magnesium Alloys, J. Mater. Eng. Perform., 2012, 21, p 1085–1090.CrossRef
147.
Zurück zum Zitat D.E. Packham, Surface Energy, Surface Topography and Adhesion, Int. J. Adhes. Adhes., 2003, 23, p 437–448.CrossRef D.E. Packham, Surface Energy, Surface Topography and Adhesion, Int. J. Adhes. Adhes., 2003, 23, p 437–448.CrossRef
148.
Zurück zum Zitat G.W. Critchlow and D.M. Brewis, Review of Surface Pretreatments for Aluminium Alloys, Int. J. Adhes. Adhes., 1996, 16, p 255–275.CrossRef G.W. Critchlow and D.M. Brewis, Review of Surface Pretreatments for Aluminium Alloys, Int. J. Adhes. Adhes., 1996, 16, p 255–275.CrossRef
149.
Zurück zum Zitat G.W. Critchlow, K.A. Yendall, D. Bahrani, A. Quinn and F. Andrews, Strategies for the Replacement of Chromic Acid Anodising for the Structural Bonding of Aluminium Alloys, Int. J. Adhes. Adhes., 2006, 26, p 419–453.CrossRef G.W. Critchlow, K.A. Yendall, D. Bahrani, A. Quinn and F. Andrews, Strategies for the Replacement of Chromic Acid Anodising for the Structural Bonding of Aluminium Alloys, Int. J. Adhes. Adhes., 2006, 26, p 419–453.CrossRef
150.
Zurück zum Zitat C. Zhao, F. Cao and G. Song, Corrosivity of Haze Constituents to Pure Mg, J. Magnes. Alloys., 2020, 8, p 150–162.CrossRef C. Zhao, F. Cao and G. Song, Corrosivity of Haze Constituents to Pure Mg, J. Magnes. Alloys., 2020, 8, p 150–162.CrossRef
151.
Zurück zum Zitat I.B. Singh, M. Singh and S. Das, A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution, J. Magnes. Alloys., 2015, 3, p 142–148.CrossRef I.B. Singh, M. Singh and S. Das, A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution, J. Magnes. Alloys., 2015, 3, p 142–148.CrossRef
152.
Zurück zum Zitat B.R. Sunil, C. Ganapathy, T.S. Sampath and K.U. Chakkingal, Processing and Mechanical Behavior of Lamellar Structured Degradable Magnesium-Hydroxyapatite Implants, J. Mech. Behav. Biomed. Mater., 2014, 40, p 178–189.CrossRef B.R. Sunil, C. Ganapathy, T.S. Sampath and K.U. Chakkingal, Processing and Mechanical Behavior of Lamellar Structured Degradable Magnesium-Hydroxyapatite Implants, J. Mech. Behav. Biomed. Mater., 2014, 40, p 178–189.CrossRef
153.
Zurück zum Zitat X. Gu, Y. Zheng, Y. Cheng, S. Zhong and T. Xi, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30, p 484–498.CrossRef X. Gu, Y. Zheng, Y. Cheng, S. Zhong and T. Xi, In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys, Biomaterials, 2009, 30, p 484–498.CrossRef
154.
Zurück zum Zitat X.N. Gu, X.H. Xie, N. Li, Y.F. Zheng and L. Qin, In Vitro and In Vivo Studies on a Mg-Sr Binary Alloy System Developed as a New Kind of Biodegradable Metal, Act. Biomater., 2012, 8, p 2360–2374.CrossRef X.N. Gu, X.H. Xie, N. Li, Y.F. Zheng and L. Qin, In Vitro and In Vivo Studies on a Mg-Sr Binary Alloy System Developed as a New Kind of Biodegradable Metal, Act. Biomater., 2012, 8, p 2360–2374.CrossRef
155.
Zurück zum Zitat Z. Li, X. Gu, S. Lou and Y. Zheng, The Development of Binary Mg-Ca Alloys for Use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29, p 1329–1344.CrossRef Z. Li, X. Gu, S. Lou and Y. Zheng, The Development of Binary Mg-Ca Alloys for Use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29, p 1329–1344.CrossRef
156.
Zurück zum Zitat G. Song, A.L. Bowles and D.H. StJohn, Corrosion Resistance of Aged Die Cast Magnesium Alloy AZ91D, Mater. Sci. Eng. A., 2004, 366, p 74–86.CrossRef G. Song, A.L. Bowles and D.H. StJohn, Corrosion Resistance of Aged Die Cast Magnesium Alloy AZ91D, Mater. Sci. Eng. A., 2004, 366, p 74–86.CrossRef
157.
Zurück zum Zitat F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen, In Vivo Corrosion of Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26, p 3557–3563.CrossRef F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen, In Vivo Corrosion of Magnesium Alloys and the Associated Bone Response, Biomaterials, 2005, 26, p 3557–3563.CrossRef
158.
Zurück zum Zitat P. Minárik, R. Král, J. Pešička and F. Chmelík, Evolution of Mechanical Properties of LAE442 Magnesium Alloy Processed by Extrusion and ECAP, J. Mater. Res. Technol., 2015, 4, p 75–78.CrossRef P. Minárik, R. Král, J. Pešička and F. Chmelík, Evolution of Mechanical Properties of LAE442 Magnesium Alloy Processed by Extrusion and ECAP, J. Mater. Res. Technol., 2015, 4, p 75–78.CrossRef
159.
Zurück zum Zitat A. Bahmani, S. Arthanari and K.S. Shin, Improved Corrosion Resistant and Strength of a Magnesium Alloy Using Multi-directional Forging (MDF), Int. J. Adv. Manuf. Technol., 2019, 105, p 785–797.CrossRef A. Bahmani, S. Arthanari and K.S. Shin, Improved Corrosion Resistant and Strength of a Magnesium Alloy Using Multi-directional Forging (MDF), Int. J. Adv. Manuf. Technol., 2019, 105, p 785–797.CrossRef
160.
Zurück zum Zitat L.B. Tong, Q.X. Zhang, Z.H. Jiang, J.B. Zhang, J. Meng, L.R. Cheng and H.J. Zhang, Microstructures, Mechanical Properties and Corrosion Resistances of Extruded Mg-Zn-Ca-xCe/La Alloys, J. Mech. Behav. Biomed. Mater., 2016, 62, p 57–70.CrossRef L.B. Tong, Q.X. Zhang, Z.H. Jiang, J.B. Zhang, J. Meng, L.R. Cheng and H.J. Zhang, Microstructures, Mechanical Properties and Corrosion Resistances of Extruded Mg-Zn-Ca-xCe/La Alloys, J. Mech. Behav. Biomed. Mater., 2016, 62, p 57–70.CrossRef
161.
Zurück zum Zitat F. Cao, Z. Shi, G.L. Song, M. Liu and A. Atrens, Corrosion Behaviour in Salt Spray and in 3.5% NaCl Solution Saturated with Mg(OH)2 of As-Cast and Solution Heat-Treated Binary Mg-X Alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr, Corros Sci., 2013, 76, p 60–97.CrossRef F. Cao, Z. Shi, G.L. Song, M. Liu and A. Atrens, Corrosion Behaviour in Salt Spray and in 3.5% NaCl Solution Saturated with Mg(OH)2 of As-Cast and Solution Heat-Treated Binary Mg-X Alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr, Corros Sci., 2013, 76, p 60–97.CrossRef
162.
Zurück zum Zitat F. Cao, Z. Shi, G.L. Song, M. Liu, M.S. Dargusch and A. Atrens, Influence of Hot Rolling on the Corrosion Behavior of Several Mg-X Alloys, Corros Sci., 2015, 90, p 176–191.CrossRef F. Cao, Z. Shi, G.L. Song, M. Liu, M.S. Dargusch and A. Atrens, Influence of Hot Rolling on the Corrosion Behavior of Several Mg-X Alloys, Corros Sci., 2015, 90, p 176–191.CrossRef
163.
Zurück zum Zitat Z. Shi, F. Cao, G.L. Song, M. Liu and A. Atrens, Corrosion Behaviour in Salt Spray and in 3.5% NaCl Solution Saturated with Mg(OH)2 of As-Cast and Solution Heat-Treated Binary Mg-RE Alloys: RE=Ce, La, Nd, Y, Gd, Corros Sci., 2013, 76, p 98–118.CrossRef Z. Shi, F. Cao, G.L. Song, M. Liu and A. Atrens, Corrosion Behaviour in Salt Spray and in 3.5% NaCl Solution Saturated with Mg(OH)2 of As-Cast and Solution Heat-Treated Binary Mg-RE Alloys: RE=Ce, La, Nd, Y, Gd, Corros Sci., 2013, 76, p 98–118.CrossRef
164.
Zurück zum Zitat G. Bi, Y. Li, S. Zang, J. Zhang, Y. Ma and Y. Hao, Microstructure, Mechanical and Corrosion Properties of Mg-2Dy-xZn (x=0, 0.1, 0.5 and 1 at.%) Alloys, J. Magnes. Alloys, 2014, 2, p 64–71.CrossRef G. Bi, Y. Li, S. Zang, J. Zhang, Y. Ma and Y. Hao, Microstructure, Mechanical and Corrosion Properties of Mg-2Dy-xZn (x=0, 0.1, 0.5 and 1 at.%) Alloys, J. Magnes. Alloys, 2014, 2, p 64–71.CrossRef
165.
Zurück zum Zitat J. Hu, Q. Li and H. Gao, Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys, Acta Metall. Sin. (Engl. Lett.), 2021, 34, p 65–76.CrossRef J. Hu, Q. Li and H. Gao, Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys, Acta Metall. Sin. (Engl. Lett.), 2021, 34, p 65–76.CrossRef
166.
Zurück zum Zitat A. Bahmani, S. Arthanari and K.S. Shin, Formulation of Corrosion Rate of Magnesium Alloys Using Microstructural Parameters, J. Magnes. Alloys, 2020, 8(2020), p 134–149.CrossRef A. Bahmani, S. Arthanari and K.S. Shin, Formulation of Corrosion Rate of Magnesium Alloys Using Microstructural Parameters, J. Magnes. Alloys, 2020, 8(2020), p 134–149.CrossRef
167.
Zurück zum Zitat R. Xin, Y. Luo, A. Zuo, J. Gao and Q. Liu, Texture Effect on Corrosion Behavior of AZ31 Mg Alloy in Simulated Physiological Environment, Mater. Lett., 2012, 72, p 1–4.CrossRef R. Xin, Y. Luo, A. Zuo, J. Gao and Q. Liu, Texture Effect on Corrosion Behavior of AZ31 Mg Alloy in Simulated Physiological Environment, Mater. Lett., 2012, 72, p 1–4.CrossRef
168.
Zurück zum Zitat G.L. Song, R. Mishra and Z. Xu, Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy, Electrochem. Commun., 2010, 12, p 1009–1012.CrossRef G.L. Song, R. Mishra and Z. Xu, Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy, Electrochem. Commun., 2010, 12, p 1009–1012.CrossRef
169.
Zurück zum Zitat G.L. Song, The Effect of Texture on the Corrosion Behavior of AZ31 Mg Alloy, JOM, 2012, 64, p 671–679.CrossRef G.L. Song, The Effect of Texture on the Corrosion Behavior of AZ31 Mg Alloy, JOM, 2012, 64, p 671–679.CrossRef
170.
Zurück zum Zitat S. Bahl, S. Suwas and K. Chatterjee, The Control of Crystallographic Texture in the Use of Magnesium as a Resorbable Biomaterial, RSC Adv., 2014, 4, p 55677–55684.CrossRef S. Bahl, S. Suwas and K. Chatterjee, The Control of Crystallographic Texture in the Use of Magnesium as a Resorbable Biomaterial, RSC Adv., 2014, 4, p 55677–55684.CrossRef
171.
Zurück zum Zitat Z. Pu, G.L. Song, S. Yang, J.C. Outeiro, O.W. Dillon, D.A. Puleo and I.S. Jawahir, Grain Refined and Basal Textured Surface Produced by Burnishing for Improved Corrosion Performance of AZ31B Mg Alloy, Corros. Sci., 2012, 57, p 192–201.CrossRef Z. Pu, G.L. Song, S. Yang, J.C. Outeiro, O.W. Dillon, D.A. Puleo and I.S. Jawahir, Grain Refined and Basal Textured Surface Produced by Burnishing for Improved Corrosion Performance of AZ31B Mg Alloy, Corros. Sci., 2012, 57, p 192–201.CrossRef
172.
Zurück zum Zitat E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo and M. Vedani, Microstructure, Texture Evolution, Mechanical Properties and Corrosion Behavior of ECAP Processed ZK60 Magnesium Alloy for Biodegradable Applications, J. Mech. Behav. Biomed. Mater., 2014, 37, p 307–322.CrossRef E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo and M. Vedani, Microstructure, Texture Evolution, Mechanical Properties and Corrosion Behavior of ECAP Processed ZK60 Magnesium Alloy for Biodegradable Applications, J. Mech. Behav. Biomed. Mater., 2014, 37, p 307–322.CrossRef
173.
Zurück zum Zitat Z. Sajuri, Y. Miyashita, Y. Mutoh and Y. Hosokai, Effect of Texture on Fatigue Properties of an Extruded AZ61 Magnesium Alloy Plate, Key Eng. Mater., 2004, 274–276, p 193–198.CrossRef Z. Sajuri, Y. Miyashita, Y. Mutoh and Y. Hosokai, Effect of Texture on Fatigue Properties of an Extruded AZ61 Magnesium Alloy Plate, Key Eng. Mater., 2004, 274–276, p 193–198.CrossRef
174.
Zurück zum Zitat X. Ying, Y. Zengyuan, Z. Tao and J. Yanyao, Effect of Texture Evolution on Corrosion Resistance of AZ80 Magnesium Alloy Subjected to Applied Force in Simulated Body Fluid, Mater. Res. Express, 2020, 7, p 015406.CrossRef X. Ying, Y. Zengyuan, Z. Tao and J. Yanyao, Effect of Texture Evolution on Corrosion Resistance of AZ80 Magnesium Alloy Subjected to Applied Force in Simulated Body Fluid, Mater. Res. Express, 2020, 7, p 015406.CrossRef
Metadaten
Titel
Corrosion, Corrosion Fatigue, and Protection of Magnesium Alloys: Mechanisms, Measurements, and Mitigation
verfasst von
Temitope Olumide Olugbade
Babatunde Olamide Omiyale
Oluwole Timothy Ojo
Publikationsdatum
29.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06355-2

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.