Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

15.11.2021

Applicability of Hill48 Yield Model and Effect of Anisotropic Parameter Determination Methods on Anisotropic Prediction

verfasst von: Zhenkai Mu, Jun Zhao, Qingdang Meng, Xueying Huang, Gaochao Yu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the limitations of the Hill48 yield model in predicting directional yield stresses and plastic strain ratios (r-values) were investigated. According to a theoretical derivation, there are several inherent forms of the variation law of uniaxial tensile yield stress and r-value with angles calculated by Hill48. Three types of materials, DC04, DP600 and AA3104, were taken as research objects, and the anisotropic parameters and prediction errors were obtained by direct solution methods and the non-associated flow rule (non-AFR) methods based on different numbers of experimental data were analyzed. The results show that the prediction accuracy of the Hill48 yield model mainly depends on whether the anisotropic behavior of the material satisfies the above change law and is not directly related to the value of r. On this basis, under the associated flow rule, an anisotropic parameter identification method based on the conditional extremum of the cost function was proposed. It can significantly improve the prediction accuracy of low-carbon steel materials compared with the direct solution method. The research results provide detailed insight into the reasonable application of the Hill48 model in sheet metal forming and a reference for investigating the limitations of other advanced yield models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat R.Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1948, 193, p 281–297. R.Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 1948, 193, p 281–297.
2.
Zurück zum Zitat F.Barlat and K.Lian, Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions, Int. J. Plast., 1989, 5, p 51–66.CrossRef F.Barlat and K.Lian, Plastic Behavior and Stretchability of Sheet Metals. Part I: A Yield Function for Orthotropic Sheets Under Plane Stress Conditions, Int. J. Plast., 1989, 5, p 51–66.CrossRef
3.
Zurück zum Zitat W.F. Hosford, A Generalized Isotropic Yield Criterion, J. Appl. Mech. Trans. ASME, 1972, 39(2), p 607–609.CrossRef W.F. Hosford, A Generalized Isotropic Yield Criterion, J. Appl. Mech. Trans. ASME, 1972, 39(2), p 607–609.CrossRef
4.
Zurück zum Zitat F. Barlat, D.J. Lege and J.C. Brem, A Six-Component Yield Function for Anisotropic Materials, Int. J. Plast., 1991, 7(7), p 693–712.CrossRef F. Barlat, D.J. Lege and J.C. Brem, A Six-Component Yield Function for Anisotropic Materials, Int. J. Plast., 1991, 7(7), p 693–712.CrossRef
5.
Zurück zum Zitat F. Barlat, J. Brem, J.W. Yoon, K. Chung, R. Dick, D. Lege et al., Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory, Int. J. Plast, 2003, 19, p 1297–1319.CrossRef F. Barlat, J. Brem, J.W. Yoon, K. Chung, R. Dick, D. Lege et al., Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory, Int. J. Plast, 2003, 19, p 1297–1319.CrossRef
6.
Zurück zum Zitat F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem and R.E. Dick, Linear Transfomation-Based Anisotropic Yield Functions, Int. J. Plast., 2005, 21(5), p 1009–1039.CrossRef F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem and R.E. Dick, Linear Transfomation-Based Anisotropic Yield Functions, Int. J. Plast., 2005, 21(5), p 1009–1039.CrossRef
7.
Zurück zum Zitat O. Cazacu, B. Plunkett and F. Barlat, Orthotropic Yield Criterion for Hexagonal Closed Packed Metals, Int. J. Plast., 2006, 22(7), p 1171–1194.CrossRef O. Cazacu, B. Plunkett and F. Barlat, Orthotropic Yield Criterion for Hexagonal Closed Packed Metals, Int. J. Plast., 2006, 22(7), p 1171–1194.CrossRef
8.
Zurück zum Zitat W. Hu, Constitutive Modeling of Orthotropic Sheet Metals by Presenting Hardening-Induced Anisotropy, Int. J. Plast., 2007, 23(4), p 620–639.CrossRef W. Hu, Constitutive Modeling of Orthotropic Sheet Metals by Presenting Hardening-Induced Anisotropy, Int. J. Plast., 2007, 23(4), p 620–639.CrossRef
9.
Zurück zum Zitat M. Koç, Y. Aue-U-Lan and T. Altan, On the Characteristics of Tubular Materials for Hydroforming - Experimentation and Analysis, Int. J. Mach. Tools Manuf., 2001, 41(5), p 761–772.CrossRef M. Koç, Y. Aue-U-Lan and T. Altan, On the Characteristics of Tubular Materials for Hydroforming - Experimentation and Analysis, Int. J. Mach. Tools Manuf., 2001, 41(5), p 761–772.CrossRef
10.
Zurück zum Zitat H.B. Wang, M. Wan, X.D. Wu and Y. Yan, Subsequent Yield Loci of Aluminum Alloy Sheet, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1076–1080.CrossRef H.B. Wang, M. Wan, X.D. Wu and Y. Yan, Subsequent Yield Loci of Aluminum Alloy Sheet, Trans. Nonferrous Met. Soc. China, 2009, 19(5), p 1076–1080.CrossRef
11.
Zurück zum Zitat R.E. Dick and J.W. Yoon, Plastic Anisotropy and Failure in Thin Metal: Material Characterization and Fracture Prediction with an Advanced Constitutive Model and Polar EPS (Effective Plastic Strain) Fracture Diagram for AA 3014–H19, Int. J. Solids Struct., 2018, 151, p 195–213.CrossRef R.E. Dick and J.W. Yoon, Plastic Anisotropy and Failure in Thin Metal: Material Characterization and Fracture Prediction with an Advanced Constitutive Model and Polar EPS (Effective Plastic Strain) Fracture Diagram for AA 3014–H19, Int. J. Solids Struct., 2018, 151, p 195–213.CrossRef
12.
Zurück zum Zitat N. Tardif and S. Kyriakides, Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal, Int. J. Solids Struct., 2012, 49(25), p 3496–3506.CrossRef N. Tardif and S. Kyriakides, Determination of Anisotropy and Material Hardening for Aluminum Sheet Metal, Int. J. Solids Struct., 2012, 49(25), p 3496–3506.CrossRef
13.
Zurück zum Zitat M.S. Aydin, J. Gerlach, L. Kessler and A.E. Tekkaya, Yield Locus Evolution and Constitutive Parameter Identification Using Plane Strain Tension and Tensile Tests, J. Mater. Process. Technol., 2011, 211(12), p 1957–1964.CrossRef M.S. Aydin, J. Gerlach, L. Kessler and A.E. Tekkaya, Yield Locus Evolution and Constitutive Parameter Identification Using Plane Strain Tension and Tensile Tests, J. Mater. Process. Technol., 2011, 211(12), p 1957–1964.CrossRef
14.
Zurück zum Zitat F. Bron and J. Besson, A Yield Function for Anisotropic Materials Application to Aluminum Alloys, Int. J. Plast., 2004, 20(4–5), p 937–963.CrossRef F. Bron and J. Besson, A Yield Function for Anisotropic Materials Application to Aluminum Alloys, Int. J. Plast., 2004, 20(4–5), p 937–963.CrossRef
15.
Zurück zum Zitat D. Banabic, H. Aretz, D.S. Comsa and L. Paraianu, An Improved Analytical Description of Orthotropy in Metallic Sheets, Int. J. Plast., 2005, 21(3), p 493–512.CrossRef D. Banabic, H. Aretz, D.S. Comsa and L. Paraianu, An Improved Analytical Description of Orthotropy in Metallic Sheets, Int. J. Plast., 2005, 21(3), p 493–512.CrossRef
16.
Zurück zum Zitat F. Grytten, B. Holmedal, O.S. Hopperstad and T. Børvik, Evaluation of Identification Methods for YLD2004-18p, Int. J. Plast., 2008, 24(12), p 2248–2277.CrossRef F. Grytten, B. Holmedal, O.S. Hopperstad and T. Børvik, Evaluation of Identification Methods for YLD2004-18p, Int. J. Plast., 2008, 24(12), p 2248–2277.CrossRef
17.
Zurück zum Zitat J. Zhu, S.Y. Huang, W. Liu, J.H. Hu and X.F. Zou, Calibration of Anisotropic Yield Function by Introducing Plane Strain Test Instead of Equi-Biaxial Tensile Test, Trans. Nonferrous Met. Soc. China, 2018, 28(11), p 2307–2313.CrossRef J. Zhu, S.Y. Huang, W. Liu, J.H. Hu and X.F. Zou, Calibration of Anisotropic Yield Function by Introducing Plane Strain Test Instead of Equi-Biaxial Tensile Test, Trans. Nonferrous Met. Soc. China, 2018, 28(11), p 2307–2313.CrossRef
18.
Zurück zum Zitat A. Khalfallah, J.L. Alves, M.C. Oliveira and L.F. Menezes, Influence of the Characteristics of the Experimental Data Set Used to Identify Anisotropy Parameters, Simul. Model. Pract. Theory, 2015, 53, p 15–44.CrossRef A. Khalfallah, J.L. Alves, M.C. Oliveira and L.F. Menezes, Influence of the Characteristics of the Experimental Data Set Used to Identify Anisotropy Parameters, Simul. Model. Pract. Theory, 2015, 53, p 15–44.CrossRef
19.
Zurück zum Zitat B. Tang and Y. Lou, Effect of Anisotropic Yield Functions on the Accuracy of Material Flow and Its Experimental Verification, Acta Mech. Solida Sin., 2019, 32(1), p 50–68.CrossRef B. Tang and Y. Lou, Effect of Anisotropic Yield Functions on the Accuracy of Material Flow and Its Experimental Verification, Acta Mech. Solida Sin., 2019, 32(1), p 50–68.CrossRef
20.
Zurück zum Zitat A. Khalfallah, M.C. Oliveira, J.L. Alves, T. Zribi, H. Belhadjsalah and L.F. Menezes, Mechanical Characterization and Constitutive Parameter Identification of Anisotropic Tubular Materials for Hydroforming Applications, Int. J. Mech. Sci., 2015, 104, p 91–103.CrossRef A. Khalfallah, M.C. Oliveira, J.L. Alves, T. Zribi, H. Belhadjsalah and L.F. Menezes, Mechanical Characterization and Constitutive Parameter Identification of Anisotropic Tubular Materials for Hydroforming Applications, Int. J. Mech. Sci., 2015, 104, p 91–103.CrossRef
21.
Zurück zum Zitat K. Hariharan, N.T. Nguyen, N. Chakraborti, F. Barlat and M.G. Lee, Determination of Anisotropic Yield Coefficients by a Data-Driven Multiobjective Evolutionary and Genetic Algorithm, Mater. Manuf. Process., 2015, 30(4), p 403–413.CrossRef K. Hariharan, N.T. Nguyen, N. Chakraborti, F. Barlat and M.G. Lee, Determination of Anisotropic Yield Coefficients by a Data-Driven Multiobjective Evolutionary and Genetic Algorithm, Mater. Manuf. Process., 2015, 30(4), p 403–413.CrossRef
22.
Zurück zum Zitat K. Bandyopadhyay, K. Hariharan, M.G. Lee and Q. Zhang, Robust Multi Objective Optimization of Anisotropic Yield Function Coefficients, Mater. Des., 2018, 156, p 184–197.CrossRef K. Bandyopadhyay, K. Hariharan, M.G. Lee and Q. Zhang, Robust Multi Objective Optimization of Anisotropic Yield Function Coefficients, Mater. Des., 2018, 156, p 184–197.CrossRef
23.
Zurück zum Zitat É. Markiewicz, B. Langrand and D. Notta-Cuvier, A Review of Characterisation and Parameters Identification of Materials Constitutive and Damage Models: From Normalised Direct Approach to Most Advanced Inverse Problem Resolution, Int. J. Impact Eng., 2017, 110, p 371–381.CrossRef É. Markiewicz, B. Langrand and D. Notta-Cuvier, A Review of Characterisation and Parameters Identification of Materials Constitutive and Damage Models: From Normalised Direct Approach to Most Advanced Inverse Problem Resolution, Int. J. Impact Eng., 2017, 110, p 371–381.CrossRef
24.
Zurück zum Zitat A. Güner, C. Soyarslan, A. Brosius and A.E. Tekkaya, Characterization of Anisotropy of Sheet Metals Employing Inhomogeneous Strain Fields for Yld 2000–2D Yield Function, Int. J. Solids Struct., 2012, 49(25), p 3517–3527.CrossRef A. Güner, C. Soyarslan, A. Brosius and A.E. Tekkaya, Characterization of Anisotropy of Sheet Metals Employing Inhomogeneous Strain Fields for Yld 2000–2D Yield Function, Int. J. Solids Struct., 2012, 49(25), p 3517–3527.CrossRef
25.
Zurück zum Zitat M. Teaca, I. Charpentier, M. Martiny and G. Ferron, Identification of Sheet Metal Plastic Anisotropy Using Heterogeneous Biaxial Tensile Tests, Int. J. Mech. Sci., 2010, 52(4), p 572–580.CrossRef M. Teaca, I. Charpentier, M. Martiny and G. Ferron, Identification of Sheet Metal Plastic Anisotropy Using Heterogeneous Biaxial Tensile Tests, Int. J. Mech. Sci., 2010, 52(4), p 572–580.CrossRef
26.
Zurück zum Zitat N. Souto, A. Andrade-Campos and S. Thuillier, Mechanical Design of a Heterogeneous Test for Material Parameters Identification, Int. J. Mater. Form., 2017, 10(3), p 353–367.CrossRef N. Souto, A. Andrade-Campos and S. Thuillier, Mechanical Design of a Heterogeneous Test for Material Parameters Identification, Int. J. Mater. Form., 2017, 10(3), p 353–367.CrossRef
27.
Zurück zum Zitat M. Grédiac and F. Pierron, Applying the Virtual Fields Method to the Identification of Elasto-Plastic Constitutive Parameters, Int. J. Plast., 2006, 22(4), p 602–627.CrossRef M. Grédiac and F. Pierron, Applying the Virtual Fields Method to the Identification of Elasto-Plastic Constitutive Parameters, Int. J. Plast., 2006, 22(4), p 602–627.CrossRef
28.
Zurück zum Zitat F. Pierron, S. Avril and V.T. Tran, Extension of the Virtual Fields Method to Elasto-Plastic Material Identification with Cyclic Loads and Kinematic Hardening, Int. J. Solids Struct., 2010, 47(22–23), p 2993–3010.CrossRef F. Pierron, S. Avril and V.T. Tran, Extension of the Virtual Fields Method to Elasto-Plastic Material Identification with Cyclic Loads and Kinematic Hardening, Int. J. Solids Struct., 2010, 47(22–23), p 2993–3010.CrossRef
29.
Zurück zum Zitat M. Rossi and F. Pierron, Identification of Plastic Constitutive Parameters at Large Deformations from Three Dimensional Displacement Fields, Comput. Mech., 2012, 49(1), p 53–71.CrossRef M. Rossi and F. Pierron, Identification of Plastic Constitutive Parameters at Large Deformations from Three Dimensional Displacement Fields, Comput. Mech., 2012, 49(1), p 53–71.CrossRef
30.
Zurück zum Zitat M. Rossi, F. Pierron and M. Štamborská, Application of the Virtual Fields Method to Large Strain Anisotropic Plasticity, Int. J. Solids Struct., 2016, 97–98, p 322–335.CrossRef M. Rossi, F. Pierron and M. Štamborská, Application of the Virtual Fields Method to Large Strain Anisotropic Plasticity, Int. J. Solids Struct., 2016, 97–98, p 322–335.CrossRef
31.
Zurück zum Zitat M. Rossi and F. Pierron, On the Use of Simulated Experiments in Designing Tests for Material Characterization from Full-Field Measurements, Int. J. Solids Struct., 2012, 49(3–4), p 420–435.CrossRef M. Rossi and F. Pierron, On the Use of Simulated Experiments in Designing Tests for Material Characterization from Full-Field Measurements, Int. J. Solids Struct., 2012, 49(3–4), p 420–435.CrossRef
32.
Zurück zum Zitat J.H. Kim, F. Barlat, F. Pierron and M.G. Lee, Determination of Anisotropic Plastic Constitutive Parameters Using the Virtual Fields Method, Exp. Mech., 2014, 54(7), p 1189–1204.CrossRef J.H. Kim, F. Barlat, F. Pierron and M.G. Lee, Determination of Anisotropic Plastic Constitutive Parameters Using the Virtual Fields Method, Exp. Mech., 2014, 54(7), p 1189–1204.CrossRef
33.
Zurück zum Zitat J.M.P. Martins, A. Andrade-Campos and S. Thuillier, Calibration of Anisotropic Plasticity Models Using a Biaxial Test and the Virtual Fields Method, Int. J. Solids Struct., 2019, 172–173, p 21–37.CrossRef J.M.P. Martins, A. Andrade-Campos and S. Thuillier, Calibration of Anisotropic Plasticity Models Using a Biaxial Test and the Virtual Fields Method, Int. J. Solids Struct., 2019, 172–173, p 21–37.CrossRef
34.
Zurück zum Zitat S. Zhang, L. Leotoing, D. Guines, S. Thuillier and S.L. Zang, Calibration of Anisotropic Yield Criterion with Conventional Tests or Biaxial Test, Int. J. Mech. Sci., 2014, 85, p 142–151.CrossRef S. Zhang, L. Leotoing, D. Guines, S. Thuillier and S.L. Zang, Calibration of Anisotropic Yield Criterion with Conventional Tests or Biaxial Test, Int. J. Mech. Sci., 2014, 85, p 142–151.CrossRef
35.
Zurück zum Zitat J. Fu, W. Xie, J. Zhou and L. Qi, A Method for the Simultaneous Identification of Anisotropic Yield and Hardening Constitutive Parameters for Sheet Metal Forming, Int. J. Mech. Sci., 2020, 181, p 105756.CrossRef J. Fu, W. Xie, J. Zhou and L. Qi, A Method for the Simultaneous Identification of Anisotropic Yield and Hardening Constitutive Parameters for Sheet Metal Forming, Int. J. Mech. Sci., 2020, 181, p 105756.CrossRef
Metadaten
Titel
Applicability of Hill48 Yield Model and Effect of Anisotropic Parameter Determination Methods on Anisotropic Prediction
verfasst von
Zhenkai Mu
Jun Zhao
Qingdang Meng
Xueying Huang
Gaochao Yu
Publikationsdatum
15.11.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06366-z

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.