Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

28.10.2021

Dynamic Response and Failure Behavior of U71Mn Using a Hat-Shaped Specimen

verfasst von: Jianbing Wu, Xu Lu, Zhanjiang Wang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The split Hopkinson pressure bar and universal testing machine are used to study the dynamic response and failure behavior of U71Mn using a hat-shaped specimen under the compression-shear stress state. The shear stress–strain curves are presented at the shear strain rates ranging from 0.001 to 19,200 s−1 and temperatures ranging from 25 to 600 °C. It is observed that the effects of strain rate hardening, strain hardening, and thermal softening are closely related to the changes of the shear stress–strain curves. The coupling effects are very significant in the process of deformation failure. The fracture morphology and longitudinal section microstructures of U71Mn are investigated by scanning electron microscope. According to the results, the shear strain rates and temperatures greatly influence the failure mechanisms of the material. Furthermore, the increase in temperature promotes the occurrence of dynamic recrystallization and reduces the tendency of the pearlite flowing toward the center of the shear zone. Based on the quasi-static tensile tests and finite element analysis, the Johnson–Cook damage model parameters are fitted and applied to the finite element analysis of the hat-shaped specimen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W. Zhong, J.J. Hu, Z.B. Li, Q.Y. Liu and Z.R. Zhou, A Study of Rolling Contact Fatigue Crack Growth in U75V and U71Mn Rails, Wear, 2011, 271(1–2), p 388–392.CrossRef W. Zhong, J.J. Hu, Z.B. Li, Q.Y. Liu and Z.R. Zhou, A Study of Rolling Contact Fatigue Crack Growth in U75V and U71Mn Rails, Wear, 2011, 271(1–2), p 388–392.CrossRef
2.
Zurück zum Zitat Y. Hu, L.C. Guo, M. Maiorino, J.P. Liu, H.H. Ding, R. Lewis, E. Meli, A. Rindi, Q.Y. Liu and W.J. Wang, Comparison of Wear and Rolling Contact Fatigue Behaviours of Bainitic and Pearlitic Rails Under Various Rolling-Sliding Conditions, Wear, 2020, p 460–461. Y. Hu, L.C. Guo, M. Maiorino, J.P. Liu, H.H. Ding, R. Lewis, E. Meli, A. Rindi, Q.Y. Liu and W.J. Wang, Comparison of Wear and Rolling Contact Fatigue Behaviours of Bainitic and Pearlitic Rails Under Various Rolling-Sliding Conditions, Wear, 2020, p 460–461.
3.
Zurück zum Zitat G. Kang, Q. Gao and X. Yang, Experimental Study on the Cyclic Deformation and Plastic Flow of U71Mn Rail Steel, Int. J. Mech. Sci., 2002, 44(8), p 1647–1663.CrossRef G. Kang, Q. Gao and X. Yang, Experimental Study on the Cyclic Deformation and Plastic Flow of U71Mn Rail Steel, Int. J. Mech. Sci., 2002, 44(8), p 1647–1663.CrossRef
4.
Zurück zum Zitat D.R. Chichili, K.T. Ramesh and K.J. Hemker, The High-Strain-Rate Response of Alpha-Titanium: Experiments, Deformation Mechanisms and Modeling, Acta Mater., 1998, 46(3), p 1025–1043.CrossRef D.R. Chichili, K.T. Ramesh and K.J. Hemker, The High-Strain-Rate Response of Alpha-Titanium: Experiments, Deformation Mechanisms and Modeling, Acta Mater., 1998, 46(3), p 1025–1043.CrossRef
5.
Zurück zum Zitat L.W. Meyer and S. Manwaring, Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, 1st ed., L.E. Murr, K.P. Staudhammer, and M.A. Meyers, Ed., Marcel Dekker Inc, New York, 1986, p 657–674. L.W. Meyer and S. Manwaring, Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, 1st ed., L.E. Murr, K.P. Staudhammer, and M.A. Meyers, Ed., Marcel Dekker Inc, New York, 1986, p 657–674.
6.
Zurück zum Zitat M. Wonjoo, S. Songwon, L. Jaeyoung and M. Oakkey, Dynamic Shear Stress of Tough-Pitch Copper at High Strain and High Strain-Rate, KSME Int. J., 2002, 16(11), p 1412–1419.CrossRef M. Wonjoo, S. Songwon, L. Jaeyoung and M. Oakkey, Dynamic Shear Stress of Tough-Pitch Copper at High Strain and High Strain-Rate, KSME Int. J., 2002, 16(11), p 1412–1419.CrossRef
7.
Zurück zum Zitat S. Nemat-Nasser, J.B. Isaacs and M. Liu, Microstructure of High-Strain, High-Strain-Rate Deformed Tantalum, Acta Mater., 1998, 46(4), p 1307–1325.CrossRef S. Nemat-Nasser, J.B. Isaacs and M. Liu, Microstructure of High-Strain, High-Strain-Rate Deformed Tantalum, Acta Mater., 1998, 46(4), p 1307–1325.CrossRef
8.
Zurück zum Zitat X. Liu, C. Yang, X. Yang, L. Luo, X. He and S. Kang, Dynamic Mechanical Behavior and Adiabatic Shear Bands of Ultrafine Grained Pure Zirconium, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2020, 35(1), p 200–207.CrossRef X. Liu, C. Yang, X. Yang, L. Luo, X. He and S. Kang, Dynamic Mechanical Behavior and Adiabatic Shear Bands of Ultrafine Grained Pure Zirconium, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2020, 35(1), p 200–207.CrossRef
9.
Zurück zum Zitat C. Ge, Q. Yu, H. Zhang, Z. Qu, H. Wang and Y. Zheng, On Dynamic Response and Fracture-Induced Initiation Characteristics of Aluminum Particle Filled PTFE Reactive Material Using Hat-Shaped Specimens, Mater. Des., 2020, 188, p 108472. C. Ge, Q. Yu, H. Zhang, Z. Qu, H. Wang and Y. Zheng, On Dynamic Response and Fracture-Induced Initiation Characteristics of Aluminum Particle Filled PTFE Reactive Material Using Hat-Shaped Specimens, Mater. Des., 2020, 188, p 108472.
10.
Zurück zum Zitat D.S. Kim, S. Nemat-Nasser, J.B. Isaacs and D. Lischer, Adiabatic Shearband in WHA in High-Strain-Rate Compression, Mech. Mater., 1998, 28(1–4), p 227–236.CrossRef D.S. Kim, S. Nemat-Nasser, J.B. Isaacs and D. Lischer, Adiabatic Shearband in WHA in High-Strain-Rate Compression, Mech. Mater., 1998, 28(1–4), p 227–236.CrossRef
11.
Zurück zum Zitat H.A. Grebe, H.R. Pak and M.A. Meyers, Adiabatic Shear Localization in Titanium and Ti-6 Pct Al-4 Pct V Alloy, Metall. Trans. A, 1985, 16(5), p 761–775.CrossRef H.A. Grebe, H.R. Pak and M.A. Meyers, Adiabatic Shear Localization in Titanium and Ti-6 Pct Al-4 Pct V Alloy, Metall. Trans. A, 1985, 16(5), p 761–775.CrossRef
12.
Zurück zum Zitat B.F. Wang, Adiabatic Shear Band in a Ti-3Al-5Mo-4.5 V Titanium Alloy, J. Mater. Sci., 2008, 43(5), p 1576–1582. B.F. Wang, Adiabatic Shear Band in a Ti-3Al-5Mo-4.5 V Titanium Alloy, J. Mater. Sci., 2008, 43(5), p 1576–1582.
13.
Zurück zum Zitat D. Xiao, X. Chen, D. Zou, P. Zhou, T. Yang, L. He and P. Chen, Effect of Impurities on Adiabatic Shear Bands (ASB) Formation and Evolution in U-2.5 wt.% Nb Alloy Under Impact, J. Nucl. Mater., 2019, 517, p 225–233. D. Xiao, X. Chen, D. Zou, P. Zhou, T. Yang, L. He and P. Chen, Effect of Impurities on Adiabatic Shear Bands (ASB) Formation and Evolution in U-2.5 wt.% Nb Alloy Under Impact, J. Nucl. Mater., 2019, 517, p 225–233.
14.
Zurück zum Zitat J. Zhang, C. Tan, R. Yu, X. Yu, H. Ma, F. Wang and H. Cai, Adiabatic Shear Fracture in Ti-6Al-4V Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21(11), p 2396–2401.CrossRef J. Zhang, C. Tan, R. Yu, X. Yu, H. Ma, F. Wang and H. Cai, Adiabatic Shear Fracture in Ti-6Al-4V Alloy, Trans. Nonferrous Met. Soc. China, 2011, 21(11), p 2396–2401.CrossRef
15.
Zurück zum Zitat P. Longère and A. Dragon, Description of Shear Failure in Ductile Metals Via Back Stress Concept Linked to Damage-Microporosity Softening, Eng. Fract. Mech., 2013, 98, p 92–108.CrossRef P. Longère and A. Dragon, Description of Shear Failure in Ductile Metals Via Back Stress Concept Linked to Damage-Microporosity Softening, Eng. Fract. Mech., 2013, 98, p 92–108.CrossRef
16.
Zurück zum Zitat C. Ran, P. Chen, L. Li and W. Zhang, Dynamic Shear Deformation and Failure of Ti-5Al-5Mo-5V-1Cr-1Fe Titanium Alloy, Mater. Sci. Eng. A, 2017, 694, p 41–47.CrossRef C. Ran, P. Chen, L. Li and W. Zhang, Dynamic Shear Deformation and Failure of Ti-5Al-5Mo-5V-1Cr-1Fe Titanium Alloy, Mater. Sci. Eng. A, 2017, 694, p 41–47.CrossRef
17.
Zurück zum Zitat C.Y. Chiem and W.S. Lee, The Influence of Dynamic Shear Loading on Plastic Deformation and Microstructure of Tungsten Single Crystals, Mater. Sci. Eng. A, 1994, 187(1), p 43–50.CrossRef C.Y. Chiem and W.S. Lee, The Influence of Dynamic Shear Loading on Plastic Deformation and Microstructure of Tungsten Single Crystals, Mater. Sci. Eng. A, 1994, 187(1), p 43–50.CrossRef
18.
Zurück zum Zitat N.J. Edwards, W. Song, S.J. Cimpoeru, D. Ruan, G. Lu and N. Herzig, Mechanical and Microstructural Properties of 2024–T351 Aluminium Using a Hat-Shaped Specimen at High Strain Rates, Mater. Sci. Eng. A, 2018, 720, p 203–213. CrossRef N.J. Edwards, W. Song, S.J. Cimpoeru, D. Ruan, G. Lu and N. Herzig, Mechanical and Microstructural Properties of 2024–T351 Aluminium Using a Hat-Shaped Specimen at High Strain Rates, Mater. Sci. Eng. A, 2018, 720, p 203–213. CrossRef
19.
Zurück zum Zitat Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma and X. Wu, Dynamic Shear Deformation of a CrCoNi Medium-Entropy Alloy with Heterogeneous Grain Structures, Acta Mater., 2018, 148, p 407–418. CrossRef Y. Ma, F. Yuan, M. Yang, P. Jiang, E. Ma and X. Wu, Dynamic Shear Deformation of a CrCoNi Medium-Entropy Alloy with Heterogeneous Grain Structures, Acta Mater., 2018, 148, p 407–418. CrossRef
20.
Zurück zum Zitat Y. Xu, Y. Bai and M.A. Meyers, Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and its Alloys, J. Mater. Sci. Technol., 2006, 22(6), p 737–746. Y. Xu, Y. Bai and M.A. Meyers, Deformation, Phase Transformation and Recrystallization in the Shear Bands Induced by High-Strain Rate Loading in Titanium and its Alloys, J. Mater. Sci. Technol., 2006, 22(6), p 737–746.
21.
Zurück zum Zitat J. Liu, S. Li, X. Zhou, Y. Wang and J. Yang, Dynamic Recrystallization in the Shear Bands of Tungsten Heavy Alloy Processed by Hot-Hydrostatic Extrusion and Hot Torsion, Rare Met. Mater. Eng., 2011, 40(6), p 957–960. CrossRef J. Liu, S. Li, X. Zhou, Y. Wang and J. Yang, Dynamic Recrystallization in the Shear Bands of Tungsten Heavy Alloy Processed by Hot-Hydrostatic Extrusion and Hot Torsion, Rare Met. Mater. Eng., 2011, 40(6), p 957–960. CrossRef
22.
Zurück zum Zitat D. Rittel, P. Landau and A, Venkert, Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure, Phys. Rev. Lett., 2008, 101(16), p 165501. D. Rittel, P. Landau and A, Venkert, Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure, Phys. Rev. Lett., 2008, 101(16), p 165501.
23.
Zurück zum Zitat Y. Yang, L.H. Jiang, S.H. Luo, H.B. Hu, T.G. Tang and Q.M. Zhang, Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing, J. Mater. Eng. Perform., 2016, 25(1), p 29–37. CrossRef Y. Yang, L.H. Jiang, S.H. Luo, H.B. Hu, T.G. Tang and Q.M. Zhang, Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing, J. Mater. Eng. Perform., 2016, 25(1), p 29–37. CrossRef
24.
Zurück zum Zitat Y. Yang, X.M. Li, X.L. Tong, Q.M. Zhang and C.Y. Xu, Effects of Microstructure on the Adiabatic Shearing Behaviors of Titanium Alloy, Mater. Sci. Eng. A, 2011, 528(7–8), p 3130–3133. CrossRef Y. Yang, X.M. Li, X.L. Tong, Q.M. Zhang and C.Y. Xu, Effects of Microstructure on the Adiabatic Shearing Behaviors of Titanium Alloy, Mater. Sci. Eng. A, 2011, 528(7–8), p 3130–3133. CrossRef
25.
Zurück zum Zitat S. Yang, Y. Yang, Z. Yang, C. Lu and W. Liu, Adiabatic Shear Susceptibility of Fe50Mn30Co10Cr10 High-Entropy Alloy, Metall. Mater. Trans. A, 2020, 51(4), p 1771–1780. CrossRef S. Yang, Y. Yang, Z. Yang, C. Lu and W. Liu, Adiabatic Shear Susceptibility of Fe50Mn30Co10Cr10 High-Entropy Alloy, Metall. Mater. Trans. A, 2020, 51(4), p 1771–1780. CrossRef
26.
Zurück zum Zitat X. Liu, C. Tan, J. Zhang, Y. Hu, H. Ma, F. Wang and H. Cai, Influence of Microstructure and Strain Rate on Adiabatic Shearing Behavior in Ti-6Al-4V Alloys, Mater. Sci. Eng. A, 2009, 501(1–2), p 30–36. CrossRef X. Liu, C. Tan, J. Zhang, Y. Hu, H. Ma, F. Wang and H. Cai, Influence of Microstructure and Strain Rate on Adiabatic Shearing Behavior in Ti-6Al-4V Alloys, Mater. Sci. Eng. A, 2009, 501(1–2), p 30–36. CrossRef
27.
Zurück zum Zitat M.A. Khan, Y. Wang, G. Yasin, F. Nazeer, A. Malik, T. Ahmad, W.Q. Khan, T.A. Nguyen, H. Zhang and M.A. Afifi, Adiabatic Shear Band Localization in an Al-Zn-Mg-Cu Alloy Under High Strain Rate Compression, J. Mater. Res. Technol., 2020, 9(3), p 3977–3983. CrossRef M.A. Khan, Y. Wang, G. Yasin, F. Nazeer, A. Malik, T. Ahmad, W.Q. Khan, T.A. Nguyen, H. Zhang and M.A. Afifi, Adiabatic Shear Band Localization in an Al-Zn-Mg-Cu Alloy Under High Strain Rate Compression, J. Mater. Res. Technol., 2020, 9(3), p 3977–3983. CrossRef
28.
Zurück zum Zitat Y. Yu, H. Hu, W. Zhang and X. Xu, Microstructure Evolution and Recrystallization After Annealing of Tungsten Heavy Alloy Subjected to Severe Plastic Deformation, J. Alloys Compd., 2016, 685, p 971–977. CrossRef Y. Yu, H. Hu, W. Zhang and X. Xu, Microstructure Evolution and Recrystallization After Annealing of Tungsten Heavy Alloy Subjected to Severe Plastic Deformation, J. Alloys Compd., 2016, 685, p 971–977. CrossRef
29.
Zurück zum Zitat W.S. Lee, C.Y. Liu and T.H. Chen, Adiabatic Shearing Behavior of Different Steels Under Extreme High Shear Loading, J. Nucl. Mater., 2008, 374(1–2), p 313–319. CrossRef W.S. Lee, C.Y. Liu and T.H. Chen, Adiabatic Shearing Behavior of Different Steels Under Extreme High Shear Loading, J. Nucl. Mater., 2008, 374(1–2), p 313–319. CrossRef
30.
Zurück zum Zitat B. Wang, J. Sun, X. Wang and A. Fu, Adiabatic shear Localization in a Near Beta Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng. A, 2015, 639, p 526–533. CrossRef B. Wang, J. Sun, X. Wang and A. Fu, Adiabatic shear Localization in a Near Beta Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng. A, 2015, 639, p 526–533. CrossRef
31.
Zurück zum Zitat J. Xing, F. Yuan and X. Wu, Enhanced Quasi-Static and Dynamic Shear Properties by Heterogeneous Gradient and Lamella Structures in 301 Stainless Steels, Mater. Sci. Eng. A, 2017, 680, p 305–316. CrossRef J. Xing, F. Yuan and X. Wu, Enhanced Quasi-Static and Dynamic Shear Properties by Heterogeneous Gradient and Lamella Structures in 301 Stainless Steels, Mater. Sci. Eng. A, 2017, 680, p 305–316. CrossRef
32.
Zurück zum Zitat F. Yuan, P. Jiang and X. Wu, Annealing Effect on the Evolution of Adiabatic Shear Band Under Dynamic Shear Loading in Ultra-Fine-Grained Iron, Int. J. Impact Eng., 2012, 50, p 1–8. CrossRef F. Yuan, P. Jiang and X. Wu, Annealing Effect on the Evolution of Adiabatic Shear Band Under Dynamic Shear Loading in Ultra-Fine-Grained Iron, Int. J. Impact Eng., 2012, 50, p 1–8. CrossRef
33.
Zurück zum Zitat F. Yi, Z. Zhu, F. Zu, S. Hu and P. Yi, Strain Rate Effects on the Compressive Property and the Energy-Absorbing Capacity of Aluminum Alloy Foams, Mater. Charact., 2001, 47(5), p 417–422. CrossRef F. Yi, Z. Zhu, F. Zu, S. Hu and P. Yi, Strain Rate Effects on the Compressive Property and the Energy-Absorbing Capacity of Aluminum Alloy Foams, Mater. Charact., 2001, 47(5), p 417–422. CrossRef
34.
Zurück zum Zitat Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh and E. Ma, Adiabatic Shear Banding in Ultrafine-Grained Fe Processed by Severe Plastic Deformation, Acta Mater., 2004, 52(7), p 1859–1869. CrossRef Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh and E. Ma, Adiabatic Shear Banding in Ultrafine-Grained Fe Processed by Severe Plastic Deformation, Acta Mater., 2004, 52(7), p 1859–1869. CrossRef
35.
Zurück zum Zitat C.K.C. Lieou, H.M. Mourad and C.A. Bronkhorst, Strain Localization and Dynamic Recrystallization in Polycrystalline Metals: Thermodynamic Theory and Simulation Framework, Int. J. Plast., 2019, 119, p 171–187. CrossRef C.K.C. Lieou, H.M. Mourad and C.A. Bronkhorst, Strain Localization and Dynamic Recrystallization in Polycrystalline Metals: Thermodynamic Theory and Simulation Framework, Int. J. Plast., 2019, 119, p 171–187. CrossRef
36.
Zurück zum Zitat C. Ran, Q. Liu, P. Chen and Q. Chen, Dynamic Forced Shear Characteristics of Ti-6Al-4V Alloy Using Flat Hat-Shaped Specimen, Eng. Fract. Mech., 2020, 238, p 107286. C. Ran, Q. Liu, P. Chen and Q. Chen, Dynamic Forced Shear Characteristics of Ti-6Al-4V Alloy Using Flat Hat-Shaped Specimen, Eng. Fract. Mech., 2020, 238, p 107286.
37.
Zurück zum Zitat F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825. CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61(5), p 1816–1825. CrossRef
38.
Zurück zum Zitat G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48. CrossRef G.R. Johnson and W.H. Cook, Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fract. Mech., 1985, 21(1), p 31–48. CrossRef
39.
Zurück zum Zitat G.R. Johnson, Materials Characterization for Computations Involving Severe Dynamic Loading, Proc. Army Symp. on Solid Mechanics., Sept. 29, 1980(Cape Cod, Massachusetts), p 62–67. G.R. Johnson, Materials Characterization for Computations Involving Severe Dynamic Loading, Proc. Army Symp. on Solid Mechanics., Sept. 29, 1980(Cape Cod, Massachusetts), p 62–67.
40.
Zurück zum Zitat A.C. Mackenzie, J.W. Hancock and D.K. Brown, On the Influence of State of Stress on Ductile Failure Initiation in High Strength Steels, Eng. Fract. Mech., 1977, 9(1), p 167–188. CrossRef A.C. Mackenzie, J.W. Hancock and D.K. Brown, On the Influence of State of Stress on Ductile Failure Initiation in High Strength Steels, Eng. Fract. Mech., 1977, 9(1), p 167–188. CrossRef
41.
Zurück zum Zitat F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou and Z. Yang, A Constitutive and Fracture Model for AZ31B Magnesium Alloy in the Tensile State, Mater. Sci. Eng. A, 2014, 594, p 334–343. CrossRef F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou and Z. Yang, A Constitutive and Fracture Model for AZ31B Magnesium Alloy in the Tensile State, Mater. Sci. Eng. A, 2014, 594, p 334–343. CrossRef
42.
Zurück zum Zitat X. Teng and T. Wierzbicki, Evaluation of Six Fracture Models in High Velocity Perforation, Eng. Fract. Mech., 2006, 73(12), p 1653–1678. CrossRef X. Teng and T. Wierzbicki, Evaluation of Six Fracture Models in High Velocity Perforation, Eng. Fract. Mech., 2006, 73(12), p 1653–1678. CrossRef
43.
Zurück zum Zitat A. Hillerborg, M. Modéer and P.E. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cem. Concr. Res., 1976, 6(6), p 773–781.nnCrossRef A. Hillerborg, M. Modéer and P.E. Petersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements, Cem. Concr. Res., 1976, 6(6), p 773–781.nnCrossRef
Metadaten
Titel
Dynamic Response and Failure Behavior of U71Mn Using a Hat-Shaped Specimen
verfasst von
Jianbing Wu
Xu Lu
Zhanjiang Wang
Publikationsdatum
28.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06361-4

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.