Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

12.11.2021

Effect of Laser Spot Size, Scanning Strategy, Scanning Speed, and Laser Power on Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated via Selective Laser Melting

verfasst von: Taban Larimian, Bandar AlMangour, Dariusz Grzesiak, Ganesh Walunj, Tushar Borkar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective laser melting (SLM) is a promising additive manufacturing process for fabricating complex geometries of metallic parts. The SLM processing parameters can have a major effect on microstructure and mechanical behavior of the fabricated metallic parts. In this work, the effect of laser spot size, hatch spacing, energy density, scan strategy, scanning speed and laser power on the microstructure and mechanical behavior of SLM-processed 316L stainless steel samples has been studied. These samples processed with different processing parameters were characterized by performing microhardness, tensile tests, x-ray diffraction (XRD) analysis, Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) analysis. The samples fabricated with a larger laser spot size exhibited higher tensile strength as well as higher microhardness values. A similar trend was observed for samples processed with higher laser power and hatch spacing. For the same energy density, higher laser power and lower scanning speed significantly enhance the mechanical properties of SLM processed samples compared to those fabricated with lower laser power and higher scanning speed. Therefore, it can be concluded that laser power has a more dominant role in governing the mechanical properties of SLM processed parts than scanning speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Antony, N. Arivazhagan and K. Senthilkumaran, Numerical and Experimental Investigations on Laser Melting of Stainless Steel 316L Metal Powders, J. Manuf. Process., 2014, 16(3), p 345–355. CrossRef K. Antony, N. Arivazhagan and K. Senthilkumaran, Numerical and Experimental Investigations on Laser Melting of Stainless Steel 316L Metal Powders, J. Manuf. Process., 2014, 16(3), p 345–355. CrossRef
2.
Zurück zum Zitat L. Hao, S. Dadbakhsh, O. Seaman and M. Felstead, Selective Laser Melting of a Stainless Steel and Hydroxyapatite Composite for Load-Bearing Implant Development, J. Mater. Process. Technol., 2009, 209(17), p 5793–5801. CrossRef L. Hao, S. Dadbakhsh, O. Seaman and M. Felstead, Selective Laser Melting of a Stainless Steel and Hydroxyapatite Composite for Load-Bearing Implant Development, J. Mater. Process. Technol., 2009, 209(17), p 5793–5801. CrossRef
3.
Zurück zum Zitat W. Meiners, K. Wissenbach, R. Poprawe, Direct Selective Laser Sintering of Steel Powder, in Proceedings of the LANE’97 (1997). p 615-622 W. Meiners, K. Wissenbach, R. Poprawe, Direct Selective Laser Sintering of Steel Powder, in Proceedings of the LANE’97 (1997). p 615-622
4.
Zurück zum Zitat T. Larimian and T. Borkar, Additive Manufacturing of In Situ Metal Matrix Composites, Emerging Materials. B. AlMangour Ed., Springer, Cham, 2019, p 1–28 T. Larimian and T. Borkar, Additive Manufacturing of In Situ Metal Matrix Composites, Emerging Materials. B. AlMangour Ed., Springer, Cham, 2019, p 1–28
5.
Zurück zum Zitat D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164. CrossRef D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164. CrossRef
6.
Zurück zum Zitat B. Al-Mangour, Powder Metallurgy of Stainless Steel: State-of-the Art, Challenges, and Development. Stainless Steel: Microstructure, Mechanical Properties and Methods of Application, Nova Science Publishers, Hauppauge, 2015, p 37–80 B. Al-Mangour, Powder Metallurgy of Stainless Steel: State-of-the Art, Challenges, and Development. Stainless Steel: Microstructure, Mechanical Properties and Methods of Application, Nova Science Publishers, Hauppauge, 2015, p 37–80
7.
Zurück zum Zitat J. Lawrence, H.R. Chew, C.K. Chong and L. Hao, Laser Modification of the Wettability Characteristics of a 316L Stainless Steel Bio-metal and the Effects Thereof on Human Fibroblast Cell Response, Lasers Eng., 2005, 15(1–2), p 75–90. J. Lawrence, H.R. Chew, C.K. Chong and L. Hao, Laser Modification of the Wettability Characteristics of a 316L Stainless Steel Bio-metal and the Effects Thereof on Human Fibroblast Cell Response, Lasers Eng., 2005, 15(1–2), p 75–90.
8.
Zurück zum Zitat I. Yadroitsev, P. Bertrand and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069. CrossRef I. Yadroitsev, P. Bertrand and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069. CrossRef
9.
Zurück zum Zitat Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling and R.T. Ott, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17(1), p 63–71. CrossRef Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling and R.T. Ott, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17(1), p 63–71. CrossRef
10.
Zurück zum Zitat L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina and R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol., 2012, 28(1), p 1–14. CrossRef L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina and R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol., 2012, 28(1), p 1–14. CrossRef
11.
Zurück zum Zitat K. Saeidi, X. Gao, Y. Zhong and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-grain Structure Formed by Laser Melting, Mater. Sci. Eng. A, 2015, 625, p 221–229. CrossRef K. Saeidi, X. Gao, Y. Zhong and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-grain Structure Formed by Laser Melting, Mater. Sci. Eng. A, 2015, 625, p 221–229. CrossRef
12.
Zurück zum Zitat Y. Zhong, L. Liu, S. Wikman, D. Cui and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178. CrossRef Y. Zhong, L. Liu, S. Wikman, D. Cui and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178. CrossRef
13.
Zurück zum Zitat B. Song, S. Dong, S. Deng, H. Liao and C. Coddet, Microstructure and Tensile Properties of Iron Parts Fabricated by Selective Laser Melting, Opt. Laser Technol., 2014, 56, p 451–460. CrossRef B. Song, S. Dong, S. Deng, H. Liao and C. Coddet, Microstructure and Tensile Properties of Iron Parts Fabricated by Selective Laser Melting, Opt. Laser Technol., 2014, 56, p 451–460. CrossRef
14.
Zurück zum Zitat S. Katayama (Ed.), Defect formation Mechanisms and Preventive Procedures in Laser Welding, in Handbook of Laser Welding Technologies (Woodhead Publishing, 2013). p 332–373CrossRef S. Katayama (Ed.), Defect formation Mechanisms and Preventive Procedures in Laser Welding, in Handbook of Laser Welding Technologies (Woodhead Publishing, 2013). p 332–373CrossRef
15.
Zurück zum Zitat P.M. Lipic, F.S. Bates and M.W. Matsen, Non-equilibrium Phase Behavior of Diblock Copolymer Melts and Binary Blends in the Intermediate Segregation Regime, J. Polym. Sci. Part B Polym. Phys., 1999, 37(16), p 2229–2238. CrossRef P.M. Lipic, F.S. Bates and M.W. Matsen, Non-equilibrium Phase Behavior of Diblock Copolymer Melts and Binary Blends in the Intermediate Segregation Regime, J. Polym. Sci. Part B Polym. Phys., 1999, 37(16), p 2229–2238. CrossRef
16.
Zurück zum Zitat F. Bertelli, C. Brito, I.L. Ferreira, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, N. Cheung and A. Garcia, Cooling Thermal Parameters, Microstructure, Segregation and Hardness in Directionally Solidified Al-Sn-(Si; Cu) Alloys, Mater. Des., 2015, 72, p 31–42. CrossRef F. Bertelli, C. Brito, I.L. Ferreira, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, N. Cheung and A. Garcia, Cooling Thermal Parameters, Microstructure, Segregation and Hardness in Directionally Solidified Al-Sn-(Si; Cu) Alloys, Mater. Des., 2015, 72, p 31–42. CrossRef
17.
Zurück zum Zitat N.J. Harrison, I. Todd and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68. CrossRef N.J. Harrison, I. Todd and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68. CrossRef
18.
Zurück zum Zitat A. Simchi, Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features, Mater. Sci. Eng. A, 2006, 428(1–2), p 148–158. CrossRef A. Simchi, Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features, Mater. Sci. Eng. A, 2006, 428(1–2), p 148–158. CrossRef
19.
Zurück zum Zitat E. Louvis, P. Fox and C.J. Sutcliffe, Selective Laser Melting of Aluminium Components, J. Mater. Process. Technol., 2011, 211(2), p 275–284. CrossRef E. Louvis, P. Fox and C.J. Sutcliffe, Selective Laser Melting of Aluminium Components, J. Mater. Process. Technol., 2011, 211(2), p 275–284. CrossRef
20.
Zurück zum Zitat J. Simmons, M. Daeumer, A. Azizi, S.N. Schiffres, Local Thermal Conductivity Mapping of Selective Laser Melted 316L Stainless Steel, in Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference (2018). p 1-14 J. Simmons, M. Daeumer, A. Azizi, S.N. Schiffres, Local Thermal Conductivity Mapping of Selective Laser Melted 316L Stainless Steel, in Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference (2018). p 1-14
21.
Zurück zum Zitat D. Wang, C. Song, Y. Yang and Y. Bai, Investigation of Crystal Growth Mechanism During Selective Laser Melting and Mechanical Property Characterization of 316L Stainless Steel Parts, Mater. Des., 2016, 100, p 291–299. CrossRef D. Wang, C. Song, Y. Yang and Y. Bai, Investigation of Crystal Growth Mechanism During Selective Laser Melting and Mechanical Property Characterization of 316L Stainless Steel Parts, Mater. Des., 2016, 100, p 291–299. CrossRef
22.
Zurück zum Zitat G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, S. Madeira, A. Mateus, P. Carreira, N. Alves, F.S. Silva and O. Carvalho, Predictive Models for Physical and Mechanical Properties of 316L Stainless Steel Produced by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 657, p 43–56. CrossRef G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, S. Madeira, A. Mateus, P. Carreira, N. Alves, F.S. Silva and O. Carvalho, Predictive Models for Physical and Mechanical Properties of 316L Stainless Steel Produced by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 657, p 43–56. CrossRef
23.
Zurück zum Zitat R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu and W. Jiang, Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting, Appl. Surf. Sci., 2010, 256(13), p 4350–4356. CrossRef R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu and W. Jiang, Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting, Appl. Surf. Sci., 2010, 256(13), p 4350–4356. CrossRef
24.
Zurück zum Zitat G.K.H. Chua, C.H. Wong, C.Y.Y. Choong, Investigation on the Integral Effects of Process Parameters on Properties of Selective Laser Melted Stainless Steel Parts (2018) G.K.H. Chua, C.H. Wong, C.Y.Y. Choong, Investigation on the Integral Effects of Process Parameters on Properties of Selective Laser Melted Stainless Steel Parts (2018)
25.
Zurück zum Zitat D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101. CrossRef D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101. CrossRef
26.
Zurück zum Zitat A. Simchi and H. Pohl, Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder, Mater. Sci. Eng. A, 2003, 359(1–2), p 119–128. CrossRef A. Simchi and H. Pohl, Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder, Mater. Sci. Eng. A, 2003, 359(1–2), p 119–128. CrossRef
27.
Zurück zum Zitat K. Mumtaz and N. Hopkinson, Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting, Rapid Prototyp. J., 2009, 15, p 96–103. CrossRef K. Mumtaz and N. Hopkinson, Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting, Rapid Prototyp. J., 2009, 15, p 96–103. CrossRef
28.
Zurück zum Zitat S.A. Khairallah and A. Anderson, Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder, J. Mater. Process. Technol., 2014, 214(11), p 2627–2636. CrossRef S.A. Khairallah and A. Anderson, Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder, J. Mater. Process. Technol., 2014, 214(11), p 2627–2636. CrossRef
29.
Zurück zum Zitat Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67. CrossRef Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67. CrossRef
30.
Zurück zum Zitat M. Ma, Z. Wang, M. Gao and X. Zeng, Layer Thickness Dependence of Performance in High-Power Selective Laser Melting of 1Cr18Ni9Ti Stainless Steel, J. Mater. Process. Technol., 2015, 215, p 142–150. CrossRef M. Ma, Z. Wang, M. Gao and X. Zeng, Layer Thickness Dependence of Performance in High-Power Selective Laser Melting of 1Cr18Ni9Ti Stainless Steel, J. Mater. Process. Technol., 2015, 215, p 142–150. CrossRef
31.
Zurück zum Zitat K. Guan, Z. Wang, M. Gao, X. Li and X. Zeng, Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel, Mater. Des., 2013, 50, p 581–586. CrossRef K. Guan, Z. Wang, M. Gao, X. Li and X. Zeng, Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel, Mater. Des., 2013, 50, p 581–586. CrossRef
32.
Zurück zum Zitat T. Larimian, M. Kannan, D. Grzesiak, B. AlMangour and T. Borkar, Effect of Energy Density and Scanning Strategy on Densification, Microstructure and Mechanical Properties of 316L Stainless Steel Processed via Selective Laser Melting, Mater. Sci. Eng. A, 2020, 770, p 138455. CrossRef T. Larimian, M. Kannan, D. Grzesiak, B. AlMangour and T. Borkar, Effect of Energy Density and Scanning Strategy on Densification, Microstructure and Mechanical Properties of 316L Stainless Steel Processed via Selective Laser Melting, Mater. Sci. Eng. A, 2020, 770, p 138455. CrossRef
33.
Zurück zum Zitat L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312. CrossRef L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312. CrossRef
35.
Zurück zum Zitat W.L. Xu, C.J. Guo, T. Li and S.Q. Liu, Process Optimization of Methyl 2-Methoxy- 5-Aminosulfonyl Benzoate, MS&E, 2018, 382(2), p 022064. W.L. Xu, C.J. Guo, T. Li and S.Q. Liu, Process Optimization of Methyl 2-Methoxy- 5-Aminosulfonyl Benzoate, MS&E, 2018, 382(2), p 022064.
36.
Zurück zum Zitat K. Saeidi, M. Neikter, J. Olsén, Z.J. Shen and F. Akhtar, 316L Stainless Steel Designed to Withstand Intermediate Temperature, Mater. Des., 2017, 135, p 1–8. CrossRef K. Saeidi, M. Neikter, J. Olsén, Z.J. Shen and F. Akhtar, 316L Stainless Steel Designed to Withstand Intermediate Temperature, Mater. Des., 2017, 135, p 1–8. CrossRef
37.
Zurück zum Zitat B. AlMangour, M. Luqman, D. Grzesiak, H. Al-Harbi and F. Ijaz, Effect of Processing Parameters on the Microstructure and Mechanical Properties of Co-Cr-Mo Alloy Fabricated by Selective Laser Melting, Mater. Sci. Eng. A, 2020, 792, p 139456. CrossRef B. AlMangour, M. Luqman, D. Grzesiak, H. Al-Harbi and F. Ijaz, Effect of Processing Parameters on the Microstructure and Mechanical Properties of Co-Cr-Mo Alloy Fabricated by Selective Laser Melting, Mater. Sci. Eng. A, 2020, 792, p 139456. CrossRef
38.
Zurück zum Zitat B. AlMangour, D. Grzesiak, T. Borkar and J.M. Yang, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/316L Stainless Steel Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2018, 138, p 119–128. CrossRef B. AlMangour, D. Grzesiak, T. Borkar and J.M. Yang, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/316L Stainless Steel Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2018, 138, p 119–128. CrossRef
39.
Zurück zum Zitat H.H. Zhu, L. Lu and J.Y.H. Fuh, Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2006, 220(2), p 183–190. CrossRef H.H. Zhu, L. Lu and J.Y.H. Fuh, Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2006, 220(2), p 183–190. CrossRef
40.
Zurück zum Zitat Y.L. Lo, B.Y. Liu and H.C. Tran, Optimized Hatch Space Selection in Double- Scanning Track Selective Laser Melting Process, Int. J. Adv. Manuf. Technol., 2019, 105(7), p 2989–3006. CrossRef Y.L. Lo, B.Y. Liu and H.C. Tran, Optimized Hatch Space Selection in Double- Scanning Track Selective Laser Melting Process, Int. J. Adv. Manuf. Technol., 2019, 105(7), p 2989–3006. CrossRef
41.
Zurück zum Zitat D. Bäuerle, Laser Processing and Chemistry, Springer, Berlin, 2013. D. Bäuerle, Laser Processing and Chemistry, Springer, Berlin, 2013.
42.
Zurück zum Zitat E. Liverani, S. Toschi, L. Ceschini and A. Fortunato, Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel, J. Mater. Process. Technol., 2017, 249, p 255–263. CrossRef E. Liverani, S. Toschi, L. Ceschini and A. Fortunato, Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel, J. Mater. Process. Technol., 2017, 249, p 255–263. CrossRef
43.
Zurück zum Zitat M. Xia, D. Gu, G. Yu, D. Dai, H. Chen and Q. Shi, Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2016, 109, p 147–157. CrossRef M. Xia, D. Gu, G. Yu, D. Dai, H. Chen and Q. Shi, Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2016, 109, p 147–157. CrossRef
44.
Zurück zum Zitat X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu and Z. Shen, Textures Formed in a CoCrMo Alloy by Selective Laser Melting, J. Alloys Compd., 2015, 631, p 153–164. CrossRef X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu and Z. Shen, Textures Formed in a CoCrMo Alloy by Selective Laser Melting, J. Alloys Compd., 2015, 631, p 153–164. CrossRef
45.
Zurück zum Zitat B.P. Kashyap and K. Tangri, On the Hall–Petch Relationship and Substructural Evolution in Type 316L Stainless Steel, Acta Metall. Mater., 1995, 43(11), p 3971–3981. CrossRef B.P. Kashyap and K. Tangri, On the Hall–Petch Relationship and Substructural Evolution in Type 316L Stainless Steel, Acta Metall. Mater., 1995, 43(11), p 3971–3981. CrossRef
46.
Zurück zum Zitat M.L. Montero-Sistiaga, M. Godino-Martinez, K. Boschmans, J.P. Kruth, J. Van Humbeeck and K. Vanmeensel, Microstructure Evolution of 316L Produced by HP-SLM (High Power Selective Laser Melting), Addit. Manuf., 2018, 23, p 402–410. M.L. Montero-Sistiaga, M. Godino-Martinez, K. Boschmans, J.P. Kruth, J. Van Humbeeck and K. Vanmeensel, Microstructure Evolution of 316L Produced by HP-SLM (High Power Selective Laser Melting), Addit. Manuf., 2018, 23, p 402–410.
47.
Zurück zum Zitat Y. Wang, Y.T. Wang, R.D. Li, P.D. Niu, M.B. Wang, T.C. Yuan, K. Li, Hall–Petch Relationship in Selective Laser Melting Additively Manufactured Metals: Using Grain or Cell Size?, J. Cent. South Univ., 2021, 28(4), p 1043–1057.CrossRef Y. Wang, Y.T. Wang, R.D. Li, P.D. Niu, M.B. Wang, T.C. Yuan, K. Li, Hall–Petch Relationship in Selective Laser Melting Additively Manufactured Metals: Using Grain or Cell Size?, J. Cent. South Univ., 2021, 28(4), p 1043–1057.CrossRef
48.
Zurück zum Zitat D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, X. Cheng and X. Li, Anisotropy in the Microstructure and Mechanical Property for the Bulk and Porous 316L Stainless steel Fabricated via Selective Laser Melting, Mater. Lett., 2019, 235, p 1–5. CrossRef D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, X. Cheng and X. Li, Anisotropy in the Microstructure and Mechanical Property for the Bulk and Porous 316L Stainless steel Fabricated via Selective Laser Melting, Mater. Lett., 2019, 235, p 1–5. CrossRef
49.
Zurück zum Zitat J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw and B. Van Hooreweder, On the Influence of Laser Defocusing in Selective Laser Melting of 316L, Addit. Manuf., 2018, 23, p 161–169. J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw and B. Van Hooreweder, On the Influence of Laser Defocusing in Selective Laser Melting of 316L, Addit. Manuf., 2018, 23, p 161–169.
50.
Zurück zum Zitat O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert and S. Scudino, Effect of Heat Treatment on Microstructure and Mechanical Properties of 316L Steel Synthesized by Selective Laser melting, Mater. Sci. Eng., A, 2019, 748, p 205–212. CrossRef O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert and S. Scudino, Effect of Heat Treatment on Microstructure and Mechanical Properties of 316L Steel Synthesized by Selective Laser melting, Mater. Sci. Eng., A, 2019, 748, p 205–212. CrossRef
51.
Zurück zum Zitat T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka and E. Chlebus, Correlation Between Process Parameters, Microstructure and Properties of 316 L Stainless steel Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 718, p 64–73. CrossRef T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka and E. Chlebus, Correlation Between Process Parameters, Microstructure and Properties of 316 L Stainless steel Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 718, p 64–73. CrossRef
52.
Zurück zum Zitat P.L. Ferrandini, C.T. Rios, A.T. Dutra, M.A. Jaime, P.R. Mei and R. Caram, Solute Segregation and Microstructure of Directionally Solidified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2006, 435, p 139–144. CrossRef P.L. Ferrandini, C.T. Rios, A.T. Dutra, M.A. Jaime, P.R. Mei and R. Caram, Solute Segregation and Microstructure of Directionally Solidified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2006, 435, p 139–144. CrossRef
53.
Zurück zum Zitat J.W. Fu, Y.S. Yang, J.J. Guo and W.H. Tong, Effect of Cooling Rate on Solidification Microstructures in AISI 304 Stainless Steel, Mater. Sci. Technol., 2008, 24(8), p 941–944. CrossRef J.W. Fu, Y.S. Yang, J.J. Guo and W.H. Tong, Effect of Cooling Rate on Solidification Microstructures in AISI 304 Stainless Steel, Mater. Sci. Technol., 2008, 24(8), p 941–944. CrossRef
54.
Zurück zum Zitat J.W. Elmer, S.M. Allen and T.W. Eagar, Microstructural Development During Solidification of Stainless Steel Alloys, Metall. Trans. A, 1989, 20(10), p 2117–2131. CrossRef J.W. Elmer, S.M. Allen and T.W. Eagar, Microstructural Development During Solidification of Stainless Steel Alloys, Metall. Trans. A, 1989, 20(10), p 2117–2131. CrossRef
55.
Zurück zum Zitat O.O. Salman, F. Brenne, T. Niendorf, J. Eckert, K.G. Prashanth, T. He and S. Scudino, Impact of the Scanning Strategy on the Mechanical Behavior of 316L Steel Synthesized by Selective Laser Melting, J. Manuf. Process., 2019, 45, p 255–261. CrossRef O.O. Salman, F. Brenne, T. Niendorf, J. Eckert, K.G. Prashanth, T. He and S. Scudino, Impact of the Scanning Strategy on the Mechanical Behavior of 316L Steel Synthesized by Selective Laser Melting, J. Manuf. Process., 2019, 45, p 255–261. CrossRef
56.
Zurück zum Zitat M. Yakout, M.A. Elbestawi and S.C. Veldhuis, A Study of Thermal Expansion Coefficients and Microstructure During Selective Laser Melting of Invar 36 and Stainless Steel 316L, Addit. Manuf., 2018, 24, p 405–418. M. Yakout, M.A. Elbestawi and S.C. Veldhuis, A Study of Thermal Expansion Coefficients and Microstructure During Selective Laser Melting of Invar 36 and Stainless Steel 316L, Addit. Manuf., 2018, 24, p 405–418.
Metadaten
Titel
Effect of Laser Spot Size, Scanning Strategy, Scanning Speed, and Laser Power on Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated via Selective Laser Melting
verfasst von
Taban Larimian
Bandar AlMangour
Dariusz Grzesiak
Ganesh Walunj
Tushar Borkar
Publikationsdatum
12.11.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06387-8

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.