Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 8/2021

01.06.2021 | Original Research Article

Effect of Heat Treatment on the Microstructural Evolution and Properties of 3D-Printed and Conventionally Produced Medical-Grade Ti6Al4V ELI Alloy

verfasst von: Niyousha Azgomi, Francis Tetteh, Solomon Hanson Duntu, Solomon Boakye-Yiadom

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Medical-grade Ti6Al4V extra-low interstitial (ELI) alloy has widespread applications in the biomedical industry due to its excellent corrosion and wear resistance. Even though 3D printing offers geometry flexibility and rapid means of fabricating customized parts, 3D-printed parts are often plagued with defects including porosity, high residual stresses, and non-equilibrium structures. Thus, post-processing heat treatments may be required to optimize its properties for engineering applications. In this study, the effect of post-processing heat treatment on the microstructure, hardness, and wear properties of 3D-printed and conventionally produced medical-grade Ti6Al4V ELI alloy samples was investigated. In general, distinct α (alpha) lath and basket-weave lath structures with a high degree of orientation were observed within the microstructure of the as-printed samples. Heat treatment led to the growth of distinct continuous and discontinuous α-lath structures along prior β (beta) grain boundaries as well as basket-weave lath and the coalescence of V-shaped structures within the prior β-grains. The hardness of both the 3D-printed and conventionally produced samples increased after heat treatment (≥ 400 HV), regardless of the cooling rate and aging temperature. After being water quenched/aged, the 3D-printed samples at 500 °C had the highest hardness values owing to the presence of coarse V-shaped structures. Furthermore, the V-shaped structures were always harder than all other structures regardless of the heat treatment and manufacturing process used, indicating that these structures dictate the overall mechanical integrity of the material. X-ray diffraction and electron probe microanalysis indicated that the V-shaped structures are rich in aluminum and titanium content, which can form hcp α′ (AlTi3) intermetallic phases. The 3D-printed samples had higher wear resistance overall than the conventionally produced samples regardless of the heat treatment used. Aging at 500 °C led to a higher coefficient of friction after 3D printing owing to an increase in α-phases. Therefore, during heat treatment, the microstructure and properties of medical-grade Ti6Al4V ELI alloy are significantly affected by the starting microstructure, the rate of cooling below the β-transus, and aging temperature and time, regardless of the manufacturing process used.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat LW Meyer L Krüger K Sommer T Halle M Hockauf 2008 Mech. Time Depend. Mater. 12 237 247CrossRef LW Meyer L Krüger K Sommer T Halle M Hockauf 2008 Mech. Time Depend. Mater. 12 237 247CrossRef
2.
Zurück zum Zitat MT Jovanović S Tadić S Zec Z Mišković I Bobić 2006 Mater. Des. 27 192 199CrossRef MT Jovanović S Tadić S Zec Z Mišković I Bobić 2006 Mater. Des. 27 192 199CrossRef
3.
Zurück zum Zitat MJ Bermingham SD McDonald MS Dargusch DH Stjohn 2010 Mater. Sci. Forum 654–656 1472 1475CrossRef MJ Bermingham SD McDonald MS Dargusch DH Stjohn 2010 Mater. Sci. Forum 654–656 1472 1475CrossRef
5.
Zurück zum Zitat FJ Gil MP Ginebra JM Manero JA Planell 2001 J. Alloys Compd. 329 142 152CrossRef FJ Gil MP Ginebra JM Manero JA Planell 2001 J. Alloys Compd. 329 142 152CrossRef
6.
Zurück zum Zitat PN Poondle 2009 T S, Srivatsan and A Patnail J. Alloys Compd. 486 162 167CrossRef PN Poondle 2009 T S, Srivatsan and A Patnail J. Alloys Compd. 486 162 167CrossRef
7.
Zurück zum Zitat R Huang M Riddle D Graziano J Warren S Das S Nimbalkar J Cresko E Masanet 2016 J. Clean. Prod. 135 1559 1570CrossRef R Huang M Riddle D Graziano J Warren S Das S Nimbalkar J Cresko E Masanet 2016 J. Clean. Prod. 135 1559 1570CrossRef
8.
Zurück zum Zitat G Lutjering JC Williams 2007 Titanium 2 Springer Berlin 6221 G Lutjering JC Williams 2007 Titanium 2 Springer Berlin 6221
10.
11.
Zurück zum Zitat AM Platform: Additive Manufacturing: Strategic research Agenda, 2014. AM Platform: Additive Manufacturing: Strategic research Agenda, 2014.
13.
Zurück zum Zitat GF Sun XT Shen ZD Wang MJ Zhan S Yao R Zhou ZH Ni 2019 Opt. Laser Technol. 109 71 83CrossRef GF Sun XT Shen ZD Wang MJ Zhan S Yao R Zhou ZH Ni 2019 Opt. Laser Technol. 109 71 83CrossRef
14.
Zurück zum Zitat ASTM International 2012 ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies ASTM International West Conshohocken, PA ASTM International 2012 ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies ASTM International West Conshohocken, PA
15.
Zurück zum Zitat International Organization for Standardization: ISO/ASTM 52900:2015—Additive Manufacturing—General Principles—Terminology, International Organization for Standardization, 2015. International Organization for Standardization: ISO/ASTM 52900:2015—Additive Manufacturing—General Principles—Terminology, International Organization for Standardization, 2015.
16.
17.
Zurück zum Zitat M Zenou L Grainger 2018 Additive Manufacturing Elsevier Amsterdam 53 103CrossRef M Zenou L Grainger 2018 Additive Manufacturing Elsevier Amsterdam 53 103CrossRef
18.
Zurück zum Zitat A Iveković N Omidvari B Vrancken K Lietaert L Thijs K Vanmeensel J Vleugels JP Kruth 2017 Int. J. Refract. Met. Hard Mater. 72 27 32CrossRef A Iveković N Omidvari B Vrancken K Lietaert L Thijs K Vanmeensel J Vleugels JP Kruth 2017 Int. J. Refract. Met. Hard Mater. 72 27 32CrossRef
19.
Zurück zum Zitat T Vilaro C Colin JD Bartout 2011 Metall. Mater. Trans. A 42A 3190 3199CrossRef T Vilaro C Colin JD Bartout 2011 Metall. Mater. Trans. A 42A 3190 3199CrossRef
20.
Zurück zum Zitat LE Murr SA Quninones SM Gaytan MI Lopez A Rodela EY Martinez DH Hernandez E Martinez F Medina RB Wicker 2009 J. Mech. Behav. Biomed. Mater. 2 20 32CrossRef LE Murr SA Quninones SM Gaytan MI Lopez A Rodela EY Martinez DH Hernandez E Martinez F Medina RB Wicker 2009 J. Mech. Behav. Biomed. Mater. 2 20 32CrossRef
21.
Zurück zum Zitat L Facchini E Magalini P Robotti A Molinari S Höges K Wissenbach 2010 Rapid Prototyp. J. 16 450 459CrossRef L Facchini E Magalini P Robotti A Molinari S Höges K Wissenbach 2010 Rapid Prototyp. J. 16 450 459CrossRef
22.
Zurück zum Zitat L Facchini E Magalini P Robotti A Molinari 2009 Rapid Prototyp. J. 15 171 178CrossRef L Facchini E Magalini P Robotti A Molinari 2009 Rapid Prototyp. J. 15 171 178CrossRef
23.
Zurück zum Zitat L Thijs F Verhaeghe T Craeghs J Humbeeck Van JP Kruth 2010 Acta Mater. 58 3303 3312CrossRef L Thijs F Verhaeghe T Craeghs J Humbeeck Van JP Kruth 2010 Acta Mater. 58 3303 3312CrossRef
24.
Zurück zum Zitat E Chlebus B Kuźnicka T Kurzynowski B Dybała 2011 Mater. Charact. 62 488 495CrossRef E Chlebus B Kuźnicka T Kurzynowski B Dybała 2011 Mater. Charact. 62 488 495CrossRef
25.
Zurück zum Zitat YL Hao SJ Li R Yang 2016 Rare Met. 37 191 201 YL Hao SJ Li R Yang 2016 Rare Met. 37 191 201
26.
Zurück zum Zitat L Ciocca M Fantini F Crescenzio De G Corinaldesi R Scotti 2011 Med. Biol. Eng. Comput. 49 1347 1352CrossRef L Ciocca M Fantini F Crescenzio De G Corinaldesi R Scotti 2011 Med. Biol. Eng. Comput. 49 1347 1352CrossRef
27.
Zurück zum Zitat L Parry IA Ashcroft RD Wildman 2016 Addit. Manuf. 12 1 15 L Parry IA Ashcroft RD Wildman 2016 Addit. Manuf. 12 1 15
28.
Zurück zum Zitat S Tammas-Williams H Zhao F Léonard F Derguti I Todd PB Prangnell 2015 Mater. Charact. 102 47 61CrossRef S Tammas-Williams H Zhao F Léonard F Derguti I Todd PB Prangnell 2015 Mater. Charact. 102 47 61CrossRef
29.
Zurück zum Zitat PH Li WG Guo WD Huang Y Su X Lin KB Yuan 2015 Mater. Sci. Eng. A 647 32 34CrossRef PH Li WG Guo WD Huang Y Su X Lin KB Yuan 2015 Mater. Sci. Eng. A 647 32 34CrossRef
30.
Zurück zum Zitat H Galarraga DA Lados RR Dehoff MM Kirka P Nandwana 2016 Addit. Manuf. 10 47 57 H Galarraga DA Lados RR Dehoff MM Kirka P Nandwana 2016 Addit. Manuf. 10 47 57
32.
Zurück zum Zitat M Yan P Yu 2015 Sintering Techniques of Materials InTech London M Yan P Yu 2015 Sintering Techniques of Materials InTech London
33.
Zurück zum Zitat GA Longhitano MA Arenas A Conde MA Larosa AL Jardini CAC Zavaglia JJ Damborenea 2018 J. Alloys Compd. 765 961 968CrossRef GA Longhitano MA Arenas A Conde MA Larosa AL Jardini CAC Zavaglia JJ Damborenea 2018 J. Alloys Compd. 765 961 968CrossRef
34.
Zurück zum Zitat SA Bello I Jesús-Maldonado De E Rosim-Fachini PA Sundaram N Diffoot-Carlo 2010 J. Mater. Sci. Mater. Med. 21 1739 1750CrossRef SA Bello I Jesús-Maldonado De E Rosim-Fachini PA Sundaram N Diffoot-Carlo 2010 J. Mater. Sci. Mater. Med. 21 1739 1750CrossRef
35.
Zurück zum Zitat H Galarraga RJ Warren DA Lados RR Dehoff MM Kirka P Nandwana 2017 Mater. Sci. Eng. A 685 417 428CrossRef H Galarraga RJ Warren DA Lados RR Dehoff MM Kirka P Nandwana 2017 Mater. Sci. Eng. A 685 417 428CrossRef
37.
Zurück zum Zitat JV Vaerenbergh 2008 Process Optimization in Selective Laser Melting University of Twente Twente JV Vaerenbergh 2008 Process Optimization in Selective Laser Melting University of Twente Twente
38.
Zurück zum Zitat B Vandenbroucke 2008 Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts KU Leuven Leuven B Vandenbroucke 2008 Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts KU Leuven Leuven
39.
Zurück zum Zitat R Petzold HF Zeilhofer WA Kalender 1999 Comput. Med. Imaging Graph. 23 277 284CrossRef R Petzold HF Zeilhofer WA Kalender 1999 Comput. Med. Imaging Graph. 23 277 284CrossRef
40.
Zurück zum Zitat H Liang D Xie Y Mao J Shi C Wang L Shen Z Tian 2019 Metals (Basel) 9 416CrossRef H Liang D Xie Y Mao J Shi C Wang L Shen Z Tian 2019 Metals (Basel) 9 416CrossRef
43.
44.
Zurück zum Zitat JK Ervin 2008 Post Heat Treatment of Ti6AL4V Produced via Solid Freeform Electron Beam Melting North Carolina State University Raleigh JK Ervin 2008 Post Heat Treatment of Ti6AL4V Produced via Solid Freeform Electron Beam Melting North Carolina State University Raleigh
46.
Zurück zum Zitat B Vrancken L Thijs JP Kruth J Humbeeck Van 2012 J. Alloys Compd. 541 177 185CrossRef B Vrancken L Thijs JP Kruth J Humbeeck Van 2012 J. Alloys Compd. 541 177 185CrossRef
47.
Zurück zum Zitat S Malinov W Sha Z Guo CC Tang AE Long 2002 Mater. Charact. 48 279 295CrossRef S Malinov W Sha Z Guo CC Tang AE Long 2002 Mater. Charact. 48 279 295CrossRef
48.
Zurück zum Zitat Y. Fan, W. Tian, Y. Guo, Z. Sun, and J. Xu: Adv. Mater. Sci. Eng., 2016, 1687-8434. Y. Fan, W. Tian, Y. Guo, Z. Sun, and J. Xu: Adv. Mater. Sci. Eng., 2016, 1687-8434.
49.
Zurück zum Zitat MJ Donachie 2000 Titanium: A Technical Guide ASM International Materials ParkCrossRef MJ Donachie 2000 Titanium: A Technical Guide ASM International Materials ParkCrossRef
50.
Zurück zum Zitat R. Pederson: Microstructure and Phase Transformation of Ti–6Al–4V. Thesis, 2002. R. Pederson: Microstructure and Phase Transformation of Ti–6Al–4V. Thesis, 2002.
51.
Zurück zum Zitat R Sahoo S Mantry TK Sahoo S Mishra BB Jha 2013 Tribol. Trans. 56 555 560CrossRef R Sahoo S Mantry TK Sahoo S Mishra BB Jha 2013 Tribol. Trans. 56 555 560CrossRef
56.
Zurück zum Zitat I Cvijović-Alagić S Mitrović Z Cvijović D Veljović M Babić M Rakin 2009 Tribol. Ind. 31 17 22 I Cvijović-Alagić S Mitrović Z Cvijović D Veljović M Babić M Rakin 2009 Tribol. Ind. 31 17 22
Metadaten
Titel
Effect of Heat Treatment on the Microstructural Evolution and Properties of 3D-Printed and Conventionally Produced Medical-Grade Ti6Al4V ELI Alloy
verfasst von
Niyousha Azgomi
Francis Tetteh
Solomon Hanson Duntu
Solomon Boakye-Yiadom
Publikationsdatum
01.06.2021
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 8/2021
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-021-06310-9

Weitere Artikel der Ausgabe 8/2021

Metallurgical and Materials Transactions A 8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.