Skip to main content
Erschienen in: Metal Science and Heat Treatment 5-6/2023

09.11.2023 | TITANIUM AND ITS ALLOYS

Effect of Heat Treatment on Two-Phase Ti – 22Al – 25Nb Alloy Phase Composition and Microhardness

verfasst von: Ling Shao, Yingwei Chen, Amit Datye, Sujun Wu, Tianle Wang, Zhibiao Tu, Jitang Zhang, Jinfang Wang, Na Xue, Weiwei Li, Cheng Dai, Liu Zu

Erschienen in: Metal Science and Heat Treatment | Ausgabe 5-6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of heat treatment on evolution of the phase composition and microhardness of orthorhombic alloy Ti – 22Al – 25Nb based upon a Ti2AlNb phase (O-phase) is studied. X-ray diffraction, scanning electron microscopy, and electron back-scatter diffraction are used to study alloy phase composition after different treatments. It is shown that the alloy structure contains β/B2- and O-phases, the proportion of which changes on heat treatment. Microstructure and Vickers microhardness of alloy Ti – 22Al – 25Nb are shown to be interrelated in different states.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Alloy element content provided in atomic fractions expressed as a percentage.
 
Literatur
1.
Zurück zum Zitat D. He, L. Li, W. Guo, et al., “Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening,” Corros. Sci., 184, 109364(2021).CrossRef D. He, L. Li, W. Guo, et al., “Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening,” Corros. Sci., 184, 109364(2021).CrossRef
2.
Zurück zum Zitat K. Goyal and N. Sardana, “Mechanical properties of the Ti2AlNb intermetallic: a review,” Trans. Indian Inst. Met., 74, 1839 – 1853(2021).CrossRef K. Goyal and N. Sardana, “Mechanical properties of the Ti2AlNb intermetallic: a review,” Trans. Indian Inst. Met., 74, 1839 – 1853(2021).CrossRef
3.
Zurück zum Zitat D. Avinashand S. P. Leo Kumar, “Investigations on surface-integrity and mechanical properties of biocompatible grade Ti – 6Al – 7Nb alloy,” Mater. Technol. (NYNY), 37(1), 1 – 9 (2021). D. Avinashand S. P. Leo Kumar, “Investigations on surface-integrity and mechanical properties of biocompatible grade Ti – 6Al – 7Nb alloy,” Mater. Technol. (NYNY), 37(1), 1 – 9 (2021).
4.
Zurück zum Zitat K. S. Senkevich, O. Z. Pozhoga, E. A. Kudryavtsev, and V. V. Zasypkin, “The effect of hydrogenation on the fracture of Ti2AlNb-based alloy during ball milling,” J. Alloys Compd., 902, 163794 (2022).CrossRef K. S. Senkevich, O. Z. Pozhoga, E. A. Kudryavtsev, and V. V. Zasypkin, “The effect of hydrogenation on the fracture of Ti2AlNb-based alloy during ball milling,” J. Alloys Compd., 902, 163794 (2022).CrossRef
5.
Zurück zum Zitat Y. Sun, H. Zhang, Z.-p. Wan, et al., “Establishment of a novel constitutive model considering dynamic recrystallization behaviour of Ti – 22Al – 25Nb alloy during hot deformation,” T. Nonferr. Metal. Soc., 29, 546 – 557 (2019).CrossRef Y. Sun, H. Zhang, Z.-p. Wan, et al., “Establishment of a novel constitutive model considering dynamic recrystallization behaviour of Ti – 22Al – 25Nb alloy during hot deformation,” T. Nonferr. Metal. Soc., 29, 546 – 557 (2019).CrossRef
6.
Zurück zum Zitat L. Shao, S. Wu, A. Datye, et al., “Microstructure and mechanical properties of ultrasonic pulse frequency tungsten inert gas welded Ti – 22Al – 25Nb (at.%) alloy butt joint,” J. Mater. Process. Technol., 259, 416 – 423 (2018).CrossRef L. Shao, S. Wu, A. Datye, et al., “Microstructure and mechanical properties of ultrasonic pulse frequency tungsten inert gas welded Ti – 22Al – 25Nb (at.%) alloy butt joint,” J. Mater. Process. Technol., 259, 416 – 423 (2018).CrossRef
7.
Zurück zum Zitat Y. Longchuan, S. Yan, D. Yulei, and L. Wenhe, “Structural features and mechanical properties of as-cast Ti – 22Al – 25Nb alloy,” Rare Metal Mat. Eng., 49, 42 – 47(2020). Y. Longchuan, S. Yan, D. Yulei, and L. Wenhe, “Structural features and mechanical properties of as-cast Ti – 22Al – 25Nb alloy,” Rare Metal Mat. Eng., 49, 42 – 47(2020).
8.
Zurück zum Zitat W. Wang, W. Zeng, C. Xue, et al., “Microstructural evolution, creep, and tensile behavior of a Ti – 22Al – 25Nb (at.%) orthorhombic alloy,” Mater. Sci. Eng. A, 603A, 176 – 184(2014).CrossRef W. Wang, W. Zeng, C. Xue, et al., “Microstructural evolution, creep, and tensile behavior of a Ti – 22Al – 25Nb (at.%) orthorhombic alloy,” Mater. Sci. Eng. A, 603A, 176 – 184(2014).CrossRef
9.
Zurück zum Zitat B. Shao, D. Shan, B. Guo, and Y. Zong, “Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti 22Al 25Nb alloy at room temperature,” Int. J. Plast., 113, 18 – 34 (2019).CrossRef B. Shao, D. Shan, B. Guo, and Y. Zong, “Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti 22Al 25Nb alloy at room temperature,” Int. J. Plast., 113, 18 – 34 (2019).CrossRef
10.
Zurück zum Zitat W. Wang, W. Zeng, C. Xue, et al., “Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti – 22Al – 25Nb (at.%) orthorhombic alloy,” Intermetallics, 45, 29 – 37 (2014).CrossRef W. Wang, W. Zeng, C. Xue, et al., “Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti – 22Al – 25Nb (at.%) orthorhombic alloy,” Intermetallics, 45, 29 – 37 (2014).CrossRef
11.
Zurück zum Zitat Shao, S. Wu, S. Zhao, et al., “Evolution of microstructure and microhardness of the weld simulated heat-affected zone of Ti – 22Al – 25Nb (at.%) alloy with continuous cooling rate,” J. Alloys Compd., 744, 487 – 492 (2018). Shao, S. Wu, S. Zhao, et al., “Evolution of microstructure and microhardness of the weld simulated heat-affected zone of Ti – 22Al – 25Nb (at.%) alloy with continuous cooling rate,” J. Alloys Compd., 744, 487 – 492 (2018).
12.
Zurück zum Zitat J.-R. Chen and W.-T. Tsai, “In situ corrosion monitoring of Ti – 6Al – 4V alloy in H2SO4/HCl mixed solution using electrochemical AFM,” Electrochim. Acta, 56, 1746 – 1751 (2011).CrossRef J.-R. Chen and W.-T. Tsai, “In situ corrosion monitoring of Ti – 6Al – 4V alloy in H2SO4/HCl mixed solution using electrochemical AFM,” Electrochim. Acta, 56, 1746 – 1751 (2011).CrossRef
13.
Zurück zum Zitat C. Xue, W. Zeng, B. Xu, et al., “B2 grain growth and particle pinning effect of Ti – 22Al – 25Nb orthorhombic intermetallic alloy during heating process,” Intermetallics, 29, 41 – 47 (2012).CrossRef C. Xue, W. Zeng, B. Xu, et al., “B2 grain growth and particle pinning effect of Ti – 22Al – 25Nb orthorhombic intermetallic alloy during heating process,” Intermetallics, 29, 41 – 47 (2012).CrossRef
14.
Zurück zum Zitat S. R. Dey, S. Suwas, J. J. Fundenberger, and R. K. Ray, “Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloy Ti – 22Al – 25Nb,” Intermetallics, 17, 622 – 633 (2009).CrossRef S. R. Dey, S. Suwas, J. J. Fundenberger, and R. K. Ray, “Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloy Ti – 22Al – 25Nb,” Intermetallics, 17, 622 – 633 (2009).CrossRef
15.
Zurück zum Zitat V. A. Esin, R. Mallick, M. Dadé, et al., “Combined synchrotron x-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy,” Mater. Charact., 169, 110654 (2020).CrossRef V. A. Esin, R. Mallick, M. Dadé, et al., “Combined synchrotron x-ray diffraction, dilatometry and electrical resistivity in situ study of phase transformations in a Ti2AlNb alloy,” Mater. Charact., 169, 110654 (2020).CrossRef
16.
Zurück zum Zitat P. Zhang,W. Zeng, R. Jia, et al., “Tensile behavior and deformation mechanism for Ti – 22Al – 25Nb alloy with lamellar O microstructures,” Mater. Sci. Eng. A, 803A, 140492 (2021.)CrossRef P. Zhang,W. Zeng, R. Jia, et al., “Tensile behavior and deformation mechanism for Ti – 22Al – 25Nb alloy with lamellar O microstructures,” Mater. Sci. Eng. A, 803A, 140492 (2021.)CrossRef
17.
Zurück zum Zitat L. Germann, D. Banerjee, J. Y. Guédou, and J. L. Strudel, “Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide,” Intermetallics, 13, 920 – 924 (2005).CrossRef L. Germann, D. Banerjee, J. Y. Guédou, and J. L. Strudel, “Effect of composition on the mechanical properties of newly developed Ti2AlNb-based titanium aluminide,” Intermetallics, 13, 920 – 924 (2005).CrossRef
18.
Zurück zum Zitat Y. X.Wang, K. F. Zhang, and B. Y. Li, “Microstructure and high temperature tensile properties of Ti22Al25Nb alloy prepared by reactive sintering with element powders,” Mater. Sci. Eng. A, 608, 229 – 233 (2014).CrossRef Y. X.Wang, K. F. Zhang, and B. Y. Li, “Microstructure and high temperature tensile properties of Ti22Al25Nb alloy prepared by reactive sintering with element powders,” Mater. Sci. Eng. A, 608, 229 – 233 (2014).CrossRef
19.
Zurück zum Zitat C. J. Boehlert, “Part III. The tensile behavior of Ti – Al – Nb O + Bcc orthorhombic alloys,” Metall. Mater. Trans., A32, 1977 – 1988 (2001).CrossRef C. J. Boehlert, “Part III. The tensile behavior of Ti – Al – Nb O + Bcc orthorhombic alloys,” Metall. Mater. Trans., A32, 1977 – 1988 (2001).CrossRef
20.
Zurück zum Zitat H. Zhang, N. Yan, H. Liang, and Y. Liu, “Phase transformation and microstructure control of Ti2AlNb-based alloys: a review,” J. Mater. Sci. Technol., 80, 203 – 216 (2021).CrossRef H. Zhang, N. Yan, H. Liang, and Y. Liu, “Phase transformation and microstructure control of Ti2AlNb-based alloys: a review,” J. Mater. Sci. Technol., 80, 203 – 216 (2021).CrossRef
21.
Zurück zum Zitat Z. Q. Bu, Y. G. Zhang, L. Yang, et al., “Effect of cooling rate on phase transformation in Ti2AlNb alloy,” J. Alloys Compd., 893, 162364 (2022).CrossRef Z. Q. Bu, Y. G. Zhang, L. Yang, et al., “Effect of cooling rate on phase transformation in Ti2AlNb alloy,” J. Alloys Compd., 893, 162364 (2022).CrossRef
22.
Zurück zum Zitat D. Li, S. Hu, J. Shen, et al., “Microstructure and mechanical properties of laser-welded joints of Ti – 22Al – 25Nb/TA15 dissimilar titanium alloys,” J. Mater. Eng. Perform., 25, 1880 – 1888 (2016).CrossRef D. Li, S. Hu, J. Shen, et al., “Microstructure and mechanical properties of laser-welded joints of Ti – 22Al – 25Nb/TA15 dissimilar titanium alloys,” J. Mater. Eng. Perform., 25, 1880 – 1888 (2016).CrossRef
23.
Zurück zum Zitat H. Zhang, M. Yang, Y. Xu, et al., “Constitutive behavior and hotwork ability of a hot isostatic pressed Ti – 22Al – 25Nb alloy during hot compression,” J. Mater. Eng. Perform., 28, 6816 – 6826(2019).CrossRef H. Zhang, M. Yang, Y. Xu, et al., “Constitutive behavior and hotwork ability of a hot isostatic pressed Ti – 22Al – 25Nb alloy during hot compression,” J. Mater. Eng. Perform., 28, 6816 – 6826(2019).CrossRef
24.
Zurück zum Zitat C. Leyens, “Environmental effects on orthorhombic alloy Ti – 22Al – 25Nb in air between 650 and 1000°C,” Oxid. Met., 54, 475 – 503 (2000). C. Leyens, “Environmental effects on orthorhombic alloy Ti – 22Al – 25Nb in air between 650 and 1000°C,” Oxid. Met., 54, 475 – 503 (2000).
Metadaten
Titel
Effect of Heat Treatment on Two-Phase Ti – 22Al – 25Nb Alloy Phase Composition and Microhardness
verfasst von
Ling Shao
Yingwei Chen
Amit Datye
Sujun Wu
Tianle Wang
Zhibiao Tu
Jitang Zhang
Jinfang Wang
Na Xue
Weiwei Li
Cheng Dai
Liu Zu
Publikationsdatum
09.11.2023
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 5-6/2023
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-023-00930-1

Weitere Artikel der Ausgabe 5-6/2023

Metal Science and Heat Treatment 5-6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.