Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 12/2021

17.04.2021 | Research Article-Mechanical Engineering

Effect of Horizontal Plate Length on Cutting Resistance of Blade Under Different Cutting Depths in a Sandy Soil

verfasst von: Yutian He, Jianbing Zhang, Longlong Guo, Cuihong Zhang, Pengmin Lu

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Blade shape affects the cutting resistance of the blade, and it can be designed to reduce the cutting resistance. In this study, two types of blades (I-type blade and L-type blade) with an identical rectangle profile projection (width 300 mm, height 500 mm) were compared by experiment of soil cutting. The cutting rake angle of the blades is fixed at 90° to ignore the vertical cutting resistance, and then, we can only focus on the horizontal cutting resistance which can be regarded as the drought force. Thirty groups of soil cutting test were carried out in a soil bin filled with sandy soil in which the moisture content was neglected, and cutting depths considered were 30, 60, 90, 120 and 150 mm. The effects of the cutting depth and the horizontal plate length on the cutting resistance of the blades were studied. The results showed that the cutting resistance increases with the increase in the cutting depth, which present a curvilinear relationship for each blade. When the cutting depth is the same, cutting resistance decreases firstly then rises with the increase in the horizontal plate length. Therefore, it can be believed that the L-type blade must have an optimum shape for soil cutting. In 25 group comparisons between five L-type blades and the I-type, the L-type blades presented lower cutting resistance in 23 group tests. However, the optimal shape in the present study is that the L-type blade length is about 45 mm for different cutting depths, which can make guidance for us to design the shape of the blade.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ucgul, M.; Saunders, C.; Fielke, J.M.: Comparison of the discrete element and finite element methods to model the interaction of soil and tool cutting edge. Biosyst. Eng. 169, 199–208 (2018)CrossRef Ucgul, M.; Saunders, C.; Fielke, J.M.: Comparison of the discrete element and finite element methods to model the interaction of soil and tool cutting edge. Biosyst. Eng. 169, 199–208 (2018)CrossRef
2.
Zurück zum Zitat Devi, L.P.; Palaniappan, S.: A study on energy use for excavation and transport of soil during building construction. J. Clean. Prod. 164, 543–556 (2017)CrossRef Devi, L.P.; Palaniappan, S.: A study on energy use for excavation and transport of soil during building construction. J. Clean. Prod. 164, 543–556 (2017)CrossRef
3.
Zurück zum Zitat McLaughlin, N.B.; Drury, C.F.; Reynolds, W.D.; Yang, X.M.; Li, Y.X.; Welacky, T.W.; Stewar, G.: Energy inputs for conservation and conventional primary tillage implements in a clay loam soil. Trans. ASABE 51, 1153–1163 (2008)CrossRef McLaughlin, N.B.; Drury, C.F.; Reynolds, W.D.; Yang, X.M.; Li, Y.X.; Welacky, T.W.; Stewar, G.: Energy inputs for conservation and conventional primary tillage implements in a clay loam soil. Trans. ASABE 51, 1153–1163 (2008)CrossRef
4.
Zurück zum Zitat Davoudi, S.; Alimardani, R.; Keyhani, A.; Atarnejad, R.: A two dimensional finite element analysis of a plane tillage tool in soil using a non-linear elasto-plastic model. Am.-Eur. J. Agric. Environ. Sci. 3, 498–505 (2008) Davoudi, S.; Alimardani, R.; Keyhani, A.; Atarnejad, R.: A two dimensional finite element analysis of a plane tillage tool in soil using a non-linear elasto-plastic model. Am.-Eur. J. Agric. Environ. Sci. 3, 498–505 (2008)
5.
Zurück zum Zitat Manuwa, S.I.: Performance evaluation of tillage tines operating under different depths in a sandy clay loam soil. Soil Tillage Res. 103, 399–405 (2009)CrossRef Manuwa, S.I.: Performance evaluation of tillage tines operating under different depths in a sandy clay loam soil. Soil Tillage Res. 103, 399–405 (2009)CrossRef
6.
Zurück zum Zitat Kheiralla, A.F.; Yahya, A.; Zohadie, M.; Ishak, W.: Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil Tillage Res. 78, 21–34 (2004)CrossRef Kheiralla, A.F.; Yahya, A.; Zohadie, M.; Ishak, W.: Modelling of power and energy requirements for tillage implements operating in Serdang sandy clay loam, Malaysia. Soil Tillage Res. 78, 21–34 (2004)CrossRef
7.
Zurück zum Zitat Ibrahmi, A.; Bentaher, H.; Hbaieb, M.; Maalej, A.; Mouazen, A.M.: Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation. Comput. Electron. Agric. 117, 268–275 (2015)CrossRef Ibrahmi, A.; Bentaher, H.; Hbaieb, M.; Maalej, A.; Mouazen, A.M.: Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation. Comput. Electron. Agric. 117, 268–275 (2015)CrossRef
8.
Zurück zum Zitat Matin, M.A.; Fielke, J.M.; Desbiolles, J.M.A.: Torque and energy characteristics for strip-tillage cultivation when cutting furrows using three designs of rotary blade. Biosyst. Eng. 129, 329–340 (2015)CrossRef Matin, M.A.; Fielke, J.M.; Desbiolles, J.M.A.: Torque and energy characteristics for strip-tillage cultivation when cutting furrows using three designs of rotary blade. Biosyst. Eng. 129, 329–340 (2015)CrossRef
9.
Zurück zum Zitat Alhimdani, F.; Badr, M.F.; Abeer Hashim, A.: A theoretical method for calculating the required force in front of a bulldozer-blade. J. Eng. Dev. 13, 128–138 (2009) Alhimdani, F.; Badr, M.F.; Abeer Hashim, A.: A theoretical method for calculating the required force in front of a bulldozer-blade. J. Eng. Dev. 13, 128–138 (2009)
10.
Zurück zum Zitat Tong, J.; Moayad, B.Z.; Ma, Y.H.; Sun, J.Y.; Chen, D.H.; Jia, H.L.; Ren, L.Q.: Effects of biomimetic surface designs on furrow opener performance. J. Bionic. Eng. 6, 280–289 (2009)CrossRef Tong, J.; Moayad, B.Z.; Ma, Y.H.; Sun, J.Y.; Chen, D.H.; Jia, H.L.; Ren, L.Q.: Effects of biomimetic surface designs on furrow opener performance. J. Bionic. Eng. 6, 280–289 (2009)CrossRef
11.
Zurück zum Zitat Tong, J.; Moayad, B.Z.; Ren, L.Q.; Chen, B.C.: Biomimetics in soft terrain machines: a review. Int. Agric. Eng. J. 13, 71–86 (2004) Tong, J.; Moayad, B.Z.; Ren, L.Q.; Chen, B.C.: Biomimetics in soft terrain machines: a review. Int. Agric. Eng. J. 13, 71–86 (2004)
12.
Zurück zum Zitat Willman, B.M.; Boles, W.W.: Soil–tool interaction theories as they apply to lunar soil stimulant. J. Aerospace Eng. 8, 88–99 (1995)CrossRef Willman, B.M.; Boles, W.W.: Soil–tool interaction theories as they apply to lunar soil stimulant. J. Aerospace Eng. 8, 88–99 (1995)CrossRef
13.
Zurück zum Zitat Shmulevich, I.; Asaf, Z.; Rubinstein, D.: Interaction between soil and a wide cutting blade using the discrete element method. Soil Tillage Res. 97, 37–50 (2007)CrossRef Shmulevich, I.; Asaf, Z.; Rubinstein, D.: Interaction between soil and a wide cutting blade using the discrete element method. Soil Tillage Res. 97, 37–50 (2007)CrossRef
14.
Zurück zum Zitat Armin, A.; Fotouhi, R.; Szyszkowski, W.: On the FE modeling of soil–blade interaction in tillage operations. Finite. Elem. Anal. Des. 92, 1–11 (2014)CrossRef Armin, A.; Fotouhi, R.; Szyszkowski, W.: On the FE modeling of soil–blade interaction in tillage operations. Finite. Elem. Anal. Des. 92, 1–11 (2014)CrossRef
15.
Zurück zum Zitat Tsuji, T.; Nakagawa, Y.; Matsumoto, N.; Matsumoto, N.; Kadono, Y.; Takayama, T.; Tanaka, T.: 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terramech. 49, 37–47 (2012)CrossRef Tsuji, T.; Nakagawa, Y.; Matsumoto, N.; Matsumoto, N.; Kadono, Y.; Takayama, T.; Tanaka, T.: 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terramech. 49, 37–47 (2012)CrossRef
16.
Zurück zum Zitat Jayasuriya, H.P.W.; Salokhe, V.M.: A review of soil–tine models for a range of soil conditions. J. Agric. Eng. Res. 79, 1–13 (2001)CrossRef Jayasuriya, H.P.W.; Salokhe, V.M.: A review of soil–tine models for a range of soil conditions. J. Agric. Eng. Res. 79, 1–13 (2001)CrossRef
17.
Zurück zum Zitat Godwin, R.J.; Spoor, G.: Soil failure with narrow tines. J. Agric. Eng. Res. 22, 213–228 (1977)CrossRef Godwin, R.J.; Spoor, G.: Soil failure with narrow tines. J. Agric. Eng. Res. 22, 213–228 (1977)CrossRef
18.
Zurück zum Zitat McKyes, E.; Ali, O.S.: The cutting of soil by narrow blades. J. Terramech. 14, 43–58 (1977)CrossRef McKyes, E.; Ali, O.S.: The cutting of soil by narrow blades. J. Terramech. 14, 43–58 (1977)CrossRef
19.
Zurück zum Zitat Yao, Y.; Zeng, D.C.: Investigation of the relationship between soil–metal friction and sliding speed. J. Terramech. 27, 283–290 (1990)CrossRef Yao, Y.; Zeng, D.C.: Investigation of the relationship between soil–metal friction and sliding speed. J. Terramech. 27, 283–290 (1990)CrossRef
20.
Zurück zum Zitat Coetzee, C.J.; Els, D.N.J.: Calibration of granular material parameters for DEM modeling and numerical verification by blade–granular material interaction. J. Terramech. 46, 15–26 (2009)CrossRef Coetzee, C.J.; Els, D.N.J.: Calibration of granular material parameters for DEM modeling and numerical verification by blade–granular material interaction. J. Terramech. 46, 15–26 (2009)CrossRef
21.
Zurück zum Zitat Siemens, J.C.; Weber, J.A.; Thornburn, T.H.: Mechanics of soil as influenced by model tillage tools. Trans. ASAE 8, 1–7 (1965)CrossRef Siemens, J.C.; Weber, J.A.; Thornburn, T.H.: Mechanics of soil as influenced by model tillage tools. Trans. ASAE 8, 1–7 (1965)CrossRef
22.
Zurück zum Zitat Godwin, R.J.: A review of the effect of implement geometry on soil failure and implement forces. Soil Tillage Res. 97, 331–340 (2007)CrossRef Godwin, R.J.: A review of the effect of implement geometry on soil failure and implement forces. Soil Tillage Res. 97, 331–340 (2007)CrossRef
23.
Zurück zum Zitat Coetzee, C.J.; Basson, A.H.; Vermeer, P.A.: Discrete and continuum modelling of excavator bucket filling. J. Terramech. 44, 177–186 (2007)CrossRef Coetzee, C.J.; Basson, A.H.; Vermeer, P.A.: Discrete and continuum modelling of excavator bucket filling. J. Terramech. 44, 177–186 (2007)CrossRef
24.
Zurück zum Zitat Lankenau, G.F.D.; Skonieczny, K.; Whittaker, W.L.; Wettergreen, D.S.: Effect of bucket-wheel scale on excavation forces and soil motion. J. Terramech. 49, 341–348 (2012)CrossRef Lankenau, G.F.D.; Skonieczny, K.; Whittaker, W.L.; Wettergreen, D.S.: Effect of bucket-wheel scale on excavation forces and soil motion. J. Terramech. 49, 341–348 (2012)CrossRef
25.
Zurück zum Zitat Fattah, M.Y.; Shlash, K.T.; Mohammed, H.A.: Bearing capacity of rectangular footing on sandy soil bounded by a wall. Arab. J. Sci. Eng. 39, 7621–7633 (2014)CrossRef Fattah, M.Y.; Shlash, K.T.; Mohammed, H.A.: Bearing capacity of rectangular footing on sandy soil bounded by a wall. Arab. J. Sci. Eng. 39, 7621–7633 (2014)CrossRef
26.
Zurück zum Zitat Ono, I.; Nakashima, H.; Shimizu, H.; Miyasaka, J.; Ohdoi, K.: Investigation of elemental shape for 3D DEM modeling of interaction between soil and a narrow cutting tool. J. Terramech. 50, 265–276 (2013)CrossRef Ono, I.; Nakashima, H.; Shimizu, H.; Miyasaka, J.; Ohdoi, K.: Investigation of elemental shape for 3D DEM modeling of interaction between soil and a narrow cutting tool. J. Terramech. 50, 265–276 (2013)CrossRef
27.
Zurück zum Zitat Obermayr, M.; Dressler, K.; Vrettos, C.; Eberhard, P.: Prediction of draft forces in cohesionless soil with the discrete element method. J. Terramech. 48, 347–358 (2011)CrossRef Obermayr, M.; Dressler, K.; Vrettos, C.; Eberhard, P.: Prediction of draft forces in cohesionless soil with the discrete element method. J. Terramech. 48, 347–358 (2011)CrossRef
28.
Zurück zum Zitat Tsuji, T.; Nakagawa, Y.; Matsumoto, N.: 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terramech. 49, 37–47 (2012)CrossRef Tsuji, T.; Nakagawa, Y.; Matsumoto, N.: 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terramech. 49, 37–47 (2012)CrossRef
29.
Zurück zum Zitat Ani, O.A.; Uzoejinwa, B.B.; Ezeama, A.O.; Onwualub, A.P.; Ugwua, S.N.; Ohagwua, C.J.: Overview of soil–machine interaction studies in soil bins. Soil Tillage Res. 175, 13–27 (2018)CrossRef Ani, O.A.; Uzoejinwa, B.B.; Ezeama, A.O.; Onwualub, A.P.; Ugwua, S.N.; Ohagwua, C.J.: Overview of soil–machine interaction studies in soil bins. Soil Tillage Res. 175, 13–27 (2018)CrossRef
30.
Zurück zum Zitat Godwin, R.J.; O’Dogherty, M.J.: Integrated soil tillage force prediction models. J. Terramech. 44, 3–14 (2007)CrossRef Godwin, R.J.; O’Dogherty, M.J.: Integrated soil tillage force prediction models. J. Terramech. 44, 3–14 (2007)CrossRef
31.
Zurück zum Zitat Onwualu, A.P.; Watts, K.C.: Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools. Soil Tillage Res. 48, 239–253 (1998)CrossRef Onwualu, A.P.; Watts, K.C.: Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools. Soil Tillage Res. 48, 239–253 (1998)CrossRef
32.
Zurück zum Zitat Zhang, L.B.; Cai, Z.X.; Liu, H.F.: A novel approach for simulation of soil–tool interaction based on an arbitrary Lagrangian-Eulerian description. Soil Tillage Res. 178, 41–49 (2018)CrossRef Zhang, L.B.; Cai, Z.X.; Liu, H.F.: A novel approach for simulation of soil–tool interaction based on an arbitrary Lagrangian-Eulerian description. Soil Tillage Res. 178, 41–49 (2018)CrossRef
33.
Zurück zum Zitat Yang, Q.S.; Sun, S.R.: A soil–tool interaction model for bulldozer blades. J. Terramech. 31, 55–65 (1994)CrossRef Yang, Q.S.; Sun, S.R.: A soil–tool interaction model for bulldozer blades. J. Terramech. 31, 55–65 (1994)CrossRef
34.
Zurück zum Zitat Luth, H.J.; Wismer, R.D.: Performance of plane soil cutting blades in sand. Trans. ASAE 14, 255–259, 262 (1971)CrossRef Luth, H.J.; Wismer, R.D.: Performance of plane soil cutting blades in sand. Trans. ASAE 14, 255–259, 262 (1971)CrossRef
35.
Zurück zum Zitat Miedema, S.A.: The cutting mechanisms of water saturated sand at small and large cutting angles. In: International Conference on Coastal Infrastructure Development—Challenges in the 21st Century, HongKong, pp. 1–15 (2004) Miedema, S.A.: The cutting mechanisms of water saturated sand at small and large cutting angles. In: International Conference on Coastal Infrastructure Development—Challenges in the 21st Century, HongKong, pp. 1–15 (2004)
36.
Zurück zum Zitat Ji, W.F.; Chen, D.H.; Jia, H.L.; Tong, J.: Experimental investigation into soil-cutting performance of the claws of mole rat (Scaptochirus moschatus). J. Bionic. Eng. 7(Suppl), 166–171 (2010)CrossRef Ji, W.F.; Chen, D.H.; Jia, H.L.; Tong, J.: Experimental investigation into soil-cutting performance of the claws of mole rat (Scaptochirus moschatus). J. Bionic. Eng. 7(Suppl), 166–171 (2010)CrossRef
37.
Zurück zum Zitat Li, B.; Xia, R.; Liu, F.Y.; Chen, J.; Han, W.T.; Han, B.: Determination of the draft force for different subsoiler points using discrete element method. Int. J. Agric. Biol. Eng. 9, 81–87 (2016) Li, B.; Xia, R.; Liu, F.Y.; Chen, J.; Han, W.T.; Han, B.: Determination of the draft force for different subsoiler points using discrete element method. Int. J. Agric. Biol. Eng. 9, 81–87 (2016)
38.
Zurück zum Zitat Sanders, G.B.; Larson, W.E.: Integration of in-situ resource utilization into lunar/mars exploration through field analogs. Adv. Space Res. 47, 20–29 (2011)CrossRef Sanders, G.B.; Larson, W.E.: Integration of in-situ resource utilization into lunar/mars exploration through field analogs. Adv. Space Res. 47, 20–29 (2011)CrossRef
Metadaten
Titel
Effect of Horizontal Plate Length on Cutting Resistance of Blade Under Different Cutting Depths in a Sandy Soil
verfasst von
Yutian He
Jianbing Zhang
Longlong Guo
Cuihong Zhang
Pengmin Lu
Publikationsdatum
17.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 12/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-05653-0

Weitere Artikel der Ausgabe 12/2021

Arabian Journal for Science and Engineering 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.