Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 1/2024

21.02.2023 | Technical Article

Effect of Mixed-Grain Structure on Low-Cycle Fatigue Behavior of Fe-22Cr-25Ni Austenitic Steel at Elevated Temperature

verfasst von: Jianbing Gao, Hongwei Zhou, Jiaming Shen, Hailian Wei, Xudong Fang, Yizhu He

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the low-cycle fatigue (LCF) behavior of new Fe-22Cr-25Ni heat-resistant steel is studied under total strain amplitudes ranging from 0.3 to 0.7% at 700 °C. The effects of the mixed-grain structure (MGS) on dynamic strain aging (DSA), dislocation microstructure, and fatigue fracture in Fe-22Cr-25Ni steel are analyzed. It was found that the deformation was relatively uniform at low strain amplitude of 0.3%. The localization of plastic deformation was appeared by increasing the strain amplitude. The deformation in small grains of MGS and at the grain boundaries was significant. The DSA effect occurs under LCF, and its intensity depends on the strain amplitude and grain size in the MGS. The DSA effect becomes significant by increasing the strain amplitude and decreasing the grain size. At low strain amplitudes of 0.3 and 0.4%, the fatigue fracture was mainly transgranular, while the intergranular fracture of small grains was easily occurred in the mixed mode of transgranular and intergranular fractures at higher strain amplitudes ranging from 0.5 to 0.7%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.C. Carroll and L.J. Carroll, Fatigue, and Creep–Fatigue Deformation of an Ultra-Fine Precipitate Strengthened Advanced Austenitic Alloy, Mater. Sci. Eng. A, 2012, 556, p 864–877. M.C. Carroll and L.J. Carroll, Fatigue, and Creep–Fatigue Deformation of an Ultra-Fine Precipitate Strengthened Advanced Austenitic Alloy, Mater. Sci. Eng. A, 2012, 556, p 864–877.
2.
Zurück zum Zitat A. Sarkar, M. Okazaki, A. Nagesha, P. Parameswaran, R. Sandhya, and K. Laha, Mechanisms of Failure Under Low Cycle Fatigue, High Cycle Fatigue and Creep Interactions in Combined Cycling in a Type 316LN Stainless Steel, Mater. Sci. Eng. A, 2017, 683, p 24–36. A. Sarkar, M. Okazaki, A. Nagesha, P. Parameswaran, R. Sandhya, and K. Laha, Mechanisms of Failure Under Low Cycle Fatigue, High Cycle Fatigue and Creep Interactions in Combined Cycling in a Type 316LN Stainless Steel, Mater. Sci. Eng. A, 2017, 683, p 24–36.
3.
Zurück zum Zitat M. Calmunger, G. Chai, S. Johansson, and J. Moverare, Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel, Trans. Indian Inst. Met., 2016, 69(2), p 337–342. M. Calmunger, G. Chai, S. Johansson, and J. Moverare, Creep and Fatigue Interaction Behavior in Sanicro 25 Heat Resistant Austenitic Stainless Steel, Trans. Indian Inst. Met., 2016, 69(2), p 337–342.
4.
Zurück zum Zitat Y. Li and X. Wang, Strengthening Mechanisms and Creep Rupture Behavior of Advanced Austenitic Heat Resistant Steel SA-213 S31035 for A-USC Power Plants, Mater. Sci. Eng. A, 2020, 775, p 138991. Y. Li and X. Wang, Strengthening Mechanisms and Creep Rupture Behavior of Advanced Austenitic Heat Resistant Steel SA-213 S31035 for A-USC Power Plants, Mater. Sci. Eng. A, 2020, 775, p 138991.
5.
Zurück zum Zitat R. Zhou and L. Zhu, Growth Behavior and Strengthening Mechanism of Cu-rich Particles in Sanicro 25 Austenitic Heat-Resistant Steel After Aging at 973 K, Mater. Sci. Eng. A, 2020, 796, p 139973. R. Zhou and L. Zhu, Growth Behavior and Strengthening Mechanism of Cu-rich Particles in Sanicro 25 Austenitic Heat-Resistant Steel After Aging at 973 K, Mater. Sci. Eng. A, 2020, 796, p 139973.
6.
Zurück zum Zitat L. Wang, X. Fang, J. Wang, and Z. Zhang, The Precipitation Control of Grain Boundary M23C6 Phases and the Ductility Improvement in Aged 22Cr-25Ni-WCuNbN Austenitic Stainless Steel by Co Addition, Mater. Lett., 2020, 264, p 127348. L. Wang, X. Fang, J. Wang, and Z. Zhang, The Precipitation Control of Grain Boundary M23C6 Phases and the Ductility Improvement in Aged 22Cr-25Ni-WCuNbN Austenitic Stainless Steel by Co Addition, Mater. Lett., 2020, 264, p 127348.
7.
Zurück zum Zitat H.W. Zhou, J.B. Gao, J.M. Shen, W. Zhao, F.M. Bai, and Y.Z. He, Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature, Acta. Metall. Sin., 2022, 58(8), p 1013–1023. H.W. Zhou, J.B. Gao, J.M. Shen, W. Zhao, F.M. Bai, and Y.Z. He, Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature, Acta. Metall. Sin., 2022, 58(8), p 1013–1023.
8.
Zurück zum Zitat H.W. Zhou, H.Y. Zhang, F.M. Bai, M. Song, Y. Chen, L.Q. Zhang, X.D. Fang, and Y.Z. He, Planar Dislocation Structure During Creep-Fatigue Interactions of TP347H Heat-Resistant Austenitic Steel at 600 °C, Mater. Sci. Eng. A, 2020, 779, p 139141. H.W. Zhou, H.Y. Zhang, F.M. Bai, M. Song, Y. Chen, L.Q. Zhang, X.D. Fang, and Y.Z. He, Planar Dislocation Structure During Creep-Fatigue Interactions of TP347H Heat-Resistant Austenitic Steel at 600 °C, Mater. Sci. Eng. A, 2020, 779, p 139141.
9.
Zurück zum Zitat Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, and H. Li, Precipitation Behavior of type 347H Heat-Resistant Austenitic Steel During Long-Term High-Temperature Aging, J. Mater. Res., 2015, 30(23), p 3642–3652. Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, and H. Li, Precipitation Behavior of type 347H Heat-Resistant Austenitic Steel During Long-Term High-Temperature Aging, J. Mater. Res., 2015, 30(23), p 3642–3652.
10.
Zurück zum Zitat K. Sawada, K. Sekido, M. Murata, K. Kamihira, and K. Kimura, Precipitation Behavior During Aging and Creep in 18Cr-9Ni-3Cu-Nb-N Steel, Mater. Charact., 2018, 141, p 279–285. K. Sawada, K. Sekido, M. Murata, K. Kamihira, and K. Kimura, Precipitation Behavior During Aging and Creep in 18Cr-9Ni-3Cu-Nb-N Steel, Mater. Charact., 2018, 141, p 279–285.
11.
Zurück zum Zitat P. Ou, H. Xing, X.L. Wang, and J. Sun, Tensile Yield Behavior and Precipitation Strengthening Mechanism in Super304H Steel, Mater. Sci. Eng. A, 2014, 600, p 171–175. P. Ou, H. Xing, X.L. Wang, and J. Sun, Tensile Yield Behavior and Precipitation Strengthening Mechanism in Super304H Steel, Mater. Sci. Eng. A, 2014, 600, p 171–175.
12.
Zurück zum Zitat Z.F. Hu and Z. Zhang, Investigation the Effect of Precipitating Characteristics on the Creep Behavior of HR3C Austenitic Steel at 650 °C, Mater. Sci. Eng. A, 2019, 742, p 451–463. Z.F. Hu and Z. Zhang, Investigation the Effect of Precipitating Characteristics on the Creep Behavior of HR3C Austenitic Steel at 650 °C, Mater. Sci. Eng. A, 2019, 742, p 451–463.
13.
Zurück zum Zitat C.Z. Zhu, Y. Yuan, J.M. Bai, P. Zhang, J.B. Yan, C.Y. You, and Y.F. Gu, Impact Toughness of a Modified HR3C Austenitic Steel After Long-Term Thermal Exposure at 650 °C, Mater. Sci. Eng. A, 2019, 740–741, p 71–81. C.Z. Zhu, Y. Yuan, J.M. Bai, P. Zhang, J.B. Yan, C.Y. You, and Y.F. Gu, Impact Toughness of a Modified HR3C Austenitic Steel After Long-Term Thermal Exposure at 650 °C, Mater. Sci. Eng. A, 2019, 740–741, p 71–81.
14.
Zurück zum Zitat S. Yu, J. Yan, H. Li, R. Ding, A. Lall, A. Rabiei, and P. Bowen, Fatigue Crack Growth Resistance of the Austenitic Stainless Steel Alloy 709 at Elevated Temperatures, J. Mater. Res. Technol., 2020, 9(6), p 12955–12969. S. Yu, J. Yan, H. Li, R. Ding, A. Lall, A. Rabiei, and P. Bowen, Fatigue Crack Growth Resistance of the Austenitic Stainless Steel Alloy 709 at Elevated Temperatures, J. Mater. Res. Technol., 2020, 9(6), p 12955–12969.
15.
Zurück zum Zitat L. Xu, S. Yang, L. Zhao, Y. Han, H. Jing, and K. Wang, Low Cycle Fatigue Behavior and Microstructure Evolution of a Novel Fe-22Cr-15Ni Austenitic Heat-Resistant Steel, J. Mater. Res. Technol., 2020, 9(6), p 14388–14400. L. Xu, S. Yang, L. Zhao, Y. Han, H. Jing, and K. Wang, Low Cycle Fatigue Behavior and Microstructure Evolution of a Novel Fe-22Cr-15Ni Austenitic Heat-Resistant Steel, J. Mater. Res. Technol., 2020, 9(6), p 14388–14400.
16.
Zurück zum Zitat H. Li, H. Jing, L. Xu, L. Zhao, Y. Han, Z. Tang, B. Xiao, and Y. Zhang, Life, Dislocation Evolution, and Fracture Mechanism of a 41Fe-25.5Ni-23.5Cr Alloy During Low Cycle Fatigue at 700 °C, Int. J. Fatigue, 2019, 119, p 20–33. H. Li, H. Jing, L. Xu, L. Zhao, Y. Han, Z. Tang, B. Xiao, and Y. Zhang, Life, Dislocation Evolution, and Fracture Mechanism of a 41Fe-25.5Ni-23.5Cr Alloy During Low Cycle Fatigue at 700 °C, Int. J. Fatigue, 2019, 119, p 20–33.
17.
Zurück zum Zitat V. Mazánová, M. Heczko, and J. Polák, Fatigue Crack Initiation and Growth in 43Fe-25Ni-22.5Cr Austenitic Steel at a Temperature of 700 °C, Int. J. Fatigue, 2018, 114, p 11–21. V. Mazánová, M. Heczko, and J. Polák, Fatigue Crack Initiation and Growth in 43Fe-25Ni-22.5Cr Austenitic Steel at a Temperature of 700 °C, Int. J. Fatigue, 2018, 114, p 11–21.
18.
Zurück zum Zitat M. Heczko, J. Polák, and T. Kruml, Microstructure and Dislocation Arrangements in Sanicro 25 Steel Fatigued at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2017, 680, p 168–181. M. Heczko, J. Polák, and T. Kruml, Microstructure and Dislocation Arrangements in Sanicro 25 Steel Fatigued at Ambient and Elevated Temperatures, Mater. Sci. Eng. A, 2017, 680, p 168–181.
19.
Zurück zum Zitat M. Heczko, B.D. Esser, T.M. Smith, P. Beran, V. Mazánová, T. Kruml, J. Polák, and M.J. Mills, On the Origin of Extraordinary Cyclic Strengthening of the Austenitic Stainless Steel Sanicro 25 During Fatigue at 700 °C, J. Mater. Res., 2017, 32(23), p 4342–4353. M. Heczko, B.D. Esser, T.M. Smith, P. Beran, V. Mazánová, T. Kruml, J. Polák, and M.J. Mills, On the Origin of Extraordinary Cyclic Strengthening of the Austenitic Stainless Steel Sanicro 25 During Fatigue at 700 °C, J. Mater. Res., 2017, 32(23), p 4342–4353.
20.
Zurück zum Zitat H. Wärner, J. Xu, G. Chai, J. Moverare, and M. Calmunger, Microstructural Evolution During High Temperature Dwell-Fatigue of Austenitic Stainless Steels, Int. J. Fatigue, 2021, 143, p 105990. H. Wärner, J. Xu, G. Chai, J. Moverare, and M. Calmunger, Microstructural Evolution During High Temperature Dwell-Fatigue of Austenitic Stainless Steels, Int. J. Fatigue, 2021, 143, p 105990.
21.
Zurück zum Zitat H. Li, H. Jing, L. Xu, L. Zhao, and Y. Han, Formation Mechanism of M23C6 Around NbCrN and its Effect on Fatigue Behavior for a Novel 25.5Ni-23.5Cr-3W-3Cu-1.5Co Alloy, J. Mater. Res. Technol., 2020, 9(5), p 9746–9752. H. Li, H. Jing, L. Xu, L. Zhao, and Y. Han, Formation Mechanism of M23C6 Around NbCrN and its Effect on Fatigue Behavior for a Novel 25.5Ni-23.5Cr-3W-3Cu-1.5Co Alloy, J. Mater. Res. Technol., 2020, 9(5), p 9746–9752.
22.
Zurück zum Zitat Y. Zhang, H.Y. Jing, L.Y. Xu, L. Zhao, Y.D. Han, and J. Liang, Microstructure and Texture Study on an Advanced Heat-Resistant Alloy During Creep, Mater. Charact., 2017, 130, p 156–172. Y. Zhang, H.Y. Jing, L.Y. Xu, L. Zhao, Y.D. Han, and J. Liang, Microstructure and Texture Study on an Advanced Heat-Resistant Alloy During Creep, Mater. Charact., 2017, 130, p 156–172.
23.
Zurück zum Zitat H. Wang, H. Du, Y. Wei, L. Hou, X. Liu, H. Wei, B. Liu, and J. Jia, 2021 Precipitation and Properties at Elevated Temperature in Austenitic Heat-Resistant Steels—A Review, Steel Res, Int., 2021, 92(2), p 2000378. H. Wang, H. Du, Y. Wei, L. Hou, X. Liu, H. Wei, B. Liu, and J. Jia, 2021 Precipitation and Properties at Elevated Temperature in Austenitic Heat-Resistant Steels—A Review, Steel Res, Int., 2021, 92(2), p 2000378.
24.
Zurück zum Zitat J. Gao, Z. Xu, X. Fang, J. He, W. Li, X. Du, Y. He, X. Jia, and S. Zhou, Enhancing Creep Resistance of Aged Fe-Cr-Ni Medium-Entropy Alloy via Nano-Sized Cu-rich and NbC Precipitates Investigated by Nanoindentation, J. Mater. Res. Technol., 2022, 20, p 1860–1872. J. Gao, Z. Xu, X. Fang, J. He, W. Li, X. Du, Y. He, X. Jia, and S. Zhou, Enhancing Creep Resistance of Aged Fe-Cr-Ni Medium-Entropy Alloy via Nano-Sized Cu-rich and NbC Precipitates Investigated by Nanoindentation, J. Mater. Res. Technol., 2022, 20, p 1860–1872.
25.
Zurück zum Zitat Y. Cao, C. Zhang, C. Zhang, Y. Wen, Q. Li, D. Wang, G. Huang, and Q. Liu, Effect of Dynamic Strain Aging and Precipitation on the hot Deformation Behavior of 253MA Heat-Resistant Alloy, J Mater. Sci., 2019, 54(2), p 1716–1727. Y. Cao, C. Zhang, C. Zhang, Y. Wen, Q. Li, D. Wang, G. Huang, and Q. Liu, Effect of Dynamic Strain Aging and Precipitation on the hot Deformation Behavior of 253MA Heat-Resistant Alloy, J Mater. Sci., 2019, 54(2), p 1716–1727.
26.
Zurück zum Zitat T. Ogawa, M. Koyama, C.C. Tasan, K. Tsuzaki, and H. Noguchi, Effects of Martensitic Transformability and Dynamic Strain Age Hardenability on Plasticity In Metastable Austenitic Steels Containing Carbon, J Mater. Sci., 2017, 52(13), p 7868–7882. T. Ogawa, M. Koyama, C.C. Tasan, K. Tsuzaki, and H. Noguchi, Effects of Martensitic Transformability and Dynamic Strain Age Hardenability on Plasticity In Metastable Austenitic Steels Containing Carbon, J Mater. Sci., 2017, 52(13), p 7868–7882.
27.
Zurück zum Zitat H.W. Zhou, Y.Z. He, M. Cui, Y.W. Cen, and J.Q. Jiang, Dependence of Dynamic Strain Ageing on strain Amplitudes During the Low-Cycle Fatigue of TP347H Austenitic Stainless Steel at 550 °C, Int. J. Fatigue, 2013, 56, p 1–7. H.W. Zhou, Y.Z. He, M. Cui, Y.W. Cen, and J.Q. Jiang, Dependence of Dynamic Strain Ageing on strain Amplitudes During the Low-Cycle Fatigue of TP347H Austenitic Stainless Steel at 550 °C, Int. J. Fatigue, 2013, 56, p 1–7.
28.
Zurück zum Zitat H.W. Zhou, F.M. Bai, L. Yang, H.L. Wei, Y. Chen, G.S. Peng, and Y.Z. He, Mechanism of Dynamic Strain Aging in A Niobium-Stabilized Austenitic Stainless Steel, Metall. Mater. Trans. A, 2018, 49(4), p 1202–1210. H.W. Zhou, F.M. Bai, L. Yang, H.L. Wei, Y. Chen, G.S. Peng, and Y.Z. He, Mechanism of Dynamic Strain Aging in A Niobium-Stabilized Austenitic Stainless Steel, Metall. Mater. Trans. A, 2018, 49(4), p 1202–1210.
29.
Zurück zum Zitat G.V. Prasad-Reddy, R. Kannan, K. Mariappan, R. Sandhya, S. Sankaran, and K. Bhanu-Sankara-Rao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-I Cyclic Deformation Behavior, Int J Fatigue, 2015, 81, p 299–308. G.V. Prasad-Reddy, R. Kannan, K. Mariappan, R. Sandhya, S. Sankaran, and K. Bhanu-Sankara-Rao, Effect of Strain Rate on Low Cycle Fatigue of 316LN Stainless Steel with Varying Nitrogen Content: Part-I Cyclic Deformation Behavior, Int J Fatigue, 2015, 81, p 299–308.
30.
Zurück zum Zitat G.V. Prasad Reddy, R. Sandhya, S. Sankaran, P. Parameswaran, and K. Laha, Creep–Fatigue Interaction Behavior of 316LN Austenitic Stainless Steel with Varying Nitrogen Content, Mater. Design, 2015, 88, p 972–982. G.V. Prasad Reddy, R. Sandhya, S. Sankaran, P. Parameswaran, and K. Laha, Creep–Fatigue Interaction Behavior of 316LN Austenitic Stainless Steel with Varying Nitrogen Content, Mater. Design, 2015, 88, p 972–982.
31.
Zurück zum Zitat K.G. Samuel, S.K. Ray, and G. Sasikala, Dynamic Strain Ageing in Prior Cold Worked 15Cr-15Ni Titanium Modified Stainless Steel (Alloy D9), J Nucl. Mater., 2006, 355(1–3), p 30–37. K.G. Samuel, S.K. Ray, and G. Sasikala, Dynamic Strain Ageing in Prior Cold Worked 15Cr-15Ni Titanium Modified Stainless Steel (Alloy D9), J Nucl. Mater., 2006, 355(1–3), p 30–37.
32.
Zurück zum Zitat H.W. Zhou, Y.Z. He, J.Z. Lv, and S.X. Rao, Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit Energy Materials, Wiley, China, 2014. H.W. Zhou, Y.Z. He, J.Z. Lv, and S.X. Rao, Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit Energy Materials, Wiley, China, 2014.
33.
Zurück zum Zitat S.-G. Hong and S.-B. Lee, The Tensile and Low-Cycle Fatigue Behavior of Cold Worked 316L Stainless Steel: Influence of Dynamic Strain Aging, Int. J. Fatigue, 2004, 26(8), p 899–910. S.-G. Hong and S.-B. Lee, The Tensile and Low-Cycle Fatigue Behavior of Cold Worked 316L Stainless Steel: Influence of Dynamic Strain Aging, Int. J. Fatigue, 2004, 26(8), p 899–910.
34.
Zurück zum Zitat P. Rodriguez, Serrated Plastic Flow, B. Mater. Sci., 1984, 6(4), p 653–663. P. Rodriguez, Serrated Plastic Flow, B. Mater. Sci., 1984, 6(4), p 653–663.
35.
Zurück zum Zitat M. Koyama, T. Sawaguchi, and K. Tsuzaki, Inverse grain Size Dependence of Critical Strain for Serrated Flow in a Fe-Mn-C Twinning-Induced Plasticity Steel, Phil. Mag. Lett., 2012, 92(3), p 145–152. M. Koyama, T. Sawaguchi, and K. Tsuzaki, Inverse grain Size Dependence of Critical Strain for Serrated Flow in a Fe-Mn-C Twinning-Induced Plasticity Steel, Phil. Mag. Lett., 2012, 92(3), p 145–152.
36.
Zurück zum Zitat K.B.S. Rao, M. Valsan, R. Sandhya, S.L. Mannan and P. Rodriguez, Grain Size Dependence of Dynamic Strain Ageing During Low Cycle Fatigue in Type 304 Stainless Steel, Proceedings of The 7th International Conference on Fracture (ICF7). K. Salama, K. Ravi-Chandar, D.M.R. Taplin, P.R. Rao Ed., Pergamon, Oxford, 1989 K.B.S. Rao, M. Valsan, R. Sandhya, S.L. Mannan and P. Rodriguez, Grain Size Dependence of Dynamic Strain Ageing During Low Cycle Fatigue in Type 304 Stainless Steel, Proceedings of The 7th International Conference on Fracture (ICF7). K. Salama, K. Ravi-Chandar, D.M.R. Taplin, P.R. Rao Ed., Pergamon, Oxford, 1989
37.
Zurück zum Zitat S. Nelson, L. Ladani, T. Topping, and E. Lavernia, Fatigue and Monotonic Loading Crack Nucleation and Propagation in Bimodal Grain Size Aluminum Alloy, Acta Mater., 2011, 59(9), p 3550–3570. S. Nelson, L. Ladani, T. Topping, and E. Lavernia, Fatigue and Monotonic Loading Crack Nucleation and Propagation in Bimodal Grain Size Aluminum Alloy, Acta Mater., 2011, 59(9), p 3550–3570.
38.
Zurück zum Zitat J. Sun, C. Yang, S. Guo, X. Sun, M. Ma, S. Zhao, and Y. Liu, A Novel Process to Obtain Lamella Structured Low-Carbon Steel with Bimodal Grain Size Distribution for Potentially Improving Mechanical Property, Mater. Sci. Eng. A, 2020, 785, p 139339. J. Sun, C. Yang, S. Guo, X. Sun, M. Ma, S. Zhao, and Y. Liu, A Novel Process to Obtain Lamella Structured Low-Carbon Steel with Bimodal Grain Size Distribution for Potentially Improving Mechanical Property, Mater. Sci. Eng. A, 2020, 785, p 139339.
39.
Zurück zum Zitat R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, and Z.F. Zhang, Fatigue Strength Plateau Induced by Microstructure Inhomogeneity, Mater. Sci. Eng. A, 2017, 702, p 259–264. R. Liu, Y.Z. Tian, Z.J. Zhang, P. Zhang, and Z.F. Zhang, Fatigue Strength Plateau Induced by Microstructure Inhomogeneity, Mater. Sci. Eng. A, 2017, 702, p 259–264.
40.
Zurück zum Zitat Q. Wang, L.J. Wang, Y.H. Sun, A.M. Zhao, W. Zhang, J.M. Li, H.B. Dong, and K.C. Chou, The Influence of Ce Micro-Alloying on the Precipitation of Intermetallic Sigma Phase During Solidification of Super-Austenitic Stainless Steels, J. Alloys Compd., 2020, 815, p 152418. Q. Wang, L.J. Wang, Y.H. Sun, A.M. Zhao, W. Zhang, J.M. Li, H.B. Dong, and K.C. Chou, The Influence of Ce Micro-Alloying on the Precipitation of Intermetallic Sigma Phase During Solidification of Super-Austenitic Stainless Steels, J. Alloys Compd., 2020, 815, p 152418.
41.
Zurück zum Zitat Q. Zhou, J. Liu, and Y. Gao, The Heritage of the Twin Microstructure in the Sigma Phase Formed from Deformed Austenite, J. Alloys Compd., 2020, 849, p 156424. Q. Zhou, J. Liu, and Y. Gao, The Heritage of the Twin Microstructure in the Sigma Phase Formed from Deformed Austenite, J. Alloys Compd., 2020, 849, p 156424.
42.
Zurück zum Zitat H. Li, H. Jing, L. Xu, L. Zhao, Y. Han, Z. Tang, X. Wang, and Y. Zhang, Cyclic Deformation Behavior of an Fe-Ni-Cr alloy at 700 °C: Microstructural Evolution and Cyclic Hardening Model, Mater. Sci. Eng. A, 2019, 744, p 94–111. H. Li, H. Jing, L. Xu, L. Zhao, Y. Han, Z. Tang, X. Wang, and Y. Zhang, Cyclic Deformation Behavior of an Fe-Ni-Cr alloy at 700 °C: Microstructural Evolution and Cyclic Hardening Model, Mater. Sci. Eng. A, 2019, 744, p 94–111.
43.
Zurück zum Zitat J. Polák, R. Petráš, M. Heczko, I. Kuběna, T. Kruml, and G. Chai, Low Cycle Fatigue Behavior of Sanicro25 Steel at Room and at Elevated Temperature, Mater. Sci. Eng. A, 2014, 615, p 175–182. J. Polák, R. Petráš, M. Heczko, I. Kuběna, T. Kruml, and G. Chai, Low Cycle Fatigue Behavior of Sanicro25 Steel at Room and at Elevated Temperature, Mater. Sci. Eng. A, 2014, 615, p 175–182.
44.
Zurück zum Zitat J. Ma, Q. Wang, T. Zhang, H. Cao, Y. Yang, and Z. Zhang, Effect of Natural Aging Time on Tensile and Fatigue Anisotropy of Extruded 7075 Al Alloy, J. Mater. Res. Technol., 2022, 18, p 4683–4697. J. Ma, Q. Wang, T. Zhang, H. Cao, Y. Yang, and Z. Zhang, Effect of Natural Aging Time on Tensile and Fatigue Anisotropy of Extruded 7075 Al Alloy, J. Mater. Res. Technol., 2022, 18, p 4683–4697.
45.
Zurück zum Zitat L. Xu, F. Bao, L. Zhao, Y. Han, H. Jing, H. Yu, and X. Gong, Characterizing Microstructural Evolution and Low Cycle Fatigue Behavior of 316H Austenitic Steel at High-Temperatures, J Nucl. Mater., 2021, 546, p 152758. L. Xu, F. Bao, L. Zhao, Y. Han, H. Jing, H. Yu, and X. Gong, Characterizing Microstructural Evolution and Low Cycle Fatigue Behavior of 316H Austenitic Steel at High-Temperatures, J Nucl. Mater., 2021, 546, p 152758.
46.
Zurück zum Zitat S.G. Hong, S.B. Lee, and T.S. Byun, Temperature Effect on the Low-Cycle Fatigue Behavior of Type 316L Stainless Steel: Cyclic Non-Stabilization and an Invariable Fatigue Parameter, Mater. Sci. Eng. A, 2007, 457(1–2), p 139–147. S.G. Hong, S.B. Lee, and T.S. Byun, Temperature Effect on the Low-Cycle Fatigue Behavior of Type 316L Stainless Steel: Cyclic Non-Stabilization and an Invariable Fatigue Parameter, Mater. Sci. Eng. A, 2007, 457(1–2), p 139–147.
47.
Zurück zum Zitat K. Wieczerzak, K. Pajor, K. Górecki, R. Chulist, and P. Bała, Microstructural Response on Nickel Addition in Rapidly Solidified ∼Fe-25Cr-xNi-5Mo-0.8C [x = 0, 6, 11, 15, 21 wt.%] hardfacing alloys, J. Alloys Compd., 2019, 787, p 186–195. K. Wieczerzak, K. Pajor, K. Górecki, R. Chulist, and P. Bała, Microstructural Response on Nickel Addition in Rapidly Solidified ∼Fe-25Cr-xNi-5Mo-0.8C [x = 0, 6, 11, 15, 21 wt.%] hardfacing alloys, J. Alloys Compd., 2019, 787, p 186–195.
48.
Zurück zum Zitat B. Rutkowski, A. Gil, and A. Czyrska-Filemonowicz, Microstructure and Chemical Composition of the Oxide Scale Formed on the Sanicro 25 Steel Tubes After Fireside Corrosion, Corros. Sci., 2016, 102, p 373–383. B. Rutkowski, A. Gil, and A. Czyrska-Filemonowicz, Microstructure and Chemical Composition of the Oxide Scale Formed on the Sanicro 25 Steel Tubes After Fireside Corrosion, Corros. Sci., 2016, 102, p 373–383.
49.
Zurück zum Zitat P. Ou, H. Xing, X. Wang, J. Sun, Z. Cui, and C. Yang, Coarsening and Hardening Behaviors of Cu-Rich Precipitates in Super304H Austenitic Steel, Metall. Mater. Trans. A, 2015, 46(9), p 3909–3916. P. Ou, H. Xing, X. Wang, J. Sun, Z. Cui, and C. Yang, Coarsening and Hardening Behaviors of Cu-Rich Precipitates in Super304H Austenitic Steel, Metall. Mater. Trans. A, 2015, 46(9), p 3909–3916.
50.
Zurück zum Zitat J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-Homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta Mater., 2011, 59(11), p 4387–4394. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and Numerical Study on Geometrically Necessary Dislocations and Non-Homogeneous Mechanical Properties of the Ferrite Phase in Dual Phase Steels, Acta Mater., 2011, 59(11), p 4387–4394.
51.
Zurück zum Zitat D. Raabe, B. Sun, A. Kwiatkowski Da Silva, B. Gault, H.-W. Yen, K. Sedighiani, P. Thoudden Sukumar, I.R. Souza Filho, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C.H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S.-L. Wong, C. Baron, M. Diehl, F. Roters, and D. Ponge, Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels, Metall. Mater. Trans. A, 2020, 51(11), p 5517–5586. D. Raabe, B. Sun, A. Kwiatkowski Da Silva, B. Gault, H.-W. Yen, K. Sedighiani, P. Thoudden Sukumar, I.R. Souza Filho, S. Katnagallu, E. Jägle, P. Kürnsteiner, N. Kusampudi, L. Stephenson, M. Herbig, C.H. Liebscher, H. Springer, S. Zaefferer, V. Shah, S.-L. Wong, C. Baron, M. Diehl, F. Roters, and D. Ponge, Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels, Metall. Mater. Trans. A, 2020, 51(11), p 5517–5586.
52.
Zurück zum Zitat A. Chauhan, J. Hoffmann, D. Litvinov, and J. Aktaa, High-Temperature Low-Cycle Fatigue Behavior of a 9Cr-ODS steel: Part 2: Hold Time Influence, Microstructural Evolution and Damage Characteristics, Mater. Sci. Eng. A, 2018, 730, p 197–206. A. Chauhan, J. Hoffmann, D. Litvinov, and J. Aktaa, High-Temperature Low-Cycle Fatigue Behavior of a 9Cr-ODS steel: Part 2: Hold Time Influence, Microstructural Evolution and Damage Characteristics, Mater. Sci. Eng. A, 2018, 730, p 197–206.
53.
Zurück zum Zitat K. Renard, S. Ryelandt, and P.J. Jacques, Characterisation of the Portevin-Le Chatelier Effect Affecting an Austenitic TWIP Steel Based on Digital Image Correlation, Mater. Sci. Eng. A, 2010, 527(12), p 2969–2977. K. Renard, S. Ryelandt, and P.J. Jacques, Characterisation of the Portevin-Le Chatelier Effect Affecting an Austenitic TWIP Steel Based on Digital Image Correlation, Mater. Sci. Eng. A, 2010, 527(12), p 2969–2977.
54.
Zurück zum Zitat S.-Y. Lee, C. Takushima, J.-I. Hamada, and N. Nakada, Macroscopic and Microscopic Characterizations of Portevin-LeChatelier Effect in Austenitic Stainless Steel Using High-Temperature Digital Image Correlation Analysis, Acta Mater., 2021, 205, p 116560. S.-Y. Lee, C. Takushima, J.-I. Hamada, and N. Nakada, Macroscopic and Microscopic Characterizations of Portevin-LeChatelier Effect in Austenitic Stainless Steel Using High-Temperature Digital Image Correlation Analysis, Acta Mater., 2021, 205, p 116560.
55.
Zurück zum Zitat J. Jiang and L. Zhu, Strengthening Mechanisms of Precipitates in S30432 Heat-Resistant Steel During Short-Term Aging, Mater. Sci. Eng. A, 2012, 539, p 170–176. J. Jiang and L. Zhu, Strengthening Mechanisms of Precipitates in S30432 Heat-Resistant Steel During Short-Term Aging, Mater. Sci. Eng. A, 2012, 539, p 170–176.
56.
Zurück zum Zitat M.S. Pham, C. Solenthaler, K.G.F. Janssens, and S.R. Holdsworth, Dislocation Structure Evolution and Its Effects on Cyclic Deformation Response of AISI 316L Stainless Steel, Mater. Sci. Eng. A, 2011, 528(7–8), p 3261–3269. M.S. Pham, C. Solenthaler, K.G.F. Janssens, and S.R. Holdsworth, Dislocation Structure Evolution and Its Effects on Cyclic Deformation Response of AISI 316L Stainless Steel, Mater. Sci. Eng. A, 2011, 528(7–8), p 3261–3269.
57.
Zurück zum Zitat R. Zhou, L. Zhu, Y. Liu, Z. Lu, and L. Chen, Precipitates and Precipitation Strengthening of Sanicro 25 Welded Joint Base Metal Crept at 973 K, Steel Res. Int., 2017, 88(8), p 1600414. R. Zhou, L. Zhu, Y. Liu, Z. Lu, and L. Chen, Precipitates and Precipitation Strengthening of Sanicro 25 Welded Joint Base Metal Crept at 973 K, Steel Res. Int., 2017, 88(8), p 1600414.
58.
Zurück zum Zitat B. Li, Y. Zheng, Q. Li, C. Liu, and X. Chen, Thermomechanical Fatigue Properties and Microstructural Damage of Nitrogen Alloyed 316LN Stainless Steel, Int. J. Fatigue, 2020, 138, p 105704. B. Li, Y. Zheng, Q. Li, C. Liu, and X. Chen, Thermomechanical Fatigue Properties and Microstructural Damage of Nitrogen Alloyed 316LN Stainless Steel, Int. J. Fatigue, 2020, 138, p 105704.
59.
Zurück zum Zitat Y. Zheng, B. Li, Q. Li, C. Liu, and X. Chen, Ratcheting Deformation Behavior of 316LN Stainless Steel Under Thermomechanical and Isothermal Loadings, Int. J. Fatigue, 2020, 138, p 105718. Y. Zheng, B. Li, Q. Li, C. Liu, and X. Chen, Ratcheting Deformation Behavior of 316LN Stainless Steel Under Thermomechanical and Isothermal Loadings, Int. J. Fatigue, 2020, 138, p 105718.
60.
Zurück zum Zitat M. Calmunger, G. Chai, R. Eriksson, S. Johansson, and J.J. Moverare, Characterization of Austenitic Stainless Steels Deformed at Elevated Temperature, Metall. Mater. Trans. A, 2017, 48(10), p 4525–4538. M. Calmunger, G. Chai, R. Eriksson, S. Johansson, and J.J. Moverare, Characterization of Austenitic Stainless Steels Deformed at Elevated Temperature, Metall. Mater. Trans. A, 2017, 48(10), p 4525–4538.
61.
Zurück zum Zitat T. Sourmail, Precipitation in Creep Resistant Austenitic Stainless Steels, Mater. Sci. Technol., 2001, 17(1), p 1–14. T. Sourmail, Precipitation in Creep Resistant Austenitic Stainless Steels, Mater. Sci. Technol., 2001, 17(1), p 1–14.
62.
Zurück zum Zitat A. Hasnaoui, P.M. Derlet, and H. Van Swygenhoven, Interaction Between Dislocations and Grain Boundaries Under an Indenter—A Molecular Dynamics Simulation, Acta Mater., 2004, 52(8), p 2251–2258. A. Hasnaoui, P.M. Derlet, and H. Van Swygenhoven, Interaction Between Dislocations and Grain Boundaries Under an Indenter—A Molecular Dynamics Simulation, Acta Mater., 2004, 52(8), p 2251–2258.
63.
Zurück zum Zitat Z. Lv, P. Cai, T. Yu, Y. Jin, H. Zhang, W. Fu, and T. Zhai, Fatigue Behaviors and Damage Mechanism of a Cr-Mn-N Austenitic Steel, J. Alloys Compd., 2017, 691, p 103–109. Z. Lv, P. Cai, T. Yu, Y. Jin, H. Zhang, W. Fu, and T. Zhai, Fatigue Behaviors and Damage Mechanism of a Cr-Mn-N Austenitic Steel, J. Alloys Compd., 2017, 691, p 103–109.
Metadaten
Titel
Effect of Mixed-Grain Structure on Low-Cycle Fatigue Behavior of Fe-22Cr-25Ni Austenitic Steel at Elevated Temperature
verfasst von
Jianbing Gao
Hongwei Zhou
Jiaming Shen
Hailian Wei
Xudong Fang
Yizhu He
Publikationsdatum
21.02.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 1/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-07957-8

Weitere Artikel der Ausgabe 1/2024

Journal of Materials Engineering and Performance 1/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.