Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 12/2016

26.07.2016

Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study

verfasst von: K. Iyakutti, E. Mathan Kumar, Ranjit Thapa, R. Rajeswarapalanichamy, V. J. Surya, Y. Kawazoe

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In graphene, band gap opening and tuning are important technological challenges for device applications. Various techniques have been suggested to this technologically complicated problem. Here, we present an ab initio study on the band gap opening in graphene through vacancy, adding impurity atom in the vacancy and substitutional co-doping. In the case of graphene with single vacancy a direct band gap of ~1 eV is obtained. This is a spin polarized state. The graphene system with two monovacancies gives rise to an effective indirect band gap (pseudo gap) of ~1 eV. The graphene substitutionally doped with B and N is co-doped (tri-doped) with S. This tri-doped graphene has turned into a semiconductor (band gap ~1 eV). These graphene semiconductors are better than the other semiconductor because of the presence of massless Dirac fermions in addition to normal electrons. This will have lot of application in device industry compared to a pristine graphene because of the presence of a gap and Dirac fermions. This type of band gap opening, with this type of defects and impurities, we are reporting for the first time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mat. 6, 181–183 (2007)CrossRef A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mat. 6, 181–183 (2007)CrossRef
2.
Zurück zum Zitat W. Ren, H.-M. Cheng, The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef W. Ren, H.-M. Cheng, The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)CrossRef
3.
Zurück zum Zitat Things you could do with graphene. Nat. Nanatechnol. 9, 737 (2014) Things you could do with graphene. Nat. Nanatechnol. 9, 737 (2014)
4.
Zurück zum Zitat K. Kostarelos, K.S. Novoselov, Graphene devices for life. Nat. Nanotechnol. 9, 744–745 (2014)CrossRef K. Kostarelos, K.S. Novoselov, Graphene devices for life. Nat. Nanotechnol. 9, 744–745 (2014)CrossRef
5.
Zurück zum Zitat E.J. Siochi, Graphene in the sky and beyond. Nat. Nanotechnol. 9, 745–747 (2014)CrossRef E.J. Siochi, Graphene in the sky and beyond. Nat. Nanotechnol. 9, 745–747 (2014)CrossRef
6.
7.
Zurück zum Zitat Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D.G. de Oteyza, F.R. Fischer, S.G. Louie, M.F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015)CrossRef Y.-C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D.G. de Oteyza, F.R. Fischer, S.G. Louie, M.F. Crommie, Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015)CrossRef
8.
Zurück zum Zitat Ten years in two dimensions. Nat. Nanotechnol. 9, 725 (2014) Ten years in two dimensions. Nat. Nanotechnol. 9, 725 (2014)
9.
Zurück zum Zitat F. Withers, M. Dubois, A.K. Savchenko, Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403–073407 (2010)CrossRef F. Withers, M. Dubois, A.K. Savchenko, Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 82, 073403–073407 (2010)CrossRef
10.
Zurück zum Zitat M. Dvorak, W. Oswald, Z. Wu, Band gap opening by patterning graphene. Sci. Rep. 3, 2289 (2013)CrossRef M. Dvorak, W. Oswald, Z. Wu, Band gap opening by patterning graphene. Sci. Rep. 3, 2289 (2013)CrossRef
11.
Zurück zum Zitat A.A. Castellanos-Gomez, B.J. Van Wees, Band gap opening of graphene by noncovalent pi–pi interaction with porphyrins. Graphene 2, 102–108 (2013)CrossRef A.A. Castellanos-Gomez, B.J. Van Wees, Band gap opening of graphene by noncovalent pi–pi interaction with porphyrins. Graphene 2, 102–108 (2013)CrossRef
12.
Zurück zum Zitat S.M. Kozlov, F. Vines, A. Gorling, Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011)CrossRef S.M. Kozlov, F. Vines, A. Gorling, Bandgap engineering of graphene by physisorbed adsorbates. Adv. Mater. 23, 2638–2643 (2011)CrossRef
13.
Zurück zum Zitat E.F. Sheka, The uniqueness of physical and chemical natures of graphene: their coherence and conflicts. Int. J. Quantum Chem. 114, 1079–1095 (2014)CrossRef E.F. Sheka, The uniqueness of physical and chemical natures of graphene: their coherence and conflicts. Int. J. Quantum Chem. 114, 1079–1095 (2014)CrossRef
14.
Zurück zum Zitat M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6, 42–60 (2011)CrossRef M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Tuneable electronic properties in graphene. Nano Today 6, 42–60 (2011)CrossRef
15.
Zurück zum Zitat V.J. Surya, K. Iyakutti, H. Mizuseki, Y. Kawazoe, Tuning electronic structure of graphene: a first-principles study. IEEE Trans. Nanotechnol. 11, 534–541 (2012)CrossRef V.J. Surya, K. Iyakutti, H. Mizuseki, Y. Kawazoe, Tuning electronic structure of graphene: a first-principles study. IEEE Trans. Nanotechnol. 11, 534–541 (2012)CrossRef
16.
Zurück zum Zitat B.-R. Wu, C.-K. Yang, Electronic structure of graphene with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)CrossRef B.-R. Wu, C.-K. Yang, Electronic structure of graphene with vacancies and graphene adsorbed with fluorine atoms. AIP Adv. 2, 012173 (2012)CrossRef
17.
Zurück zum Zitat R. Faccio, L. Fernández-Werner, H. Pardo, C. Goyenola, O.N. Ventura, Á.W. Mombrú, Electronic and structural distortions in graphene induced by carbon vacancies and boron doping. J. Phys. Chem. C 114, 18961–18971 (2010)CrossRef R. Faccio, L. Fernández-Werner, H. Pardo, C. Goyenola, O.N. Ventura, Á.W. Mombrú, Electronic and structural distortions in graphene induced by carbon vacancies and boron doping. J. Phys. Chem. C 114, 18961–18971 (2010)CrossRef
18.
Zurück zum Zitat A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
19.
Zurück zum Zitat D.W. Boukhvalov, M.I. Katsnelson, Chemical functionalization of graphene. J. Phys. Condens. Matter 21, 344205–344217 (2009)CrossRef D.W. Boukhvalov, M.I. Katsnelson, Chemical functionalization of graphene. J. Phys. Condens. Matter 21, 344205–344217 (2009)CrossRef
20.
Zurück zum Zitat R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)CrossRef R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)CrossRef
21.
Zurück zum Zitat S.H. Cheng, K. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435–205440 (2010)CrossRef S.H. Cheng, K. Zou, F. Okino, H.R. Gutierrez, A. Gupta, N. Shen, P.C. Eklund, J.O. Sofo, J. Zhu, Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435–205440 (2010)CrossRef
22.
Zurück zum Zitat R.M. Guzmán-Arellano, A.D. Hernández-Nieves, C.A. Balseiro, G. Usaj, Diffusion of fluorine adatoms on doped graphene, top of formbottom of form. Appl. Phys. Lett. 105, 121606 (2014)CrossRef R.M. Guzmán-Arellano, A.D. Hernández-Nieves, C.A. Balseiro, G. Usaj, Diffusion of fluorine adatoms on doped graphene, top of formbottom of form. Appl. Phys. Lett. 105, 121606 (2014)CrossRef
23.
Zurück zum Zitat Y. Tang, Z. Yang, X. Dai, Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 135, 224704 (2011)CrossRef Y. Tang, Z. Yang, X. Dai, Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 135, 224704 (2011)CrossRef
24.
Zurück zum Zitat R. Martinazzo, S. Casolo, G.F. Tantardini, The effect of atomic-scale defects and dopants on graphene electronic structure. arXiv:1104.1302v1 [cond-mat.mtrl-sci] (2011) R. Martinazzo, S. Casolo, G.F. Tantardini, The effect of atomic-scale defects and dopants on graphene electronic structure. arXiv:1104.1302v1 [cond-mat.mtrl-sci] (2011)
25.
Zurück zum Zitat S.H.M. Jafri et al., Conductivity engineering of graphene by defect formation. J. Phys. D Appl. Phys. 43, 045404 (2010)CrossRef S.H.M. Jafri et al., Conductivity engineering of graphene by defect formation. J. Phys. D Appl. Phys. 43, 045404 (2010)CrossRef
26.
Zurück zum Zitat R. Faccio, A. W. Mombrú, Stability of multivacancies in graphene. arXiv:1312.5015v1[cond-mat.mtrl-sci] (2013) R. Faccio, A. W. Mombrú, Stability of multivacancies in graphene. arXiv:1312.5015v1[cond-mat.mtrl-sci] (2013)
27.
Zurück zum Zitat A.V. Krasheninnikov, R.M. Nieminen, Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theor. Chem. Acc. 129, 625–630 (2011)CrossRef A.V. Krasheninnikov, R.M. Nieminen, Attractive interaction between transition-metal atom impurities and vacancies in graphene: a first-principles study. Theor. Chem. Acc. 129, 625–630 (2011)CrossRef
28.
Zurück zum Zitat H. Amara, S. Latil, V. Meunier, Ph Lambin, J.C. Charlier, Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423-1–115423-10 (2007)CrossRef H. Amara, S. Latil, V. Meunier, Ph Lambin, J.C. Charlier, Scanning tunneling microscopy fingerprints of point defects in graphene: a theoretical prediction. Phys. Rev. B 76, 115423-1–115423-10 (2007)CrossRef
29.
Zurück zum Zitat Z. Hou, K. Terakura, Effect of nitrogen doping on the migration of the carbon adatom and monovacancy in graphene. J. Phys. Chem. C 119, 4922–4933 (2015)CrossRef Z. Hou, K. Terakura, Effect of nitrogen doping on the migration of the carbon adatom and monovacancy in graphene. J. Phys. Chem. C 119, 4922–4933 (2015)CrossRef
30.
Zurück zum Zitat M. Wu, C. Cao, J.Z. Jiang, Light non-metallic atom (b, n, o and f)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)CrossRef M. Wu, C. Cao, J.Z. Jiang, Light non-metallic atom (b, n, o and f)-doped graphene: a first-principles study. Nanotechnology 21, 505202 (2010)CrossRef
31.
Zurück zum Zitat T.P. Kaloni, Y.C. Cheng, U. Schwingenschlögl, Fluorinated monovacancies in graphene: even–odd effect. EPL 100, 37003 (2012)CrossRef T.P. Kaloni, Y.C. Cheng, U. Schwingenschlögl, Fluorinated monovacancies in graphene: even–odd effect. EPL 100, 37003 (2012)CrossRef
32.
Zurück zum Zitat F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)CrossRef F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)CrossRef
33.
Zurück zum Zitat B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010)CrossRef B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene. Nano Lett. 10, 4975–4980 (2010)CrossRef
34.
Zurück zum Zitat V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801-1–036801-4 (2006) V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Disorder induced localized states in graphene. Phys. Rev. Lett. 96, 036801-1–036801-4 (2006)
35.
Zurück zum Zitat M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008)CrossRef M.W.C. Dharma-Wardana, M.Z. Zgierski, Magnetism and structure at vacant lattice sites in graphene. Phys. E 41, 80–83 (2008)CrossRef
36.
Zurück zum Zitat G. Kresse, J. Hafner, Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)CrossRef G. Kresse, J. Hafner, Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)CrossRef
37.
Zurück zum Zitat G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRef G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRef
38.
Zurück zum Zitat K. Iyakutti, V.J. Surya, Y. Kawazoe, AIP Conf. Proc. 1447, 293–294 (2012)CrossRef K. Iyakutti, V.J. Surya, Y. Kawazoe, AIP Conf. Proc. 1447, 293–294 (2012)CrossRef
39.
Zurück zum Zitat J.-S. Park, H.J. Choi, Band-gap opening in graphene: a reverse-engineering approach. Phys. Rev. B 92, 045402 (2015)CrossRef J.-S. Park, H.J. Choi, Band-gap opening in graphene: a reverse-engineering approach. Phys. Rev. B 92, 045402 (2015)CrossRef
40.
Zurück zum Zitat T.T. Jia, M.M. Zheng, X.Y. Fan, Y. Su, S.-J. Li, H.-Y. Liu, G. Chen, Y. Kawazoe, Dirac cone move and bandgap on/off switching of graphene superlattice. Sci. Rep. 6, 18869 (2016). doi:10.1038/srep18869 CrossRef T.T. Jia, M.M. Zheng, X.Y. Fan, Y. Su, S.-J. Li, H.-Y. Liu, G. Chen, Y. Kawazoe, Dirac cone move and bandgap on/off switching of graphene superlattice. Sci. Rep. 6, 18869 (2016). doi:10.​1038/​srep18869 CrossRef
41.
Zurück zum Zitat H.I. Sirikumara, E. Putz, M. Al-Abboodi, T. Jayasekera, Symmetry induced semimetalsemiconductor transition in doped graphene. Sci. Rep. 6, 19115 (2016). doi:10.1038/srep19115 CrossRef H.I. Sirikumara, E. Putz, M. Al-Abboodi, T. Jayasekera, Symmetry induced semimetalsemiconductor transition in doped graphene. Sci. Rep. 6, 19115 (2016). doi:10.​1038/​srep19115 CrossRef
42.
Zurück zum Zitat M. Dvorak, Z. Wu, Dirac point movement and topological phase transition in patterned graphene. Nanoscale 7, 3645 (2015)CrossRef M. Dvorak, Z. Wu, Dirac point movement and topological phase transition in patterned graphene. Nanoscale 7, 3645 (2015)CrossRef
43.
Zurück zum Zitat S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143–3176 (2015)CrossRef S.T. Skowron, I.V. Lebedeva, A.M. Popov, E. Bichoutskaia, Energetics of atomic scale structure changes in graphene. Chem. Soc. Rev. 44, 3143–3176 (2015)CrossRef
44.
Zurück zum Zitat L. Li, S. Reich, J. Robertson, Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 84109 (2005) L. Li, S. Reich, J. Robertson, Defect energies of graphite: density-functional calculations. Phys. Rev. B 72, 84109 (2005)
45.
Zurück zum Zitat K. Iyakutti, E. Mathan Kumar, I. Lakshmi, R. Thapa, R. Rajeswarapalanichamy, V.J. Surya, Y. Kawazoe, Effect of surface doping on the band structure of graphene: a DFT study. J. Mater. Sci. Mater. Electron. (2015). doi:10.1007/s10854-015-4083-z K. Iyakutti, E. Mathan Kumar, I. Lakshmi, R. Thapa, R. Rajeswarapalanichamy, V.J. Surya, Y. Kawazoe, Effect of surface doping on the band structure of graphene: a DFT study. J. Mater. Sci. Mater. Electron. (2015). doi:10.​1007/​s10854-015-4083-z
Metadaten
Titel
Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study
verfasst von
K. Iyakutti
E. Mathan Kumar
Ranjit Thapa
R. Rajeswarapalanichamy
V. J. Surya
Y. Kawazoe
Publikationsdatum
26.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 12/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5401-9

Weitere Artikel der Ausgabe 12/2016

Journal of Materials Science: Materials in Electronics 12/2016 Zur Ausgabe

Neuer Inhalt