Skip to main content
Erschienen in: Lasers in Manufacturing and Materials Processing 3/2022

11.07.2022

Effect of Process Parameters on Powder Bed Fusion Maraging Steel 300: A Review

verfasst von: Bheemavarapu Subba Rao, Thella Babu Rao

Erschienen in: Lasers in Manufacturing and Materials Processing | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Powder bed fusion is a 3D printing method to build metallic components by laser melting. Maraging steels are used in aerospace applications due to their tremendous strength to weight proportion. In current years, maraging steel components built by Additive Manufacturing (AM) are used in the aerospace industry instead of casting parts. Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS), and Laser Powder Bed Fusion (LPBF) techniques in the 3D printing process are widely used to manufacture the maraging steel. The mechanical features of LPBF maraging steel are more when compared to the wrought alloy. The variable process parameters in the LPBF method are laser power, laser scanning velocity, hatch distance, layer thickness, and build direction. Such process parameters are manipulated adequately to fabricate the final component; otherwise, they cause porosity, cracks, low density, and balling. Depending on the laser-metal interaction, these defects affect the microstructure, relative density, mechanical, and surface features of the maraging steel component fabricated in the LPBF process. In this paper, an attempt has been made to review the effect of the laser process parameters with the maraging steel 300 in the LPBF process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2012)CrossRef Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2012)CrossRef
2.
Zurück zum Zitat Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)CrossRef Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)CrossRef
3.
Zurück zum Zitat Leary, M. Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces, in: M. Brandt (Ed.), Laser Additive Manufacturing Materials, Design, Technologies, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, pp. 99–118 Chapter 4 (2017) Leary, M. Surface roughness optimisation for selective laser melting (SLM): accommodating relevant and irrelevant surfaces, in: M. Brandt (Ed.), Laser Additive Manufacturing Materials, Design, Technologies, and Applications, Woodhead Publishing Series in Electronic and Optical Materials, pp. 99–118 Chapter 4 (2017)
4.
Zurück zum Zitat Leon, A., Aghion, E.: Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Mater. Charact. 131, 188–194 (2017)CrossRef Leon, A., Aghion, E.: Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Mater. Charact. 131, 188–194 (2017)CrossRef
5.
Zurück zum Zitat Tan, C., Zhou, K., Ma, W., Zhang, P., Liu, M., Kuang, T.: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 134, 23–34 (2017)CrossRef Tan, C., Zhou, K., Ma, W., Zhang, P., Liu, M., Kuang, T.: Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater. Des. 134, 23–34 (2017)CrossRef
6.
Zurück zum Zitat Guo, J., Goh, M., Zhu, Z., Lee, X., Nai, M.L.S., Wei, J.: On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater. Des. 153, 211–220 (2018)CrossRef Guo, J., Goh, M., Zhu, Z., Lee, X., Nai, M.L.S., Wei, J.: On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater. Des. 153, 211–220 (2018)CrossRef
7.
Zurück zum Zitat Yin, S., Chen, C., Yan, X., Feng, X., Jenkins, R., O’Reilly, P., Liu, M., Li, H., Lupoi, R.: The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit. Manuf. 22, 592–600 (2018) Yin, S., Chen, C., Yan, X., Feng, X., Jenkins, R., O’Reilly, P., Liu, M., Li, H., Lupoi, R.: The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel. Addit. Manuf. 22, 592–600 (2018)
8.
Zurück zum Zitat Nasab, M.H., Gastaldi, D., Lecis, N.F., Vedani, M.: On morphological surface features of the parts printed by selective laser melting (SLM). Addit. Manuf. 24, 373–377 (2018) Nasab, M.H., Gastaldi, D., Lecis, N.F., Vedani, M.: On morphological surface features of the parts printed by selective laser melting (SLM). Addit. Manuf. 24, 373–377 (2018)
9.
Zurück zum Zitat Mutua, J., Nakata, S., Onda, T., Chen, Z.-C.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–497 (2018)CrossRef Mutua, J., Nakata, S., Onda, T., Chen, Z.-C.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–497 (2018)CrossRef
10.
Zurück zum Zitat Kaynak, Y., Kitay, O.: The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit. Manuf. 26, 84–93 (2019) Kaynak, Y., Kitay, O.: The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting. Addit. Manuf. 26, 84–93 (2019)
11.
Zurück zum Zitat Bodziak, S., Al-Rubaie, K.S., Valentina, L.D., Lafratta, F.H., Santos, E.C., Zanatta, A.M., Chen, Y.: Precipitation in 300 grade maraging steel built by selective laser melting: aging at 510 °C for 2 h. Mater. Charact. 151, 73–83 (2019)CrossRef Bodziak, S., Al-Rubaie, K.S., Valentina, L.D., Lafratta, F.H., Santos, E.C., Zanatta, A.M., Chen, Y.: Precipitation in 300 grade maraging steel built by selective laser melting: aging at 510 °C for 2 h. Mater. Charact. 151, 73–83 (2019)CrossRef
12.
Zurück zum Zitat Atzeni, E., Iuliano, L., MInetola, P., Salmi, A.: Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyping J. 16(5), 308–317 (2010)CrossRef Atzeni, E., Iuliano, L., MInetola, P., Salmi, A.: Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyping J. 16(5), 308–317 (2010)CrossRef
13.
Zurück zum Zitat Atzeni, E., Salmi, A.: Economics of additive manufacturing for end-usable metal parts. Int. J. Adv. Manuf. Technol. 62(9–12), 1147–1155 (2012)CrossRef Atzeni, E., Salmi, A.: Economics of additive manufacturing for end-usable metal parts. Int. J. Adv. Manuf. Technol. 62(9–12), 1147–1155 (2012)CrossRef
14.
Zurück zum Zitat Mellor, S., Hao, L., Zhang, D.: Additive manufacturing: A framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)CrossRef Mellor, S., Hao, L., Zhang, D.: Additive manufacturing: A framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)CrossRef
15.
Zurück zum Zitat Tolosa, I., Garciandía, F., Zubiri, F.: Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 51(5–9), 639–647 (2010)CrossRef Tolosa, I., Garciandía, F., Zubiri, F.: Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int. J. Adv. Manuf. Technol. 51(5–9), 639–647 (2010)CrossRef
16.
Zurück zum Zitat Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X.: Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater. Des. 50, 581–586 (2013)CrossRef Guan, K., Wang, Z., Gao, M., Li, X., Zeng, X.: Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater. Des. 50, 581–586 (2013)CrossRef
17.
Zurück zum Zitat Narayanan, TSN Sankara., Kim, Jisoo, Jeong, Hoon Eui, Park, Hyung Wook: Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation. Additive Manufacturing 33, 101125 (2020)CrossRef Narayanan, TSN Sankara., Kim, Jisoo, Jeong, Hoon Eui, Park, Hyung Wook: Enhancement of the surface properties of selective laser melted maraging steel by large pulsed electron-beam irradiation. Additive Manufacturing 33, 101125 (2020)CrossRef
18.
Zurück zum Zitat Gong, X., Anderson, T., Chou, K.: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef Gong, X., Anderson, T., Chou, K.: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef
19.
Zurück zum Zitat Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 super alloy parts: densification, microstructure and properties. J. Alloy. Compd. 585, 713–721 (2014)CrossRef Jia, Q., Gu, D.: Selective laser melting additive manufacturing of Inconel 718 super alloy parts: densification, microstructure and properties. J. Alloy. Compd. 585, 713–721 (2014)CrossRef
20.
Zurück zum Zitat Kanagarajah, P., Brenne, F., Niendorf, T., Maier, H.: Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Materials Science and Engineering A. 588, 188–195 (2013)CrossRef Kanagarajah, P., Brenne, F., Niendorf, T., Maier, H.: Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Materials Science and Engineering A. 588, 188–195 (2013)CrossRef
21.
Zurück zum Zitat Kumar, S., Pityana, S.: Laser-based additive manufacturing of metals. Adv. Mater. Res. 227, 92–95 (2011)CrossRef Kumar, S., Pityana, S.: Laser-based additive manufacturing of metals. Adv. Mater. Res. 227, 92–95 (2011)CrossRef
22.
Zurück zum Zitat Kumar S. Selective Laser Sintering: Recent Advances. In: 4th Pacific International Conference on Applications of Lasers and Optics. Wuhan-China, 617 (2010) Kumar S. Selective Laser Sintering: Recent Advances. In: 4th Pacific International Conference on Applications of Lasers and Optics. Wuhan-China, 617 (2010)
23.
Zurück zum Zitat Khan, M., Dickens, P. M. Processing parameters for Selective Laser Melting (SLM) of gold. In: Proceedings of Solid Freeform Fabrication symposium. 278–279 (2008) Khan, M., Dickens, P. M. Processing parameters for Selective Laser Melting (SLM) of gold. In: Proceedings of Solid Freeform Fabrication symposium. 278–279 (2008)
24.
Zurück zum Zitat Louvis, E., Fox, P., Sutcliffe, C.: Selective laser melting of aluminum components. J. Mater. Process. Technol. 211(2), 275–284 (2011)CrossRef Louvis, E., Fox, P., Sutcliffe, C.: Selective laser melting of aluminum components. J. Mater. Process. Technol. 211(2), 275–284 (2011)CrossRef
25.
Zurück zum Zitat Thijs, L., Kempen, K., Kruth, J.-P., Humbeeck, J.V.: Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10Mgpowder. Acta Mater. 61, 1809–1819 (2013)CrossRef Thijs, L., Kempen, K., Kruth, J.-P., Humbeeck, J.V.: Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10Mgpowder. Acta Mater. 61, 1809–1819 (2013)CrossRef
26.
Zurück zum Zitat Aboulkhair, N.T., Everitt, N., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014) Aboulkhair, N.T., Everitt, N., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014)
27.
Zurück zum Zitat Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31(2), 850–856 (2010)CrossRef Kumar, S., Kruth, J.P.: Composites by rapid prototyping technology. Mater. Des. 31(2), 850–856 (2010)CrossRef
28.
Zurück zum Zitat Ghosh, S.K., Saha, P., Kishore, S.: Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process. Mater. Sci. Eng. A 527(18–19), 4694–4701 (2010)CrossRef Ghosh, S.K., Saha, P., Kishore, S.: Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process. Mater. Sci. Eng. A 527(18–19), 4694–4701 (2010)CrossRef
29.
Zurück zum Zitat Dai, D., Gu, D.: Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments [J]. Mater. Des. 55, 482–491 (2014)CrossRef Dai, D., Gu, D.: Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments [J]. Mater. Des. 55, 482–491 (2014)CrossRef
30.
Zurück zum Zitat Zhang, Q., Chen, J., Guo, P., et al.: Texture and microstructure characterization in laser additive manufactured Ti– 6Al–2Zr–2Sn–3Mo–1.5 Cr–2Nb titanium alloy [J]. Mater. Des. 88, 550–557 (2015)CrossRef Zhang, Q., Chen, J., Guo, P., et al.: Texture and microstructure characterization in laser additive manufactured Ti– 6Al–2Zr–2Sn–3Mo–1.5 Cr–2Nb titanium alloy [J]. Mater. Des. 88, 550–557 (2015)CrossRef
31.
Zurück zum Zitat Gu, D.D., Meiners, W., Wissenbach, K., et al.: Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef Gu, D.D., Meiners, W., Wissenbach, K., et al.: Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRef
32.
Zurück zum Zitat Baron, P., et al.: Research and application of methods of technical diagnostics for the verification of the design node. Meas. J. Int. Meas. Confed. 94, 245–253 (2016)CrossRef Baron, P., et al.: Research and application of methods of technical diagnostics for the verification of the design node. Meas. J. Int. Meas. Confed. 94, 245–253 (2016)CrossRef
33.
Zurück zum Zitat Hanzl, P., et al.: Optimization of the pressure porous sample and its manufacturability by selective laser melting. Manuf. Technol. J. 17(1), 34–38 (2017) Hanzl, P., et al.: Optimization of the pressure porous sample and its manufacturability by selective laser melting. Manuf. Technol. J. 17(1), 34–38 (2017)
34.
Zurück zum Zitat Majstorovic, V., et al.: CAI model for prismatic parts in digital manufacturing. Procedia CIRP 25, 27–32 (2014)CrossRef Majstorovic, V., et al.: CAI model for prismatic parts in digital manufacturing. Procedia CIRP 25, 27–32 (2014)CrossRef
35.
Zurück zum Zitat Rubesova,K., et al.: Microstructure ofMS1 maraging steel in 3D-printed products after semi-solid processing. In: Proceedings of the 27th DAAAM International Symposium, Published by DAAAM International, Vienna, Austria, pp. 0467–0472 (2016) Rubesova,K., et al.: Microstructure ofMS1 maraging steel in 3D-printed products after semi-solid processing. In: Proceedings of the 27th DAAAM International Symposium, Published by DAAAM International, Vienna, Austria, pp. 0467–0472 (2016)
36.
Zurück zum Zitat Sha, W., Guo, Z.: Maraging Steels: Modelling of Microstructure, Properties and Applications. Woodhead Publishing Ltd., Cambridge, UK (2009)CrossRef Sha, W., Guo, Z.: Maraging Steels: Modelling of Microstructure, Properties and Applications. Woodhead Publishing Ltd., Cambridge, UK (2009)CrossRef
37.
Zurück zum Zitat Bai, Y., Yang, Y., Wang, D., Zhang, M.: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A 703, 116–123 (2017)CrossRef Bai, Y., Yang, Y., Wang, D., Zhang, M.: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng. A 703, 116–123 (2017)CrossRef
38.
Zurück zum Zitat Bremen, S., Meiners, W., Diatlov, A.: Selective laser melting: A manufacturing technology for the future? Laser Tech. J. 9(2), 33–38 (2012)CrossRef Bremen, S., Meiners, W., Diatlov, A.: Selective laser melting: A manufacturing technology for the future? Laser Tech. J. 9(2), 33–38 (2012)CrossRef
39.
Zurück zum Zitat Pereloma, E.V., Stohr, R.A., Miller, M.K., Ringer, S.P.: Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography. Metall. and Mater. Trans. A. 40, 3069 (2009)CrossRef Pereloma, E.V., Stohr, R.A., Miller, M.K., Ringer, S.P.: Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography. Metall. and Mater. Trans. A. 40, 3069 (2009)CrossRef
40.
Zurück zum Zitat Pereloma, E.V., Shekhter, A., Miller, M.K., Ringer, S.P.: Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti– 0.59Al (wt%) maraging alloy: clustering, precipitation and hardening. Acta Materialia 52, 5589–5602 (2004)CrossRef Pereloma, E.V., Shekhter, A., Miller, M.K., Ringer, S.P.: Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti– 0.59Al (wt%) maraging alloy: clustering, precipitation and hardening. Acta Materialia 52, 5589–5602 (2004)CrossRef
41.
Zurück zum Zitat Tewari, R., Mazumder, S., Batra, I.S., Dey, G.K., Banerjee, S.: Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 48, 1187–1200 (2000)CrossRef Tewari, R., Mazumder, S., Batra, I.S., Dey, G.K., Banerjee, S.: Precipitation in 18 wt% Ni maraging steel of grade 350. Acta Mater. 48, 1187–1200 (2000)CrossRef
42.
Zurück zum Zitat Frazier, W.E.: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRef Frazier, W.E.: Metal additive manufacturing: A review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRef
43.
Zurück zum Zitat Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315–360 (2016)CrossRef Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315–360 (2016)CrossRef
44.
Zurück zum Zitat Dutta, B., Froes, F.H.: Additive manufacturing of titanium alloys. Adv. Mater. Process. 172, 18–23 (2014) Dutta, B., Froes, F.H.: Additive manufacturing of titanium alloys. Adv. Mater. Process. 172, 18–23 (2014)
45.
Zurück zum Zitat Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P.: Influence of process parameters on surface roughness of aluminium parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)CrossRef Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L., Fino, P.: Influence of process parameters on surface roughness of aluminium parts produced by DMLS. Int. J. Adv. Manuf. Technol. 67(9–12), 2743–2751 (2013)CrossRef
46.
Zurück zum Zitat Subashini, L., Phani Prabhakar, K.V., Ghosh, Swati, Padmanabham, G.: Comparison of laser-MIG hybrid and autogenous laser welding of M250 maraging steel thick sections—understanding the role of filler wire addition. Int. J. Adv. Manuf. Technol. 107(3), 1581–1594 (2020)CrossRef Subashini, L., Phani Prabhakar, K.V., Ghosh, Swati, Padmanabham, G.: Comparison of laser-MIG hybrid and autogenous laser welding of M250 maraging steel thick sections—understanding the role of filler wire addition. Int. J. Adv. Manuf. Technol. 107(3), 1581–1594 (2020)CrossRef
47.
Zurück zum Zitat Xu, X., Ganguly, S., Ding, J., Dirisu, P., Martina, F., Liu, X., Williams, S.W.: Improving mechanical properties of wire plus arc additively manufactured maraging steel through plastic deformation enhanced aging response. Mater. Sci. Eng., A 747, 111–118 (2019)CrossRef Xu, X., Ganguly, S., Ding, J., Dirisu, P., Martina, F., Liu, X., Williams, S.W.: Improving mechanical properties of wire plus arc additively manufactured maraging steel through plastic deformation enhanced aging response. Mater. Sci. Eng., A 747, 111–118 (2019)CrossRef
48.
Zurück zum Zitat Xu, X., Ganguly, S., Ding, J., Guo, S., Williams, S., Martina, F.: Microstructural evolution and mechanical properties of maraging steel produced by wire+ arc additive manufacture process. Mater. Charact. 143, 152–162 (2018)CrossRef Xu, X., Ganguly, S., Ding, J., Guo, S., Williams, S., Martina, F.: Microstructural evolution and mechanical properties of maraging steel produced by wire+ arc additive manufacture process. Mater. Charact. 143, 152–162 (2018)CrossRef
49.
Zurück zum Zitat Xu, X., Ding, J., Ganguly, S., Diao, C., Williams, S.: Preliminary investigation of building strategies of maraging steel bulk material using wire+ arc additive manufacture. J. Mater. Eng. Perform. 28(2), 594–600 (2019)CrossRef Xu, X., Ding, J., Ganguly, S., Diao, C., Williams, S.: Preliminary investigation of building strategies of maraging steel bulk material using wire+ arc additive manufacture. J. Mater. Eng. Perform. 28(2), 594–600 (2019)CrossRef
50.
Zurück zum Zitat Ben-Artzy, A., Reichardt, A., Borgonia, J.-P., Dillon, R.P., McEnerney, B., Shapiro, A.A., Hosemann, P.: Compositionally graded SS316 to C300 Maraging steel using additive manufacturing. Mater. Des. 201, 109500 (2021)CrossRef Ben-Artzy, A., Reichardt, A., Borgonia, J.-P., Dillon, R.P., McEnerney, B., Shapiro, A.A., Hosemann, P.: Compositionally graded SS316 to C300 Maraging steel using additive manufacturing. Mater. Des. 201, 109500 (2021)CrossRef
51.
Zurück zum Zitat Jarfors, Anders EW., Matsushita, Taishi, Siafakas, Dimitrios, Stolt, Roland: On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing. Mater. Des. 204, 109608 (2021)CrossRef Jarfors, Anders EW., Matsushita, Taishi, Siafakas, Dimitrios, Stolt, Roland: On the nature of the anisotropy of Maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing. Mater. Des. 204, 109608 (2021)CrossRef
52.
Zurück zum Zitat Podgornik, B., Šinko, M., Godec, M.: "Dependence of the wear resistance of additive-manufactured maraging steel on the build direction and heat treatment." Additive Manufacturing: 102123 (2021) Podgornik, B., Šinko, M., Godec, M.: "Dependence of the wear resistance of additive-manufactured maraging steel on the build direction and heat treatment." Additive Manufacturing: 102123 (2021)
53.
Zurück zum Zitat de Oliveira, Amanda, Rossi, Vitor Furlan, de Oliveira, Julio, Teixeira, Carlos, Conte, Erik Gustavo Del.: Investigation of the build orientation effect on magnetic properties and Barkhausen Noise of additively manufactured maraging steel 300. Additive Manufacturing 38, 101827 (2021)CrossRef de Oliveira, Amanda, Rossi, Vitor Furlan, de Oliveira, Julio, Teixeira, Carlos, Conte, Erik Gustavo Del.: Investigation of the build orientation effect on magnetic properties and Barkhausen Noise of additively manufactured maraging steel 300. Additive Manufacturing 38, 101827 (2021)CrossRef
54.
Zurück zum Zitat Ahmadkhaniha, Donya, Möller, H., Zanella, Caterina: Studying the Microstructural Effect of Selective Laser Melting and Electropolishing on the Performance of Maraging Steel. J. Mater. Eng. Perform. 30, 1–18 (2021)CrossRef Ahmadkhaniha, Donya, Möller, H., Zanella, Caterina: Studying the Microstructural Effect of Selective Laser Melting and Electropolishing on the Performance of Maraging Steel. J. Mater. Eng. Perform. 30, 1–18 (2021)CrossRef
55.
Zurück zum Zitat Kruth, J.P., Mercelis, P., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 25–36 (2005)CrossRef Kruth, J.P., Mercelis, P., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 25–36 (2005)CrossRef
56.
Zurück zum Zitat Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/ melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/ melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef
57.
Zurück zum Zitat Khaing, M.W., Fuh, J.Y.H., Lu, L.: Direct Metal Laser Sintering for rapid tooling: Processing and characterization of EOS parts. J. Mater. Process. Technol. 113, 269–272 (2001)CrossRef Khaing, M.W., Fuh, J.Y.H., Lu, L.: Direct Metal Laser Sintering for rapid tooling: Processing and characterization of EOS parts. J. Mater. Process. Technol. 113, 269–272 (2001)CrossRef
58.
Zurück zum Zitat Calignano, F.: Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys Prototyping. 13(2), 97–104 (2018)CrossRef Calignano, F.: Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys Prototyping. 13(2), 97–104 (2018)CrossRef
59.
Zurück zum Zitat Sing, S., An, J., Yeong, W., et al.: Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34(3), 369–385 (2016)CrossRef Sing, S., An, J., Yeong, W., et al.: Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34(3), 369–385 (2016)CrossRef
60.
Zurück zum Zitat Yin, H., Felicelli, S.D.: Dendrite growth simulation during solidification in the LENS process. Acta Materialia 58(4), 1455–1465 (2010)CrossRef Yin, H., Felicelli, S.D.: Dendrite growth simulation during solidification in the LENS process. Acta Materialia 58(4), 1455–1465 (2010)CrossRef
61.
Zurück zum Zitat Amano, R.S., Rohatgi, P.K.: Laser engineered net shaping process for SAE 4140 low alloy steel. Mater. Sci. Eng., A 528(22–23), 6680–6693 (2011)CrossRef Amano, R.S., Rohatgi, P.K.: Laser engineered net shaping process for SAE 4140 low alloy steel. Mater. Sci. Eng., A 528(22–23), 6680–6693 (2011)CrossRef
62.
Zurück zum Zitat Bian, L., Thompson, S.M., Shamsaei, N.: Mechanical Properties and Micro structural Features of Direct Laser-Deposited Ti-6Al-4V. Jom 67(3), 629–638 (2015)CrossRef Bian, L., Thompson, S.M., Shamsaei, N.: Mechanical Properties and Micro structural Features of Direct Laser-Deposited Ti-6Al-4V. Jom 67(3), 629–638 (2015)CrossRef
63.
Zurück zum Zitat Gåård, A., Krakhmalev, P., Bergström, J.: Microstructural characterization and wear behavior of (Fe, Ni)–TiC MMC prepared by DMLS. J. Alloy. Compd. 421, 166–171 (2016)CrossRef Gåård, A., Krakhmalev, P., Bergström, J.: Microstructural characterization and wear behavior of (Fe, Ni)–TiC MMC prepared by DMLS. J. Alloy. Compd. 421, 166–171 (2016)CrossRef
64.
Zurück zum Zitat Jhabvala, J., et al.: On the effect of scanning strategies in the Selective Laser Melting process. Virtual and Physical Prototyping 5, 99–109 (2010)CrossRef Jhabvala, J., et al.: On the effect of scanning strategies in the Selective Laser Melting process. Virtual and Physical Prototyping 5, 99–109 (2010)CrossRef
65.
Zurück zum Zitat Yasa, E., et al.: Charpy impact testing of metallic Selective Laser Melting parts. Virtual and Physical Prototyping 5, 89–98 (2010)CrossRef Yasa, E., et al.: Charpy impact testing of metallic Selective Laser Melting parts. Virtual and Physical Prototyping 5, 89–98 (2010)CrossRef
66.
Zurück zum Zitat Bhattacharya, S., et al.: Micro structural evolution and mechanical, and corrosion property evaluation of Cu–30Ni alloy formed by Direct Metal Deposition process. J. Alloy. Compd. 509, 6364–6373 (2011)CrossRef Bhattacharya, S., et al.: Micro structural evolution and mechanical, and corrosion property evaluation of Cu–30Ni alloy formed by Direct Metal Deposition process. J. Alloy. Compd. 509, 6364–6373 (2011)CrossRef
67.
Zurück zum Zitat Delgado, J., Ciurana, J., Serenó, L.: Comparison of forming manufacturing processes and Selective Laser Melting technology based on the mechanical properties of products. Virtual and Physical Prototyping 6, 167–178 (2011)CrossRef Delgado, J., Ciurana, J., Serenó, L.: Comparison of forming manufacturing processes and Selective Laser Melting technology based on the mechanical properties of products. Virtual and Physical Prototyping 6, 167–178 (2011)CrossRef
68.
Zurück zum Zitat Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M.: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A. 66, 139–146 (2016)CrossRef Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M.: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A. 66, 139–146 (2016)CrossRef
69.
Zurück zum Zitat DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef
70.
Zurück zum Zitat Yap, Chor Yen, Chua, Chee Kai, Dong, Zhi Li, Liu, Zhong Hong, Zhang, Dan Qing, Loh, Loong Ee, Sing, Swee Leong: Review of selective laser melting: Materials and applications. Applied physics reviews 2(4), 041101 (2015)CrossRef Yap, Chor Yen, Chua, Chee Kai, Dong, Zhi Li, Liu, Zhong Hong, Zhang, Dan Qing, Loh, Loong Ee, Sing, Swee Leong: Review of selective laser melting: Materials and applications. Applied physics reviews 2(4), 041101 (2015)CrossRef
71.
Zurück zum Zitat Shuai, C., He, C., Liang, Xu., Li, Q., Chen, T., Yang, Y., Peng, S.: Wrapping effect of secondary phases on the grains: increased corrosion resistance of Mg–Al alloys. Virtual and Physical Prototyping 13(4), 292–300 (2018)CrossRef Shuai, C., He, C., Liang, Xu., Li, Q., Chen, T., Yang, Y., Peng, S.: Wrapping effect of secondary phases on the grains: increased corrosion resistance of Mg–Al alloys. Virtual and Physical Prototyping 13(4), 292–300 (2018)CrossRef
72.
Zurück zum Zitat Shuai, Cijun, Wenjing Yang, Youwen Yang, Chengde Gao, Chongxian He, Hao Pan. "A continuous net-like eutectic structure enhances the corrosion resistance of Mg alloys." International Journal of Bioprinting 5(2) (2019) Shuai, Cijun, Wenjing Yang, Youwen Yang, Chengde Gao, Chongxian He, Hao Pan. "A continuous net-like eutectic structure enhances the corrosion resistance of Mg alloys." International Journal of Bioprinting 5(2) (2019)
73.
Zurück zum Zitat Guo, M., Dongdong, Gu., Xi, L., Lei, Du., Zhang, H., Zhang, J.: Formation of scanning tracks during Selective Laser Melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms. Int. J. Refract Metal Hard Mater. 79, 37–46 (2019)CrossRef Guo, M., Dongdong, Gu., Xi, L., Lei, Du., Zhang, H., Zhang, J.: Formation of scanning tracks during Selective Laser Melting (SLM) of pure tungsten powder: Morphology, geometric features and forming mechanisms. Int. J. Refract Metal Hard Mater. 79, 37–46 (2019)CrossRef
74.
Zurück zum Zitat Wen, S., Wang, C., Zhou, Y., Duan, L., Wei, Q., Yang, S., Shi, Y.: High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical and thermal performance. Opt. Laser Technol. 116, 128–138 (2019)CrossRef Wen, S., Wang, C., Zhou, Y., Duan, L., Wei, Q., Yang, S., Shi, Y.: High-density tungsten fabricated by selective laser melting: Densification, microstructure, mechanical and thermal performance. Opt. Laser Technol. 116, 128–138 (2019)CrossRef
75.
Zurück zum Zitat Du, Zhenglin, Hui-Chi Chen, Ming Jen Tan, Guijun Bi, Chee Kai Chua. "Effect of nAl2O3 on the part density and microstructure during the laser-based powder bed fusion of AlSi10Mg composite." Rapid Prototyp. J. (2020) Du, Zhenglin, Hui-Chi Chen, Ming Jen Tan, Guijun Bi, Chee Kai Chua. "Effect of nAl2O3 on the part density and microstructure during the laser-based powder bed fusion of AlSi10Mg composite." Rapid Prototyp. J. (2020)
76.
Zurück zum Zitat Chen, Xizhang, Kun Liu, Wei Guo, Namrata Gangil, Arshad Noor Siddiquee, Sergey Konovalov. "The fabrication of NiTi shape memory alloy by selective laser melting: a review." Rapid Prototyp. J. (2019) Chen, Xizhang, Kun Liu, Wei Guo, Namrata Gangil, Arshad Noor Siddiquee, Sergey Konovalov. "The fabrication of NiTi shape memory alloy by selective laser melting: a review." Rapid Prototyp. J. (2019)
77.
Zurück zum Zitat Kianian, Babak. "Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report: Chapter title: Other Countries." In Wohlers Report 2018. Wohlers Associates, Inc. (2018) Kianian, Babak. "Wohlers Report 2018: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report: Chapter title: Other Countries." In Wohlers Report 2018. Wohlers Associates, Inc. (2018)
78.
Zurück zum Zitat Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013)CrossRef Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H.A.A., Maier, H.J.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue 48, 300–307 (2013)CrossRef
79.
Zurück zum Zitat Groeber, M.A., et al.: Application of characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing. IOP Conf. Ser. Mater. Sci. Eng. 219, 012002 (2017)CrossRef Groeber, M.A., et al.: Application of characterization, modelling, and analytics towards understanding process-structure linkages in metallic 3D printing. IOP Conf. Ser. Mater. Sci. Eng. 219, 012002 (2017)CrossRef
80.
Zurück zum Zitat Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.: Laser powderbed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016)CrossRef Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E.: Laser powderbed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 108, 36–45 (2016)CrossRef
81.
Zurück zum Zitat King, W.E., et al.: Observation of keyhole-mode laser melting in laser powderbed fusion additive manufacturing. J. Mater. Process. Technol. 214, 2915–2925 (2014)CrossRef King, W.E., et al.: Observation of keyhole-mode laser melting in laser powderbed fusion additive manufacturing. J. Mater. Process. Technol. 214, 2915–2925 (2014)CrossRef
82.
Zurück zum Zitat Katayama, S., Seto, N., Kim, J.-D., Matsunaw, A.: Formation mechanism and reduction method of porosity in laser welding of stainless steel. Int. Congr. Appl. Lasers Electro-Opt. 1997, G83 (1997) Katayama, S., Seto, N., Kim, J.-D., Matsunaw, A.: Formation mechanism and reduction method of porosity in laser welding of stainless steel. Int. Congr. Appl. Lasers Electro-Opt. 1997, G83 (1997)
83.
Zurück zum Zitat Ly, S., Rubenchik, A.M., Khairallah, S.A., Guss, G., Matthews, M.J.: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Sci. Rep. 7, 4085 (2017)CrossRef Ly, S., Rubenchik, A.M., Khairallah, S.A., Guss, G., Matthews, M.J.: Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing. Sci. Rep. 7, 4085 (2017)CrossRef
84.
Zurück zum Zitat Martin, Aiden A., Calta, Nicholas P., Khairallah, Saad A., Wang, Jenny, Depond, Phillip J., Fong, Anthony Y., Thampy, Vivek, et al.: Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat. Commun. 10(1), 1–10 (2019)CrossRef Martin, Aiden A., Calta, Nicholas P., Khairallah, Saad A., Wang, Jenny, Depond, Phillip J., Fong, Anthony Y., Thampy, Vivek, et al.: Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nat. Commun. 10(1), 1–10 (2019)CrossRef
85.
Zurück zum Zitat Gong, Haijun, Rafi, Khalid, Hengfeng Gu, G.D., Ram, Janaki, Starr, Thomas, Stucker, Brent: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554 (2015)CrossRef Gong, Haijun, Rafi, Khalid, Hengfeng Gu, G.D., Ram, Janaki, Starr, Thomas, Stucker, Brent: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545–554 (2015)CrossRef
86.
Zurück zum Zitat Cunningham, Ross, Narra, Sneha P., Montgomery, Colt, Beuth, Jack, Rollett, A.D.: Synchrotron-based X-ray icrotomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. Jom 69(3), 479–484 (2017)CrossRef Cunningham, Ross, Narra, Sneha P., Montgomery, Colt, Beuth, Jack, Rollett, A.D.: Synchrotron-based X-ray icrotomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. Jom 69(3), 479–484 (2017)CrossRef
87.
Zurück zum Zitat Kasperovich, G., Haubrich, J., Gussone, J., Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170 (2016)CrossRef Kasperovich, G., Haubrich, J., Gussone, J., Requena, G.: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Mater. Des. 105, 160–170 (2016)CrossRef
88.
Zurück zum Zitat Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2013)CrossRef Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R.: Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57, 133–164 (2013)CrossRef
89.
Zurück zum Zitat Frazier, W.E.: Metal AdditiveManufacturing: A Review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRef Frazier, W.E.: Metal AdditiveManufacturing: A Review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRef
90.
Zurück zum Zitat Santos, E.C., Shiomi, M., Osakada, K., Laoui, T.: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 1459–1468 (2006)CrossRef Santos, E.C., Shiomi, M., Osakada, K., Laoui, T.: Rapid manufacturing of metal components by laser forming. Int. J. Mach. Tools Manuf. 46, 1459–1468 (2006)CrossRef
91.
Zurück zum Zitat Zinovieva, O., Zinoviev, A., Ploshikhin, V.: Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput. Mater. Sci. 141, 207–220 (2018)CrossRef Zinovieva, O., Zinoviev, A., Ploshikhin, V.: Three-dimensional modeling of the microstructure evolution during metal additive manufacturing. Comput. Mater. Sci. 141, 207–220 (2018)CrossRef
92.
Zurück zum Zitat Qiu, C.L., Chen, H.X., Liu, Q., Yue, S., Wang, H.M.: On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting. Mater. Charact. 148, 330–344 (2019)CrossRef Qiu, C.L., Chen, H.X., Liu, Q., Yue, S., Wang, H.M.: On the solidification behaviour and cracking origin of a nickel-based superalloy during selective laser melting. Mater. Charact. 148, 330–344 (2019)CrossRef
93.
Zurück zum Zitat Carter, L.N., Wang, X., Read, N., Khan, R., Aristizabal, M., Essa, K., Attallah, M.M.: Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater. Sci. Technol. 32, 657–661 (2016)CrossRef Carter, L.N., Wang, X., Read, N., Khan, R., Aristizabal, M., Essa, K., Attallah, M.M.: Process optimisation of selective laser melting using energy density model for nickel based superalloys. Mater. Sci. Technol. 32, 657–661 (2016)CrossRef
94.
Zurück zum Zitat Fousova, M., Dvorsky, D., Vronka, M., Vojtech, D., Lejcek, P.: The Use of Selective Laser Melting to Increase the Performance of AlSi9Cu3Fe Alloy. Materials 2018, 11 (1918) Fousova, M., Dvorsky, D., Vronka, M., Vojtech, D., Lejcek, P.: The Use of Selective Laser Melting to Increase the Performance of AlSi9Cu3Fe Alloy. Materials 2018, 11 (1918)
95.
Zurück zum Zitat Casati, R., Lemke, J., Alarcon, A., Vedani, M.: Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting. Metall. Mater. Trans. A 48, 575–579 (2017)CrossRef Casati, R., Lemke, J., Alarcon, A., Vedani, M.: Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting. Metall. Mater. Trans. A 48, 575–579 (2017)CrossRef
96.
Zurück zum Zitat Tradowsky, U., White, J., Ward, R.M., Read, N., Reimers, W., Attallah, M.M.: Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater. Des. 105, 212–222 (2016)CrossRef Tradowsky, U., White, J., Ward, R.M., Read, N., Reimers, W., Attallah, M.M.: Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater. Des. 105, 212–222 (2016)CrossRef
97.
Zurück zum Zitat Chen, B., Moon, S.K., Yao, X., Bi, G., Shen, J., Umeda, J., Kondoh, K. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr. Mater. 2017, 141, 45–49. Metals 2020, 10, 102 21 of 23 Chen, B., Moon, S.K., Yao, X., Bi, G., Shen, J., Umeda, J., Kondoh, K. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr. Mater. 2017, 141, 45–49. Metals 2020, 10, 102 21 of 23
98.
Zurück zum Zitat Aversa, A., Lorusso, M., Cattano, G., Manfredi, D., Calignano, F., Ambrosio, E.P., Biamino, S., Fino, P., Lombardi, M., Pavese, M.: A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting. J. Alloys Compd. 695, 1470–1478 (2017)CrossRef Aversa, A., Lorusso, M., Cattano, G., Manfredi, D., Calignano, F., Ambrosio, E.P., Biamino, S., Fino, P., Lombardi, M., Pavese, M.: A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting. J. Alloys Compd. 695, 1470–1478 (2017)CrossRef
99.
Zurück zum Zitat Ma, P., Jia, Y.D., Prashanth, K.G., Scudino, S., Yu, Z.S., Eckert, J.: Microstructure and phase formation in Al-20Si-5Fe-3Cu-1Mg synthesized by selective laser melting. J. Alloys Compd. 657, 430–435 (2016)CrossRef Ma, P., Jia, Y.D., Prashanth, K.G., Scudino, S., Yu, Z.S., Eckert, J.: Microstructure and phase formation in Al-20Si-5Fe-3Cu-1Mg synthesized by selective laser melting. J. Alloys Compd. 657, 430–435 (2016)CrossRef
100.
Zurück zum Zitat Tian, Z., Zhang, C., Wang, D., Liu, W., Fang, X., Wellmann, D., Zhao, Y., Tian, Y.: A review on laser powder bed fusion of inconel 625 nickel-based alloy. Appl. Sci. 10(1), 81 (2019)CrossRef Tian, Z., Zhang, C., Wang, D., Liu, W., Fang, X., Wellmann, D., Zhao, Y., Tian, Y.: A review on laser powder bed fusion of inconel 625 nickel-based alloy. Appl. Sci. 10(1), 81 (2019)CrossRef
101.
Zurück zum Zitat Clare, A.T., Chalker, P.R., Davies, S., Sutcli-e, C.J., Tsopanos, S.: Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int. J. Mech. Mater. Des. 4, 181–187 (2008)CrossRef Clare, A.T., Chalker, P.R., Davies, S., Sutcli-e, C.J., Tsopanos, S.: Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int. J. Mech. Mater. Des. 4, 181–187 (2008)CrossRef
102.
Zurück zum Zitat DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components-Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W.: Additive manufacturing of metallic components-Process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef
103.
Zurück zum Zitat Wang, X., Carter, L.N., Pang, B., Attallah, M.M., Loretto, M.H.: Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy. Acta Mater. 128, 87–95 (2017)CrossRef Wang, X., Carter, L.N., Pang, B., Attallah, M.M., Loretto, M.H.: Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy. Acta Mater. 128, 87–95 (2017)CrossRef
104.
Zurück zum Zitat R. Lachmayer, Y. A. Zghair, C. Klose and F. Nürnberger. Introducing selective laser melting to manufacture machine elements, international design conference – design. 831–842 (2016) R. Lachmayer, Y. A. Zghair, C. Klose and F. Nürnberger. Introducing selective laser melting to manufacture machine elements, international design conference – design. 831–842 (2016)
105.
Zurück zum Zitat Spears, T.G., Gold, A.: In-procress sensing in selective laser melting (SLM) additive manufacturing, Integrating materials and Manufacturing. Innovation 5, 16–40 (2016) Spears, T.G., Gold, A.: In-procress sensing in selective laser melting (SLM) additive manufacturing, Integrating materials and Manufacturing. Innovation 5, 16–40 (2016)
106.
Zurück zum Zitat Asgari, H., Baxter, C., Hosseinkhani, K., Mohammadi, M.: On microstructure and mechanical properties of additively manufactured AlSi10Mg 200C usingrecycled powder. Mater. Sci. Eng: A 707, 148–158 (2017)CrossRef Asgari, H., Baxter, C., Hosseinkhani, K., Mohammadi, M.: On microstructure and mechanical properties of additively manufactured AlSi10Mg 200C usingrecycled powder. Mater. Sci. Eng: A 707, 148–158 (2017)CrossRef
107.
Zurück zum Zitat Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef Olakanmi, E.O., Cochrane, R.F., Dalgarno, K.W.: A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74, 401–477 (2015)CrossRef
108.
Zurück zum Zitat Bin Anwar, A., Cuong Pham, Q.: Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength. J. Mater. Process. Technol. 240, 388–396 (2017)CrossRef Bin Anwar, A., Cuong Pham, Q.: Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength. J. Mater. Process. Technol. 240, 388–396 (2017)CrossRef
109.
Zurück zum Zitat Trevisan, F., et al.: On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials 10, 76 (2017)CrossRef Trevisan, F., et al.: On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials 10, 76 (2017)CrossRef
110.
Zurück zum Zitat Krishnan, M., et al.: On the effect of process parameters on properties ofAlSi10Mg parts produced by DMLS. Rapid Prototype. J. 20, 449–458 (2014)CrossRef Krishnan, M., et al.: On the effect of process parameters on properties ofAlSi10Mg parts produced by DMLS. Rapid Prototype. J. 20, 449–458 (2014)CrossRef
111.
Zurück zum Zitat Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.-P.: Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization. Mater. Sci. Technol. 31, 917–923 (2015)CrossRef Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.-P.: Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization. Mater. Sci. Technol. 31, 917–923 (2015)CrossRef
112.
Zurück zum Zitat Read, N., Wang, W., Essa, K., Attallah, M.M.: Selective laser melting of AlSi10Mgalloy: process optimization and mechanical properties development. Mater. Des. 65, 417–424 (2015)CrossRef Read, N., Wang, W., Essa, K., Attallah, M.M.: Selective laser melting of AlSi10Mgalloy: process optimization and mechanical properties development. Mater. Des. 65, 417–424 (2015)CrossRef
113.
Zurück zum Zitat Spierings, A.B., Herres, N., Levy, G.: Influence of the particle size distribution on surface quality and mechanical properties in additive manufactured stainless steel parts. In: Annual international solid freeform fabrication symposium, pp. 397–406. USA. University of Texas in Austin, Texas (2010) Spierings, A.B., Herres, N., Levy, G.: Influence of the particle size distribution on surface quality and mechanical properties in additive manufactured stainless steel parts. In: Annual international solid freeform fabrication symposium, pp. 397–406. USA. University of Texas in Austin, Texas (2010)
114.
Zurück zum Zitat Delgado, J., Ciurana, J.: Rodríguez CA Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60, 601–610 (2012)CrossRef Delgado, J., Ciurana, J.: Rodríguez CA Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60, 601–610 (2012)CrossRef
115.
Zurück zum Zitat Cherry, J.A., Davies, H.M., Mehmood, S., Lavery, N.P., Brown, S.G.R., Sienz, J.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76, 869–879 (2014)CrossRef Cherry, J.A., Davies, H.M., Mehmood, S., Lavery, N.P., Brown, S.G.R., Sienz, J.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76, 869–879 (2014)CrossRef
116.
Zurück zum Zitat Król, M., Kujawa, M., Dobrzański, L.A.: Tański T Influence of technological parameters on additive manufacturing steel parts in selective laser sintering. Arch. Mater. Sci. Eng. 67(2), 84–92 (2014) Król, M., Kujawa, M., Dobrzański, L.A.: Tański T Influence of technological parameters on additive manufacturing steel parts in selective laser sintering. Arch. Mater. Sci. Eng. 67(2), 84–92 (2014)
117.
Zurück zum Zitat Yakout, Mostafa, Andrea Cadamuro, M. Elbestawi, and Stephen Veldhuis. "The selection of process parameters in additive manufacturing for aerospace alloys." International Journal of Advanced Manufacturing Technology 92 (2017) Yakout, Mostafa, Andrea Cadamuro, M. Elbestawi, and Stephen Veldhuis. "The selection of process parameters in additive manufacturing for aerospace alloys." International Journal of Advanced Manufacturing Technology 92 (2017)
118.
Zurück zum Zitat Wang, L., Dong, C., Kong, D., Man, C., Liang, J., Wang, C., Li, X. The Effect of Manufacturing Parameters on the Mechanical and Corrosion Behavior of Selective Laser Melted 15‐5PH Stainless Steel. Steel Research International. 1900447 (2019) Wang, L., Dong, C., Kong, D., Man, C., Liang, J., Wang, C., Li, X. The Effect of Manufacturing Parameters on the Mechanical and Corrosion Behavior of Selective Laser Melted 15‐5PH Stainless Steel. Steel Research International. 1900447 (2019)
119.
Zurück zum Zitat Choo, H., Sham, K.-L., Bohling, J., Ngo, A., Xiao, X., Ren, Y., Depond, P.J., Matthews, M.J., Garlea, E.: Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 164, 107534 (2019)CrossRef Choo, H., Sham, K.-L., Bohling, J., Ngo, A., Xiao, X., Ren, Y., Depond, P.J., Matthews, M.J., Garlea, E.: Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 164, 107534 (2019)CrossRef
120.
Zurück zum Zitat Pan, Lu., Cheng-Lin, Z., Liang, W., Tong, L., Xiao-Cheng, Li.: Research on mechanical properties and microstructure by selective laser melting of 316L stainless steel. Materials Research Express. 6(12), 12657 (2019) Pan, Lu., Cheng-Lin, Z., Liang, W., Tong, L., Xiao-Cheng, Li.: Research on mechanical properties and microstructure by selective laser melting of 316L stainless steel. Materials Research Express. 6(12), 12657 (2019)
121.
Zurück zum Zitat Larimian, Aban, Kannan, Manigandan, Grzesiak, Dariusz, AlMangour, Bandar, Borkar, Tushar: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A. 770, 138455 (2020)CrossRef Larimian, Aban, Kannan, Manigandan, Grzesiak, Dariusz, AlMangour, Bandar, Borkar, Tushar: Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Materials Science and Engineering: A. 770, 138455 (2020)CrossRef
122.
Zurück zum Zitat Hacısalihoğlu, Ilyas, Yıldiz, Fatih, Çelik, Ayhan: The effects of build orientation and hatch spacing on mechanical properties of medical Ti–6Al–4V alloy manufactured by selective laser melting. Mater. Sci. Eng. A. 802, 140649 (2021)CrossRef Hacısalihoğlu, Ilyas, Yıldiz, Fatih, Çelik, Ayhan: The effects of build orientation and hatch spacing on mechanical properties of medical Ti–6Al–4V alloy manufactured by selective laser melting. Mater. Sci. Eng. A. 802, 140649 (2021)CrossRef
123.
Zurück zum Zitat Amir mahyar Khorasani: Ian Gibson, Umar Shafique Awan, Alireza Ghaderi, The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit. Manuf. 25, 176–186 (2019) Amir mahyar Khorasani: Ian Gibson, Umar Shafique Awan, Alireza Ghaderi, The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit. Manuf. 25, 176–186 (2019)
124.
Zurück zum Zitat Koutiri, I., Pessard, E., Peyre, P., Amlou, O., De Terris, T.: Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 255, 536–546 (2018)CrossRef Koutiri, I., Pessard, E., Peyre, P., Amlou, O., De Terris, T.: Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 255, 536–546 (2018)CrossRef
125.
Zurück zum Zitat Polozov, I., Sufiiarov, V., Kantyukov, A., Popovich, A.: Selective Laser Melting of Ti2AlNb-based intermetallic alloy using elemental powders: Effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics 112, 106554 (2019)CrossRef Polozov, I., Sufiiarov, V., Kantyukov, A., Popovich, A.: Selective Laser Melting of Ti2AlNb-based intermetallic alloy using elemental powders: Effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics 112, 106554 (2019)CrossRef
126.
Zurück zum Zitat Tucho, W.M., Lysne, V.H., Austbø, H., Sjolyst-Kverneland, A., Hansen, V.: Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloy. Compd. 740, 910–925 (2018)CrossRef Tucho, W.M., Lysne, V.H., Austbø, H., Sjolyst-Kverneland, A., Hansen, V.: Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J. Alloy. Compd. 740, 910–925 (2018)CrossRef
127.
Zurück zum Zitat Cherry, J.A., Davies, H.M., Mehmood, S., et al.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76, 869–879 (2015)CrossRef Cherry, J.A., Davies, H.M., Mehmood, S., et al.: Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 76, 869–879 (2015)CrossRef
128.
Zurück zum Zitat Wohlers, T.T. Caffrey, T., Wohlers Report : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report,” Wohlers Associates.(2015). Wohlers, T.T. Caffrey, T., Wohlers Report : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report,” Wohlers Associates.(2015).
129.
Zurück zum Zitat Strano, G., Hao, L., Everson, R.M., Evans, K.E.: Surface roughness analysis, modeling and prediction in selective laser melting. J. Mater. Process. Technol. 213(4), 589–597 (2013)CrossRef Strano, G., Hao, L., Everson, R.M., Evans, K.E.: Surface roughness analysis, modeling and prediction in selective laser melting. J. Mater. Process. Technol. 213(4), 589–597 (2013)CrossRef
130.
Zurück zum Zitat Krishnan, M., Atzeni, E., Canali, R., Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L.: On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS". Rapid Prototyping Journal 6(20), 449–458 (2014)CrossRef Krishnan, M., Atzeni, E., Canali, R., Calignano, F., Manfredi, D., Ambrosio, E.P., Iuliano, L.: On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS". Rapid Prototyping Journal 6(20), 449–458 (2014)CrossRef
131.
Zurück zum Zitat Rao, Bheemavarapu Subba, Thella Babu Rao.: "Mechanical and Tribological Properties of 3D printed Al-Si alloys and composites: a Review." Silicon: 1–32 (2021) Rao, Bheemavarapu Subba, Thella Babu Rao.: "Mechanical and Tribological Properties of 3D printed Al-Si alloys and composites: a Review." Silicon: 1–32 (2021)
132.
Zurück zum Zitat Delgado, J., Ciurana, J., Rodríguez, C.A.: Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60, 601–610 (2012)CrossRef Delgado, J., Ciurana, J., Rodríguez, C.A.: Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60, 601–610 (2012)CrossRef
133.
Zurück zum Zitat Calignano, F., Manfredi, D., Ambrosio, E.P., et al.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67, 2743–2751 (2013)CrossRef Calignano, F., Manfredi, D., Ambrosio, E.P., et al.: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67, 2743–2751 (2013)CrossRef
134.
Zurück zum Zitat Naiju, C.D., Annamalai, K., Manoj, P.K., Ayaz, K.M.: Investigation on the Effect of Process Parameters on Hardness of Components Produced by Direct Metal Laser Sintering (DMLS). Advanced Materials Research 488–489, 1414–2141 (2013) Naiju, C.D., Annamalai, K., Manoj, P.K., Ayaz, K.M.: Investigation on the Effect of Process Parameters on Hardness of Components Produced by Direct Metal Laser Sintering (DMLS). Advanced Materials Research 488–489, 1414–2141 (2013)
135.
Zurück zum Zitat Kuo, C.C., Yang, X.Y.: Optimization of direct metal printing process parameters for plastic injection mold with both gas permeability and mechanical properties using design of experiments approach. Int J Adv Manuf Technol 109, 1219–1235 (2020)CrossRef Kuo, C.C., Yang, X.Y.: Optimization of direct metal printing process parameters for plastic injection mold with both gas permeability and mechanical properties using design of experiments approach. Int J Adv Manuf Technol 109, 1219–1235 (2020)CrossRef
136.
Zurück zum Zitat Keshavarzkermani, A., Marzbanrad, E., Esmaeilizadeh, R., Mahmoodkhani, Y., Ali, U., Enrique, P.D., Zhou, N.Y., Bonakdar, A., Toyserkani, E.: An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion. Opt. Laser Technol. 116, 83–91 (2019)CrossRef Keshavarzkermani, A., Marzbanrad, E., Esmaeilizadeh, R., Mahmoodkhani, Y., Ali, U., Enrique, P.D., Zhou, N.Y., Bonakdar, A., Toyserkani, E.: An investigation into the effect of process parameters on melt pool geometry, cell spacing, and grain refinement during laser powder bed fusion. Opt. Laser Technol. 116, 83–91 (2019)CrossRef
137.
Zurück zum Zitat Levkulich, N.C., Semiatin, S.L., Gockel, J.E., Middendorf, J.R., DeWald, A.T., Klingbeil, N.W.: The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 28, 475–484 (2019) Levkulich, N.C., Semiatin, S.L., Gockel, J.E., Middendorf, J.R., DeWald, A.T., Klingbeil, N.W.: The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. 28, 475–484 (2019)
138.
Zurück zum Zitat Manfredi, D., et al.: From powders to dense metal parts: characterization of commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6, 856–869 (2013)CrossRef Manfredi, D., et al.: From powders to dense metal parts: characterization of commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6, 856–869 (2013)CrossRef
139.
Zurück zum Zitat Bai, Yuchao, Cuiling Zhao, Yu., Zhang, Hao Wang: Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel. Mater. Sci. Eng.: A 802, 140630 (2021)CrossRef Bai, Yuchao, Cuiling Zhao, Yu., Zhang, Hao Wang: Microstructure and mechanical properties of additively manufactured multi-material component with maraging steel on CrMn steel. Mater. Sci. Eng.: A 802, 140630 (2021)CrossRef
140.
Zurück zum Zitat Kučerová, Ludmila, Burdová, Karolina, Jeníček, Štěpán, Chena, Iveta: Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 12709 maraging steel. Mater. Sci. Eng: A 814, 141195 (2021)CrossRef Kučerová, Ludmila, Burdová, Karolina, Jeníček, Štěpán, Chena, Iveta: Effect of solution annealing and precipitation hardening at 250 °C–550 °C on microstructure and mechanical properties of additively manufactured 12709 maraging steel. Mater. Sci. Eng: A 814, 141195 (2021)CrossRef
141.
Zurück zum Zitat Song J., Tang Q., Feng Q., Ma S., Han Q., Setchi R. (2021) Effect of Remelting Process on Surface Quality and Tensile Behaviour of a Maraging Steel Manufactured by Selective Laser Melting. In: Scholz S.G., Howlett R.J., Setchi R. (eds) Sustainable Design and Manufacturing , Sustainable Design and Manufacturing (2020 )251–260 Song J., Tang Q., Feng Q., Ma S., Han Q., Setchi R. (2021) Effect of Remelting Process on Surface Quality and Tensile Behaviour of a Maraging Steel Manufactured by Selective Laser Melting. In: Scholz S.G., Howlett R.J., Setchi R. (eds) Sustainable Design and Manufacturing , Sustainable Design and Manufacturing (2020 )251–260
142.
Zurück zum Zitat Félix-Martínez, C., Ibarra-Medina, J., Fernández-Benavides, D.A. et al. Effect of the parametric optimization and heat-treatment on the 18Ni-300 maraging steel microstructural properties manufactured by directed energy deposition. Int J Adv Manuf Technol (2021). Félix-Martínez, C., Ibarra-Medina, J., Fernández-Benavides, D.A. et al. Effect of the parametric optimization and heat-treatment on the 18Ni-300 maraging steel microstructural properties manufactured by directed energy deposition. Int J Adv Manuf Technol (2021).
143.
Zurück zum Zitat Hovig, E.W., Azar, A.S., Solberg, K., et al.: An investigation of the anisotropic properties of heat-treated maraging steel grade 300 processed by laser powder bed fusion. Int J Adv Manuf Technol 114, 1359–1372 (2021)CrossRef Hovig, E.W., Azar, A.S., Solberg, K., et al.: An investigation of the anisotropic properties of heat-treated maraging steel grade 300 processed by laser powder bed fusion. Int J Adv Manuf Technol 114, 1359–1372 (2021)CrossRef
144.
Zurück zum Zitat Lee, S.H.W., Choo, H.L., Mok, S.H., et al.: Permeability and Mechanical Properties of Additively Manufactured Porous Maraging 300 Steel. Lasers Manuf. Mater. Process. 8, 28–44 (2021)CrossRef Lee, S.H.W., Choo, H.L., Mok, S.H., et al.: Permeability and Mechanical Properties of Additively Manufactured Porous Maraging 300 Steel. Lasers Manuf. Mater. Process. 8, 28–44 (2021)CrossRef
145.
Zurück zum Zitat Bai, Y., Yang, Y., Wang, Di., Zhang, M.: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng., A 703, 116–123 (2017)CrossRef Bai, Y., Yang, Y., Wang, Di., Zhang, M.: Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater. Sci. Eng., A 703, 116–123 (2017)CrossRef
146.
Zurück zum Zitat Tian, J., Huang, Z., Qi, W., Li, Y., Liu, J., Hu, G. Dependence of microstructure, relative density and hardness of 18Ni-300 maraging steel fabricated by selective laser melting on the energy density. InChinese Materials Conference (pp. 229-241). Springer, Singapore (2017) Tian, J., Huang, Z., Qi, W., Li, Y., Liu, J., Hu, G. Dependence of microstructure, relative density and hardness of 18Ni-300 maraging steel fabricated by selective laser melting on the energy density. InChinese Materials Conference (pp. 229-241). Springer, Singapore (2017)
147.
Zurück zum Zitat Apparao, D., and MV Jagannadha Raju. "Experimental Investigation on Maraging Steel Metal Deposition Using DMLS Process." In International Conference on Emerging Trends in Engineering (ICETE), pp. 721–730. Springer, Cham, 2020. Apparao, D., and MV Jagannadha Raju. "Experimental Investigation on Maraging Steel Metal Deposition Using DMLS Process." In International Conference on Emerging Trends in Engineering (ICETE), pp. 721–730. Springer, Cham, 2020.
148.
Zurück zum Zitat Casalino, G., et al.: Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt. Laser Technol. 65, 151–158 (2015)CrossRef Casalino, G., et al.: Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt. Laser Technol. 65, 151–158 (2015)CrossRef
149.
Zurück zum Zitat Wang, Y., Luo, L., Liu, T., Wang, B., Luo, L., Zhao, J., Wang, L., Yanqing, Su., Guo, J., Hengzhi, Fu.: Tuning process parameters to optimize microstructure and mechanical properties of novel maraging steel fabricated by selective laser melting. Mater. Sci. Eng., A 823, 141740 (2021)CrossRef Wang, Y., Luo, L., Liu, T., Wang, B., Luo, L., Zhao, J., Wang, L., Yanqing, Su., Guo, J., Hengzhi, Fu.: Tuning process parameters to optimize microstructure and mechanical properties of novel maraging steel fabricated by selective laser melting. Mater. Sci. Eng., A 823, 141740 (2021)CrossRef
150.
Zurück zum Zitat Sarafan, S., Wanjara, P., Gholipour, J., Bernier, F., Osman, M., Sikan, F., Molavi-Zarandi, M., Soost, J., Brochu, M.: Evaluation of maraging steel produced using hybrid additive/subtractive manufacturing. Journal of Manufacturing and Materials Processing 5(4), 107 (2021)CrossRef Sarafan, S., Wanjara, P., Gholipour, J., Bernier, F., Osman, M., Sikan, F., Molavi-Zarandi, M., Soost, J., Brochu, M.: Evaluation of maraging steel produced using hybrid additive/subtractive manufacturing. Journal of Manufacturing and Materials Processing 5(4), 107 (2021)CrossRef
151.
Zurück zum Zitat Suzuki, A., Nishida, R., Takata, N., Kobashi, M., Kato, M.: Design of laser parameters for selectively laser melted maraging steel based on deposited energy density. Addit. Manuf. 28, 160–168 (2019) Suzuki, A., Nishida, R., Takata, N., Kobashi, M., Kato, M.: Design of laser parameters for selectively laser melted maraging steel based on deposited energy density. Addit. Manuf. 28, 160–168 (2019)
152.
Zurück zum Zitat Bai, Yuchao, Lee, Yan Jin, Li, Chaojiang, Wang, Hao: Densification behavior and influence of building direction on high anisotropy in selective laser melting of high-strength 18Ni-Co-Mo-Ti maraging steel. Metall. Mater. Trans. A 51(11), 5861–5879 (2020)CrossRef Bai, Yuchao, Lee, Yan Jin, Li, Chaojiang, Wang, Hao: Densification behavior and influence of building direction on high anisotropy in selective laser melting of high-strength 18Ni-Co-Mo-Ti maraging steel. Metall. Mater. Trans. A 51(11), 5861–5879 (2020)CrossRef
153.
Zurück zum Zitat Yao, Y., Huang, Y., Chen, Bo., Tan, C., Yi, Su., Feng, J.: Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition. Opt. Laser Technol. 105, 171–179 (2018)CrossRef Yao, Y., Huang, Y., Chen, Bo., Tan, C., Yi, Su., Feng, J.: Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition. Opt. Laser Technol. 105, 171–179 (2018)CrossRef
154.
Zurück zum Zitat Mutua, James, et al.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–497 (2018)CrossRef Mutua, James, et al.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–497 (2018)CrossRef
155.
Zurück zum Zitat ] Li, Gan, Cheng Guo, Wen Feng Guo, Hong Xing Lu, Lin Ju Wen, Xiao Gang Hu, and Qiang Zhu. "Influence of Selective Laser Melting Process Parameters on Densification Behavior, Surface Quality and Hardness of 18Ni300 Steel." In Key Engineering Materials, vol. 861, pp. 77–82. Trans Tech Publications Ltd, 2020. ] Li, Gan, Cheng Guo, Wen Feng Guo, Hong Xing Lu, Lin Ju Wen, Xiao Gang Hu, and Qiang Zhu. "Influence of Selective Laser Melting Process Parameters on Densification Behavior, Surface Quality and Hardness of 18Ni300 Steel." In Key Engineering Materials, vol. 861, pp. 77–82. Trans Tech Publications Ltd, 2020.
156.
Zurück zum Zitat Fortunato, A., Lulaj, A., Melkote, S., Liverani, E., Ascari, A., Umbrello, D.: Milling of maraging steel components produced by selective laser melting. Int. J. Adv. Manuf. Technol. 94(5), 1895–1902 (2018)CrossRef Fortunato, A., Lulaj, A., Melkote, S., Liverani, E., Ascari, A., Umbrello, D.: Milling of maraging steel components produced by selective laser melting. Int. J. Adv. Manuf. Technol. 94(5), 1895–1902 (2018)CrossRef
157.
Zurück zum Zitat Mugwagwa, L., Yadroitsev, I., Matope, S.: Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals 9(10), 1042 (2019)CrossRef Mugwagwa, L., Yadroitsev, I., Matope, S.: Effect of process parameters on residual stresses, distortions, and porosity in selective laser melting of maraging steel 300. Metals 9(10), 1042 (2019)CrossRef
158.
Zurück zum Zitat Apparao, D., Jagannadha Raju, M.V.: Experimental investigation on hardness, microstructure and surface roughness of maraging steel parts produced by direct metal laser sintering technique. Int J Mech Prod Eng Res Dev (IJMPERD) 8(2), 629–636 (2018) Apparao, D., Jagannadha Raju, M.V.: Experimental investigation on hardness, microstructure and surface roughness of maraging steel parts produced by direct metal laser sintering technique. Int J Mech Prod Eng Res Dev (IJMPERD) 8(2), 629–636 (2018)
159.
Zurück zum Zitat Sachdeva, A., Singh, S., Sharma, V.S.: Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol 64, 1505–1511 (2013)CrossRef Sachdeva, A., Singh, S., Sharma, V.S.: Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol 64, 1505–1511 (2013)CrossRef
160.
Zurück zum Zitat Wüst, P., Edelmann, A., Hellmann, R.: Areal surface roughness optimization of maraging steel parts produced by hybrid additive manufacturing. Materials 13(2), 418 (2020)CrossRef Wüst, P., Edelmann, A., Hellmann, R.: Areal surface roughness optimization of maraging steel parts produced by hybrid additive manufacturing. Materials 13(2), 418 (2020)CrossRef
161.
Zurück zum Zitat Shamsdini, SeyedAmirReza., Shakerin, Sajad, Hadadzadeh, Amir, Amirkhiz, Babak Shalchi, Mohammadi, Mohsen: A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater. Sci. Eng.: A 776, 139041 (2020)CrossRef Shamsdini, SeyedAmirReza., Shakerin, Sajad, Hadadzadeh, Amir, Amirkhiz, Babak Shalchi, Mohammadi, Mohsen: A trade-off between powder layer thickness and mechanical properties in additively manufactured maraging steels. Mater. Sci. Eng.: A 776, 139041 (2020)CrossRef
162.
Zurück zum Zitat Chadha, Kanwal, Tian, Yuan, Bocher, Philippe, Spray, John G., Jr, Clodualdo Aranas: Microstructure evolution, mechanical properties and deformation behavior of an additively manufactured maraging steel. Materials 13(10), 2380 (2020)CrossRef Chadha, Kanwal, Tian, Yuan, Bocher, Philippe, Spray, John G., Jr, Clodualdo Aranas: Microstructure evolution, mechanical properties and deformation behavior of an additively manufactured maraging steel. Materials 13(10), 2380 (2020)CrossRef
163.
Zurück zum Zitat de Souza, Adriano, Fagali, Kassim S., Al-Rubaie, Sabrina Marques, Zluhan, Bruno, Santos, Edson Costa: Effect of laser speed, layer thickness, and part position on the mechanical properties of maraging 300 parts manufactured by selective laser melting. Mater. Sci. Eng.: A 767, 138425 (2019)CrossRef de Souza, Adriano, Fagali, Kassim S., Al-Rubaie, Sabrina Marques, Zluhan, Bruno, Santos, Edson Costa: Effect of laser speed, layer thickness, and part position on the mechanical properties of maraging 300 parts manufactured by selective laser melting. Mater. Sci. Eng.: A 767, 138425 (2019)CrossRef
164.
Zurück zum Zitat Yasa, Evren, Karolien Kempen, Jean-Pierre Kruth, Lore Thijs, and Jan Van Humbeeck. "Microstructure and mechanical properties of maraging steel 300 after selective laser melting." In Solid freeform fabrication symposium proceedings. 383–396 (2010) Yasa, Evren, Karolien Kempen, Jean-Pierre Kruth, Lore Thijs, and Jan Van Humbeeck. "Microstructure and mechanical properties of maraging steel 300 after selective laser melting." In Solid freeform fabrication symposium proceedings. 383–396 (2010)
165.
Zurück zum Zitat Król, M., Snopiński, P., Hajnyš, J., Pagáč, M., Łukowiec, D.: Selective laser melting of 18NI-300 maraging steel. Materials 13(19), 4268 (2020)CrossRef Król, M., Snopiński, P., Hajnyš, J., Pagáč, M., Łukowiec, D.: Selective laser melting of 18NI-300 maraging steel. Materials 13(19), 4268 (2020)CrossRef
166.
Zurück zum Zitat Shamsdini, SeyedAmirReza., Ghoncheh, M.H., Sanjari, Mehdi, Pirgazi, Hadi, Amirkhiz, Babak Shalchi, Kestens, Leo, Mohammadi, Mohsen: Plastic deformation throughout strain-induced phase transformation in additively manufactured maraging steels. Mater. Des. 198, 109289 (2021)CrossRef Shamsdini, SeyedAmirReza., Ghoncheh, M.H., Sanjari, Mehdi, Pirgazi, Hadi, Amirkhiz, Babak Shalchi, Kestens, Leo, Mohammadi, Mohsen: Plastic deformation throughout strain-induced phase transformation in additively manufactured maraging steels. Mater. Des. 198, 109289 (2021)CrossRef
167.
Zurück zum Zitat Cyr, E., Lloyd, A., Mohammadi, M.: Tension-compression asymmetry of additively manufactured Maraging steel. J. Manuf. Process. 35, 289–294 (2018)CrossRef Cyr, E., Lloyd, A., Mohammadi, M.: Tension-compression asymmetry of additively manufactured Maraging steel. J. Manuf. Process. 35, 289–294 (2018)CrossRef
168.
Zurück zum Zitat Bhardwaj, T., Shukla, M.: Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater. Sci. Eng., A 734, 102–109 (2018)CrossRef Bhardwaj, T., Shukla, M.: Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel. Mater. Sci. Eng., A 734, 102–109 (2018)CrossRef
169.
Zurück zum Zitat Damon, J., Hanemann, T., Dietrich, S., Graf, G., Lang, K.-H., Schulze, V.: Orientation dependent fatigue performance and mechanisms of selective laser melted maraging steel X3NiCoMoTi18-9-5. Int. J. Fatigue 127, 395–402 (2019)CrossRef Damon, J., Hanemann, T., Dietrich, S., Graf, G., Lang, K.-H., Schulze, V.: Orientation dependent fatigue performance and mechanisms of selective laser melted maraging steel X3NiCoMoTi18-9-5. Int. J. Fatigue 127, 395–402 (2019)CrossRef
170.
Zurück zum Zitat Tan, C., Zhou, K., Kuang, M., Ma, W., Kuang, T.: Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci. Technol. Adv. Mater. 19(1), 746–758 (2018)CrossRef Tan, C., Zhou, K., Kuang, M., Ma, W., Kuang, T.: Microstructural characterization and properties of selective laser melted maraging steel with different build directions. Sci. Technol. Adv. Mater. 19(1), 746–758 (2018)CrossRef
171.
Zurück zum Zitat Bhardwaj, T., Shukla, M.: Direct metal laser sintering of maraging steel: effect of building orientation on surface roughness and microhardness. Materials Today: Proceedings 5(9), 20485–20491 (2018) Bhardwaj, T., Shukla, M.: Direct metal laser sintering of maraging steel: effect of building orientation on surface roughness and microhardness. Materials Today: Proceedings 5(9), 20485–20491 (2018)
172.
Zurück zum Zitat Ansell, T.Y., Ricks, J.P., Park, C., Tipper, C.S., Luhrs, C.C.: Mechanical Properties of 3D-Printed Maraging Steel Induced by Environmental Exposure. Metals 10(2), 218 (2020)CrossRef Ansell, T.Y., Ricks, J.P., Park, C., Tipper, C.S., Luhrs, C.C.: Mechanical Properties of 3D-Printed Maraging Steel Induced by Environmental Exposure. Metals 10(2), 218 (2020)CrossRef
173.
Zurück zum Zitat Schmidova, Eva, Přemysl Hojka, Bohumil Culek, Filip Klejch, and Michal Schmid. "Dynamic strength and anisotropy of DMLS manufactured maraging steel." Komunikácie: Communications (Scientific Letters of the University of Žilina), volume 21, issue: 3 (2019) Schmidova, Eva, Přemysl Hojka, Bohumil Culek, Filip Klejch, and Michal Schmid. "Dynamic strength and anisotropy of DMLS manufactured maraging steel." Komunikácie: Communications (Scientific Letters of the University of Žilina), volume 21, issue: 3 (2019)
174.
Zurück zum Zitat Song, J., Tang, Q., Feng, Q., Ma, S., Setchi, R., Liu, Y., Han, Q., Fan, X., Zhang, M.: Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt. Laser Technol. 120, 105725 (2019)CrossRef Song, J., Tang, Q., Feng, Q., Ma, S., Setchi, R., Liu, Y., Han, Q., Fan, X., Zhang, M.: Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting. Opt. Laser Technol. 120, 105725 (2019)CrossRef
175.
Zurück zum Zitat Vishwakarma, Jaydeep, Chattopadhyay, K., Santhi, N.C., Srinivas.: Effect of build orientation on microstructure and tensile behaviour of selectively laser melted M300 maraging steel. Materials Science and Engineering: A 798, 140130 (2020)CrossRef Vishwakarma, Jaydeep, Chattopadhyay, K., Santhi, N.C., Srinivas.: Effect of build orientation on microstructure and tensile behaviour of selectively laser melted M300 maraging steel. Materials Science and Engineering: A 798, 140130 (2020)CrossRef
176.
Zurück zum Zitat Yao, Yi., Wang, K., Wang, X., Li, L., Cai, W., Kelly, S., Esparragoza, N., Rosser, M., Yan, F.: Microstructural heterogeneity and mechanical anisotropy of 18Ni-330 maraging steel fabricated by selective laser melting: The effect of build orientation and height. J. Mater. Res. 35(15), 2065–2076 (2020)CrossRef Yao, Yi., Wang, K., Wang, X., Li, L., Cai, W., Kelly, S., Esparragoza, N., Rosser, M., Yan, F.: Microstructural heterogeneity and mechanical anisotropy of 18Ni-330 maraging steel fabricated by selective laser melting: The effect of build orientation and height. J. Mater. Res. 35(15), 2065–2076 (2020)CrossRef
177.
Zurück zum Zitat Kim, Dohyung, Kim, Taehwan, Ha, Kyeongsik, Oak, Jeong-Jung., Jeon, Jong Bae, Park, Yongho, Lee, Wookjin: Effect of heat treatment condition on microstructural and mechanical anisotropies of selective laser melted maraging 18Ni-300 steel. Metals 10(3), 410 (2020)CrossRef Kim, Dohyung, Kim, Taehwan, Ha, Kyeongsik, Oak, Jeong-Jung., Jeon, Jong Bae, Park, Yongho, Lee, Wookjin: Effect of heat treatment condition on microstructural and mechanical anisotropies of selective laser melted maraging 18Ni-300 steel. Metals 10(3), 410 (2020)CrossRef
178.
Zurück zum Zitat Mutua, James, et al.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–49 (2018)CrossRef Mutua, James, et al.: Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater. Des. 139, 486–49 (2018)CrossRef
179.
Zurück zum Zitat Fernandes, Rui F., de Jesus, Joel, Borrego, Luís., Vilhena, Luís., Ramalho, Amílcar., Ferreira, José AM.: Influence of Deposition Plane Angle and Saline Corrosion on Fatigue Crack Growth in Maraging Steel Components Produced by Laser Powder Bed Fusion. Metals 12(3), 433 (2022)CrossRef Fernandes, Rui F., de Jesus, Joel, Borrego, Luís., Vilhena, Luís., Ramalho, Amílcar., Ferreira, José AM.: Influence of Deposition Plane Angle and Saline Corrosion on Fatigue Crack Growth in Maraging Steel Components Produced by Laser Powder Bed Fusion. Metals 12(3), 433 (2022)CrossRef
180.
Zurück zum Zitat Mooney, B., Kourousis, K.I., Raghavendra, R., Agius, D.: Process phenomena influencing the tensile and anisotropic characteristics of additively manufactured maraging steel. Mater. Sci. Eng., A 745, 115–125 (2019)CrossRef Mooney, B., Kourousis, K.I., Raghavendra, R., Agius, D.: Process phenomena influencing the tensile and anisotropic characteristics of additively manufactured maraging steel. Mater. Sci. Eng., A 745, 115–125 (2019)CrossRef
Metadaten
Titel
Effect of Process Parameters on Powder Bed Fusion Maraging Steel 300: A Review
verfasst von
Bheemavarapu Subba Rao
Thella Babu Rao
Publikationsdatum
11.07.2022
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing / Ausgabe 3/2022
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-022-00182-6

Weitere Artikel der Ausgabe 3/2022

Lasers in Manufacturing and Materials Processing 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.