Skip to main content
Erschienen in: Journal of Materials Science 14/2024

02.03.2024 | Processing Bulk Nanostructured Materials

Effect of processing Mg–6Zn–0.2Ce through high-pressure torsion on its use as a biomaterial

verfasst von: Lochan Upadhayay, Sagar Nilawar, Chandan Kumar, Kaushik Chatterjee, Praveen Kumar

Erschienen in: Journal of Materials Science | Ausgabe 14/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we investigate the effect of high-pressure torsion (HPT), a severe plastic deformation process, on the mechanical properties, corrosion, and cytotoxicity of Mg–6Zn–0.2Ce alloy, a candidate material for bioresorbable bone implants. This alloy was processed by quasi-constrained HPT by applying a pressure of 6 GPa at room temperature for 1, 2, and 5 turns. Samples processed to two turns of HPT showed the smallest grain size, the highest strength that was approximately five times higher than the as-received coarse-grained sample and a reduction in the ductility. Electrochemical impedance spectroscopy and potentiodynamic polarization demonstrated the highest corrosion resistance for the Mg-alloy processed for two turns of HPT; however, accelerated degradation due to pitting corrosion was observed after immersion in simulated body fluid for 3 days. Nevertheless, all HPT-processed samples showed lower corrosion rates in all corrosion tests compared to their annealed counterparts. Finally, cell culture revealed good cytocompatibility without any noticeable changes in cytotoxicity following HPT processing. Overall, HPT for two turns showed enhanced strength and reduced corrosion rates without loss in cytocompatibility for the Mg–6Zn–0.2Ce alloy, making it a promising strategy to enhance the performance of the alloy as a bioresorbable orthopedic biomaterial. This work highlights the potential of HPT as a viable technique to improve the biomedical performance of Mg alloys for engineering next-generation biomedical implants.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pietrzak WS, Sarver D, Verstynen M (1996) Bioresorbable implants-practical considerationS. Bone 19:109–119CrossRef Pietrzak WS, Sarver D, Verstynen M (1996) Bioresorbable implants-practical considerationS. Bone 19:109–119CrossRef
2.
Zurück zum Zitat Williams DF (2003) Biomaterials and tissue engineering in reconstructive surgery. Sadhana 28:563–574CrossRef Williams DF (2003) Biomaterials and tissue engineering in reconstructive surgery. Sadhana 28:563–574CrossRef
5.
Zurück zum Zitat Kluin OS, Van der Mei HC, Busscher HJ, Neut D (2013) Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv 10:341–351CrossRefPubMed Kluin OS, Van der Mei HC, Busscher HJ, Neut D (2013) Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv 10:341–351CrossRefPubMed
6.
Zurück zum Zitat Amini AR, Wallace JS, Nukavarapu SP (2011) Short-term and long-term effects of orthopedic biodegradable implants. J Long Term Eff Med Implants 21:93–122CrossRefPubMedPubMedCentral Amini AR, Wallace JS, Nukavarapu SP (2011) Short-term and long-term effects of orthopedic biodegradable implants. J Long Term Eff Med Implants 21:93–122CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Bergman C, Gray-Scott D, Chen J-J, Meacham S (2009) What is next for the dietary reference intakes for bone metabolism related nutrients beyond calcium: phosphorus, magnesium, vitamin D, and fluoride? Crit Rev Food Sci Nutr 49:136–144CrossRefPubMed Bergman C, Gray-Scott D, Chen J-J, Meacham S (2009) What is next for the dietary reference intakes for bone metabolism related nutrients beyond calcium: phosphorus, magnesium, vitamin D, and fluoride? Crit Rev Food Sci Nutr 49:136–144CrossRefPubMed
11.
Zurück zum Zitat Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y (2010) Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater 6:626–640CrossRefPubMed Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y (2010) Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater 6:626–640CrossRefPubMed
12.
Zurück zum Zitat Song YL, Liu YH, Wang SH, Yu SR, Zhu XY (2007) Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy. Mater Corros 58:189–192CrossRef Song YL, Liu YH, Wang SH, Yu SR, Zhu XY (2007) Effect of cerium addition on microstructure and corrosion resistance of die cast AZ91 magnesium alloy. Mater Corros 58:189–192CrossRef
13.
Zurück zum Zitat Xie F, Shen J, Song H, Xie X (2018) Effects of cerium and SiC mixed particles on nanoparticle strengthening activated TIG-welded AZ31 Alloy joints. J Mater Res 33:4340–4348CrossRef Xie F, Shen J, Song H, Xie X (2018) Effects of cerium and SiC mixed particles on nanoparticle strengthening activated TIG-welded AZ31 Alloy joints. J Mater Res 33:4340–4348CrossRef
15.
Zurück zum Zitat Sabat RK, Brahme AP, Mishra RK, Inal K, Suwas S (2018) Ductility enhancement in Mg-0.2% Ce alloys. Acta Mater 161:246–257CrossRef Sabat RK, Brahme AP, Mishra RK, Inal K, Suwas S (2018) Ductility enhancement in Mg-0.2% Ce alloys. Acta Mater 161:246–257CrossRef
17.
Zurück zum Zitat Galiyev A, Sitdikov O, Kaibyshev R (2003) Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Mater Trans 44:426–435CrossRef Galiyev A, Sitdikov O, Kaibyshev R (2003) Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy. Mater Trans 44:426–435CrossRef
19.
Zurück zum Zitat Li W, Liu X, Zheng Y, Wang W, Qiao W, Yeung KWK, Cheung KMC, Guan S, Kulyasova OB, Valiev RZ (2020) In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomater Sci 8:5071–5087. https://doi.org/10.1039/d0bm00805bCrossRefPubMed Li W, Liu X, Zheng Y, Wang W, Qiao W, Yeung KWK, Cheung KMC, Guan S, Kulyasova OB, Valiev RZ (2020) In vitro and in vivo studies on ultrafine-grained biodegradable pure Mg, Mg–Ca alloy and Mg–Sr alloy processed by high-pressure torsion. Biomater Sci 8:5071–5087. https://​doi.​org/​10.​1039/​d0bm00805bCrossRefPubMed
24.
Zurück zum Zitat Song D, Ma A, Jiang J, Lin P, Yang D, Fan J (2010) Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros Sci 52:481–490CrossRef Song D, Ma A, Jiang J, Lin P, Yang D, Fan J (2010) Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros Sci 52:481–490CrossRef
26.
Zurück zum Zitat Kim S-M, Jo J-H, Lee S-M, Kang M-H, Kim H-E, Estrin Y, Lee J-H, Lee J-W, Koh Y-H, S-m K et al (2013) Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. J Biomed Mater Res Part A 102:429–441. https://doi.org/10.1002/jbm.a.34718CrossRef Kim S-M, Jo J-H, Lee S-M, Kang M-H, Kim H-E, Estrin Y, Lee J-H, Lee J-W, Koh Y-H, S-m K et al (2013) Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. J Biomed Mater Res Part A 102:429–441. https://​doi.​org/​10.​1002/​jbm.​a.​34718CrossRef
28.
Zurück zum Zitat Światowska J, Volovitch P, Ogle K (2010) The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry. Corros Sci 52:2372–2378CrossRef Światowska J, Volovitch P, Ogle K (2010) The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry. Corros Sci 52:2372–2378CrossRef
29.
Zurück zum Zitat Williams G, Birbilis N, McMurray HN (2013) The source of hydrogen evolved from a magnesium anode. Electrochem commun 36:1–5CrossRef Williams G, Birbilis N, McMurray HN (2013) The source of hydrogen evolved from a magnesium anode. Electrochem commun 36:1–5CrossRef
30.
Zurück zum Zitat Frankel GS, Samaniego A, Birbilis N (2013) Evolution of hydrogen at dissolving magnesium surfaces. Corros Sci 70:104–111CrossRef Frankel GS, Samaniego A, Birbilis N (2013) Evolution of hydrogen at dissolving magnesium surfaces. Corros Sci 70:104–111CrossRef
31.
Zurück zum Zitat Lopes DR, Silva CLP, Soares RB, Pereira HR, Oliveira AC, Figueiredo RB, Langdon TG, Lins VFC (2019) Cytotoxicity and corrosion behavior of magnesium and magnesium alloys in Hank’s solution after processing by high-pressure torsion. Adv Eng Mater 21(8):1900391. https://doi.org/10.1002/adem.201900391CrossRef Lopes DR, Silva CLP, Soares RB, Pereira HR, Oliveira AC, Figueiredo RB, Langdon TG, Lins VFC (2019) Cytotoxicity and corrosion behavior of magnesium and magnesium alloys in Hank’s solution after processing by high-pressure torsion. Adv Eng Mater 21(8):1900391. https://​doi.​org/​10.​1002/​adem.​201900391CrossRef
35.
Zurück zum Zitat American Society for Testing and Materials (Filadelfia, P. ASTM) (2004) G31–72: standard practice for laboratory immersion corrosion testing of metals. ASTM American Society for Testing and Materials (Filadelfia, P. ASTM) (2004) G31–72: standard practice for laboratory immersion corrosion testing of metals. ASTM
36.
Zurück zum Zitat Materials, AS for T. and ASTM G1–03 (2011) Standard practice for preparing, cleaning, and evaluating corrosion test specimens 2011 Materials, AS for T. and ASTM G1–03 (2011) Standard practice for preparing, cleaning, and evaluating corrosion test specimens 2011
54.
Zurück zum Zitat Iso E(1999) Biological evaluation of medical devices-Part 5: tests for cytotoxicity: in vitro methods. German version EN ISO, pp 10993–10995 Iso E(1999) Biological evaluation of medical devices-Part 5: tests for cytotoxicity: in vitro methods. German version EN ISO, pp 10993–10995
55.
Zurück zum Zitat Gonzalez J, Hou RQ, Nidadavolu EPS, Willumeit-Römer R, Feyerabend F (2018) Magnesium degradation under physiological conditions-best practice. Bioact Mater 3:174–185PubMedPubMedCentral Gonzalez J, Hou RQ, Nidadavolu EPS, Willumeit-Römer R, Feyerabend F (2018) Magnesium degradation under physiological conditions-best practice. Bioact Mater 3:174–185PubMedPubMedCentral
56.
Zurück zum Zitat Mackenzie LWF, Pekguleryuz MO (2008) The recrystallization and texture of magnesium–zinc–cerium alloys. Scr Mater 59:665–668CrossRef Mackenzie LWF, Pekguleryuz MO (2008) The recrystallization and texture of magnesium–zinc–cerium alloys. Scr Mater 59:665–668CrossRef
Metadaten
Titel
Effect of processing Mg–6Zn–0.2Ce through high-pressure torsion on its use as a biomaterial
verfasst von
Lochan Upadhayay
Sagar Nilawar
Chandan Kumar
Kaushik Chatterjee
Praveen Kumar
Publikationsdatum
02.03.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 14/2024
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-024-09460-4

Weitere Artikel der Ausgabe 14/2024

Journal of Materials Science 14/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.