Skip to main content
Erschienen in: Metal Science and Heat Treatment 3-4/2022

07.09.2022

Effect of Reinforcement with Ceramic Microparticles on Structure and Properties of Composites with an Aluminum Matrix

verfasst von: Mohammad Hamza, Subrata Mondal

Erschienen in: Metal Science and Heat Treatment | Ausgabe 3-4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of reinforcement with ceramic microparticles of SiC, B4C and Al2O3 on the microstructure and mechanical properties of composite materials with an aluminum matrix produced by powder metallurgy is studied. It is shown that an increase in reinforcing particle concentration gives rise to a substantial increase in composite compressive strength and hardness with an insignificant increase in density. The connection of microstructure morphology with composites properties is demonstrated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. M. Kapatel, “Investigation of green composite: Preparation and characterization of alkali-treated jute fabric-reinforced polymer matrix composites,” J. Nat. Fibers, 18(4), 510 – 519 (2021).CrossRef P. M. Kapatel, “Investigation of green composite: Preparation and characterization of alkali-treated jute fabric-reinforced polymer matrix composites,” J. Nat. Fibers, 18(4), 510 – 519 (2021).CrossRef
2.
Zurück zum Zitat T. Gong, P. Yao, X. Xiong, et al., “Microstructure and tribological behavior of interfaces in Cu – SiO2 and Cu – Cr metal matrix composites,” J. Alloys Compd., 786, 975 – 985 (2019).CrossRef T. Gong, P. Yao, X. Xiong, et al., “Microstructure and tribological behavior of interfaces in Cu – SiO2 and Cu – Cr metal matrix composites,” J. Alloys Compd., 786, 975 – 985 (2019).CrossRef
3.
Zurück zum Zitat Y. Shi, A. Neubrand, and D. Koch, “Characterization of hardness and stiffness of ceramic matrix composites through instrumented indentation test,” Adv. Eng. Mat., 21(5), Art. No. 1800806 (2019). Y. Shi, A. Neubrand, and D. Koch, “Characterization of hardness and stiffness of ceramic matrix composites through instrumented indentation test,” Adv. Eng. Mat., 21(5), Art. No. 1800806 (2019).
4.
Zurück zum Zitat M. Megahed, M. A. Attia, M. Abdelhameed, and A. G. El-Shafei, “Tribological characterization of hybrid metal matrix composites processed by powder metallurgy,” Acta Metall. Sin.-Engl. Lett., 30(8), 781 – 790 (2017). M. Megahed, M. A. Attia, M. Abdelhameed, and A. G. El-Shafei, “Tribological characterization of hybrid metal matrix composites processed by powder metallurgy,” Acta Metall. Sin.-Engl. Lett., 30(8), 781 – 790 (2017).
5.
Zurück zum Zitat G. Ranganath, S. C. Sharma, M. Krishna, and M. S. Muruli, “A study of mechanical properties and fractography of ZA-27 titanium-dioxidemetalmatrixcomposites,” J. Mater. Eng. Perform., 11(4), 408 – 413 (2002).CrossRef G. Ranganath, S. C. Sharma, M. Krishna, and M. S. Muruli, “A study of mechanical properties and fractography of ZA-27 titanium-dioxidemetalmatrixcomposites,” J. Mater. Eng. Perform., 11(4), 408 – 413 (2002).CrossRef
6.
Zurück zum Zitat J. Kumar and S. Mondal, “Microstructure and properties of graphite-reinforced copper matrix composites,” J. Braz. Soc. Mech. Sci., 40(4), Art. No. Unsp. 196 (2018). J. Kumar and S. Mondal, “Microstructure and properties of graphite-reinforced copper matrix composites,” J. Braz. Soc. Mech. Sci., 40(4), Art. No. Unsp. 196 (2018).
7.
Zurück zum Zitat B. Munisamy, V. R. B. Madhavan, E. Chinnadurai, and J. Janardhanan, “Prediction of mechanical properties of Al6061 metal matrix composites reinforced with zircon sand and boron carbide,” Mater. Test., 61(6), 537 – 542 (2019).CrossRef B. Munisamy, V. R. B. Madhavan, E. Chinnadurai, and J. Janardhanan, “Prediction of mechanical properties of Al6061 metal matrix composites reinforced with zircon sand and boron carbide,” Mater. Test., 61(6), 537 – 542 (2019).CrossRef
8.
Zurück zum Zitat N. Larianovsky, V. Popov, A. Katz-Demyanetz, et al., “Production of Al metal matrix composites reinforced with carbon nanotubes by two-stage melt-based HPDC-CE method,” J. Eng. Mater. Technol., 141(1), Art. No. 011002 (2019). N. Larianovsky, V. Popov, A. Katz-Demyanetz, et al., “Production of Al metal matrix composites reinforced with carbon nanotubes by two-stage melt-based HPDC-CE method,” J. Eng. Mater. Technol., 141(1), Art. No. 011002 (2019).
9.
Zurück zum Zitat S. Sharma, P. Kumar, and R. Chandra, “Mechanical and thermal properties of graphene-carbon nanotube-reinforced metal matrix composites: A molecular dynamics study,” J. Compos. Mater., 51(23), 3299 – 3313 (2017).CrossRef S. Sharma, P. Kumar, and R. Chandra, “Mechanical and thermal properties of graphene-carbon nanotube-reinforced metal matrix composites: A molecular dynamics study,” J. Compos. Mater., 51(23), 3299 – 3313 (2017).CrossRef
10.
Zurück zum Zitat S. A. A. Alem, R. Latifi, S. Angizi, et al., “Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review,” Mater. Manuf. Process, 35(3), 303 – 327 (2020).CrossRef S. A. A. Alem, R. Latifi, S. Angizi, et al., “Microwave sintering of ceramic reinforced metal matrix composites and their properties: a review,” Mater. Manuf. Process, 35(3), 303 – 327 (2020).CrossRef
11.
Zurück zum Zitat V.M. Kumar and C. V. Venkatesh, “A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites,” Mater. Res. Express, 6(7), Art. No. 072001 (2019). V.M. Kumar and C. V. Venkatesh, “A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites,” Mater. Res. Express, 6(7), Art. No. 072001 (2019).
12.
Zurück zum Zitat M. S. Kumar, S. R. Begum, and M. Vasumathi, “Influence of stir casting parameters on particle distribution in metal matrix composites using stir casting process,” Mater. Res. Express, 6(10), Art. No. 1065d4 (2019). M. S. Kumar, S. R. Begum, and M. Vasumathi, “Influence of stir casting parameters on particle distribution in metal matrix composites using stir casting process,” Mater. Res. Express, 6(10), Art. No. 1065d4 (2019).
13.
Zurück zum Zitat A. Ramakrishnan and G. P. Dinda, “Functionally graded metal matrix composite of Haynes 282 and SiC fabricated by laser metal deposition,” Mater. Des., 179, Art. No. Unsp. 107877 (2019). A. Ramakrishnan and G. P. Dinda, “Functionally graded metal matrix composite of Haynes 282 and SiC fabricated by laser metal deposition,” Mater. Des., 179, Art. No. Unsp. 107877 (2019).
14.
Zurück zum Zitat Yu. A. Sokolov, N. V. Pavlushin, and S. Yu. Kondrat’ev, “New additive technologies based on ion beams,” Russ. Eng. Res., 36(12), 1012 – 1016 (2016).CrossRef Yu. A. Sokolov, N. V. Pavlushin, and S. Yu. Kondrat’ev, “New additive technologies based on ion beams,” Russ. Eng. Res., 36(12), 1012 – 1016 (2016).CrossRef
15.
Zurück zum Zitat A. I. Rudskoi, S. Yu. Kondrat’ev, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the layer-by-layer synthesis of articles with an electron beam,” Tech. Phys., 60(11), 1663 – 1669 (2015).CrossRef A. I. Rudskoi, S. Yu. Kondrat’ev, Yu. A. Sokolov, and V. N. Kopaev, “Simulation of the layer-by-layer synthesis of articles with an electron beam,” Tech. Phys., 60(11), 1663 – 1669 (2015).CrossRef
16.
Zurück zum Zitat X. Liu, Q. Wang, S. Yu. Kondrat’ev, et al., “Microstructural, mechanical, and damping properties of a Cu-based shape memory alloy refined by an in situ LaB6/Al inoculant,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 50(5), 2310 – 2321 (2019).CrossRef X. Liu, Q. Wang, S. Yu. Kondrat’ev, et al., “Microstructural, mechanical, and damping properties of a Cu-based shape memory alloy refined by an in situ LaB6/Al inoculant,” Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., 50(5), 2310 – 2321 (2019).CrossRef
17.
Zurück zum Zitat R. Acuna, C. M. Abreu, M. J. Cristobal, et al., “Electrochemical study of the surface metal matrix composite developed on AA2024-T351 by the friction stir process,” Corros. Eng. Sci. Technol., 54(8), 715 – 725 (2019).CrossRef R. Acuna, C. M. Abreu, M. J. Cristobal, et al., “Electrochemical study of the surface metal matrix composite developed on AA2024-T351 by the friction stir process,” Corros. Eng. Sci. Technol., 54(8), 715 – 725 (2019).CrossRef
18.
Zurück zum Zitat M. F. Zawrah, I. M. Hassab-Allah, M. H. Ata, and H. Shouib, “Effect of Si, Al2O3, and aluminum dross on sinterability and properties of Ni – Ti metal matrix composites prepared by powder metallurgy,” Mater. Res. Express, 6(9), Art. No. 096588 (2019). M. F. Zawrah, I. M. Hassab-Allah, M. H. Ata, and H. Shouib, “Effect of Si, Al2O3, and aluminum dross on sinterability and properties of Ni – Ti metal matrix composites prepared by powder metallurgy,” Mater. Res. Express, 6(9), Art. No. 096588 (2019).
19.
Zurück zum Zitat A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1–2), 27 – 32 (2016).CrossRef A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1–2), 27 – 32 (2016).CrossRef
20.
Zurück zum Zitat S. Yu. Kondrat’ev and Yu. A. Sokolov, “New approach to electron beam synthesis of powder and composite materials. Part 2. Practical results for alloy VT6,” Met. Sci. Heat Treat., 58(3–4), 165 – 169 (2016).CrossRef S. Yu. Kondrat’ev and Yu. A. Sokolov, “New approach to electron beam synthesis of powder and composite materials. Part 2. Practical results for alloy VT6,” Met. Sci. Heat Treat., 58(3–4), 165 – 169 (2016).CrossRef
21.
Zurück zum Zitat P. K., Prajapati and D. Chaira, “Fabrication and characterization of Cu – B4C metal matrix composite by powder metallurgy: Effect of B4C on microstructure, mechanical properties and electrical conductivity,” Trans. Indian Inst. Met., 72(3), 673 – 684 (2019). P. K., Prajapati and D. Chaira, “Fabrication and characterization of Cu – B4C metal matrix composite by powder metallurgy: Effect of B4C on microstructure, mechanical properties and electrical conductivity,” Trans. Indian Inst. Met., 72(3), 673 – 684 (2019).
22.
Zurück zum Zitat A. K. Bodukuri, K. Eswaraiah, K. Rajendar, and V. Sampath, “Fabrication of Al – SiC – B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties,” Perspect. Sci., 8, 428 – 431 (2016).CrossRef A. K. Bodukuri, K. Eswaraiah, K. Rajendar, and V. Sampath, “Fabrication of Al – SiC – B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties,” Perspect. Sci., 8, 428 – 431 (2016).CrossRef
23.
Zurück zum Zitat J. H. Jang and K. S. Han, “Fabrication of graphite nanofibers reinforced metal matrix composites by powder metallurgy and their mechanical and physical characteristics,” J. Compos. Mater., 41(12), 1431 – 1443 (2007).CrossRef J. H. Jang and K. S. Han, “Fabrication of graphite nanofibers reinforced metal matrix composites by powder metallurgy and their mechanical and physical characteristics,” J. Compos. Mater., 41(12), 1431 – 1443 (2007).CrossRef
24.
Zurück zum Zitat B. Subramaniam, B. Natarajan, B. Kaliyaperumal, and S. J. S. Chelladurai, “Wear behaviour of aluminium 7075-boron carbide-coconut shell fly ash reinforced hybrid metal matrix composites,” Mater. Res. Express, 6(10), Art. No. 1065d3 (2019). B. Subramaniam, B. Natarajan, B. Kaliyaperumal, and S. J. S. Chelladurai, “Wear behaviour of aluminium 7075-boron carbide-coconut shell fly ash reinforced hybrid metal matrix composites,” Mater. Res. Express, 6(10), Art. No. 1065d3 (2019).
25.
Zurück zum Zitat M. A. Chaudhry, L. Ali, K. M. Ghauri, and J. Iqbal, “Development and characterization of nanoparticle metal matrix composites: (Al 2024-SiC np),” Mater. Res. Express, 6(9), Art. No. 095032 (2019). M. A. Chaudhry, L. Ali, K. M. Ghauri, and J. Iqbal, “Development and characterization of nanoparticle metal matrix composites: (Al 2024-SiC np),” Mater. Res. Express, 6(9), Art. No. 095032 (2019).
26.
Zurück zum Zitat D. Varshney and K. Kumar, “Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization,” Ain Shams Eng. J., 12(1), 1143 – 1152 (2021).CrossRef D. Varshney and K. Kumar, “Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization,” Ain Shams Eng. J., 12(1), 1143 – 1152 (2021).CrossRef
27.
Zurück zum Zitat G. B. V. Kumar, P. P. Panigrahy, N. Suresh, et al., “Assessment of mechanical and tribological characteristics of silicon nitride reinforced aluminum metal matrix composites,” Compos. Pt. B-Eng., 175, Art. No. Unsp. 107138 (2019). G. B. V. Kumar, P. P. Panigrahy, N. Suresh, et al., “Assessment of mechanical and tribological characteristics of silicon nitride reinforced aluminum metal matrix composites,” Compos. Pt. B-Eng., 175, Art. No. Unsp. 107138 (2019).
28.
Zurück zum Zitat R. Venkatesh and S. Srinivas, “Effect of heat treatment on hardness, tensile strength and microstructure of hot and cold forged Al6061 metal matrix composites reinforced with silicon carbide particles,” Mater. Res. Express, 6(10), Art. No. 106563 (2019). R. Venkatesh and S. Srinivas, “Effect of heat treatment on hardness, tensile strength and microstructure of hot and cold forged Al6061 metal matrix composites reinforced with silicon carbide particles,” Mater. Res. Express, 6(10), Art. No. 106563 (2019).
29.
Zurück zum Zitat S. Roseline and V. Paramasivam, “Corrosion behaviour of heat treated Aluminium Metal Matrix composites reinforced with Fused Zirconia Alumina 40,” J. Alloys Compd., 799, 205 – 215 (2019).CrossRef S. Roseline and V. Paramasivam, “Corrosion behaviour of heat treated Aluminium Metal Matrix composites reinforced with Fused Zirconia Alumina 40,” J. Alloys Compd., 799, 205 – 215 (2019).CrossRef
30.
Zurück zum Zitat K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, et al., “Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study,” J. Mater. Process. Technol., 142(3), 738 – 743 (2003).CrossRef K. M. Shorowordi, T. Laoui, A. S. M. A. Haseeb, et al., “Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study,” J. Mater. Process. Technol., 142(3), 738 – 743 (2003).CrossRef
31.
Zurück zum Zitat V. Mahesh Kumar and C. V. Venkatesh, “Effect of ceramic reinforcement on mechanical properties of aluminum matrix composites produced by stir casting process,” Mater. Today: Proc., 5(1), Pt. 3, 2466 – 2473 (2018). V. Mahesh Kumar and C. V. Venkatesh, “Effect of ceramic reinforcement on mechanical properties of aluminum matrix composites produced by stir casting process,” Mater. Today: Proc., 5(1), Pt. 3, 2466 – 2473 (2018).
Metadaten
Titel
Effect of Reinforcement with Ceramic Microparticles on Structure and Properties of Composites with an Aluminum Matrix
verfasst von
Mohammad Hamza
Subrata Mondal
Publikationsdatum
07.09.2022
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 3-4/2022
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-022-00778-x

Weitere Artikel der Ausgabe 3-4/2022

Metal Science and Heat Treatment 3-4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.