Skip to main content
Erschienen in: Metal Science and Heat Treatment 3-4/2022

07.09.2022 | ADDITIVE TECHNOLOGIES, POWDER AND COMPOSITE MATERIALS

Microstructure and Properties of Powder Composites with Aluminum Matrix Reinforced with Carbon Nanomaterials

verfasst von: Utpal Kumar Roy, Subrata Mondal

Erschienen in: Metal Science and Heat Treatment | Ausgabe 3-4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure and properties of powder composites with an aluminum matrix reinforced with carbon materials of two types, i.e., nanotubes (CNT) and nanofibers (CNF), in an amount of 0.5 – 1.5 wt.% are studied. Composite microstructure is analyzed using optical and scanning electron microscopy. It is shown that hardness, compressive strength, and wear resistance of the nanocomposites increase with weight CNT and CNF fraction due to grain refinement and uniform nanoparticle distribution within the matrix. Reinforcement with CNT is more effective.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. T. Liu, L. W. Yang, and S. Han, “Research progress on micro- mechanical property of continuous fiber-reinforced ceramic matrix composites,” J. Inorg. Mater., 33(7), 711 – 720 (2018).CrossRef H. T. Liu, L. W. Yang, and S. Han, “Research progress on micro- mechanical property of continuous fiber-reinforced ceramic matrix composites,” J. Inorg. Mater., 33(7), 711 – 720 (2018).CrossRef
2.
Zurück zum Zitat H. Fernandez, S. Ordonez, H. Pesenti, et al., “Microstructure homogeneity of milled aluminum A356–Si3N4 metal matrix composite powders,” J. Mater. Res. Technol., 8(3), 2969 – 2977 (2019).CrossRef H. Fernandez, S. Ordonez, H. Pesenti, et al., “Microstructure homogeneity of milled aluminum A356–Si3N4 metal matrix composite powders,” J. Mater. Res. Technol., 8(3), 2969 – 2977 (2019).CrossRef
3.
Zurück zum Zitat X. Y. Pei,W. Han, G. Ding, et al., “Temperature effects on structural integrity of fiber-reinforced polymer matrix composites: A review,” J. Appl. Polym. Sci., 136(45), Art. No. 48206 (2019). X. Y. Pei,W. Han, G. Ding, et al., “Temperature effects on structural integrity of fiber-reinforced polymer matrix composites: A review,” J. Appl. Polym. Sci., 136(45), Art. No. 48206 (2019).
4.
Zurück zum Zitat G. B. V. Kumar, P. P. Panigrahy, N. Suresh, et al., “Assessment of mechanical and tribological characteristics of silicon nitride reinforced aluminum metal matrix composites,” Compos. Part B-Eng., 175, Art. No. Unsp 107138 (2019). G. B. V. Kumar, P. P. Panigrahy, N. Suresh, et al., “Assessment of mechanical and tribological characteristics of silicon nitride reinforced aluminum metal matrix composites,” Compos. Part B-Eng., 175, Art. No. Unsp 107138 (2019).
5.
Zurück zum Zitat N. M. Chelliah, P. Pambannan, and M. K. Surappa, “Effects of processing conditions on solidification characteristics and mechanical properties of in situ magnesium metal matrix composites derived from polysilazane precursor,” J. Compos. Mater., 53(26–27), 3741 – 3755 (2019).CrossRef N. M. Chelliah, P. Pambannan, and M. K. Surappa, “Effects of processing conditions on solidification characteristics and mechanical properties of in situ magnesium metal matrix composites derived from polysilazane precursor,” J. Compos. Mater., 53(26–27), 3741 – 3755 (2019).CrossRef
6.
Zurück zum Zitat H. Zhou, P. Yao, T. Gong, et al., “Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites,” Tribol. Int., 138, 380 – 391 (2019).CrossRef H. Zhou, P. Yao, T. Gong, et al., “Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites,” Tribol. Int., 138, 380 – 391 (2019).CrossRef
7.
Zurück zum Zitat A. Agrawal and R. Mirzaeifar, “Graphene-nickel interaction in layered metal-matrix composites,” Surf. Sci., 688, 1 – 6 (2019).CrossRef A. Agrawal and R. Mirzaeifar, “Graphene-nickel interaction in layered metal-matrix composites,” Surf. Sci., 688, 1 – 6 (2019).CrossRef
8.
Zurück zum Zitat G. Korznikova, K. S. Nazarov, R. Khisamov, et al., “Intermetallic growth kinetics and microstructure evolution in Al–Cu–Al metal-matrix composite processed by high pressure torsion,” Mater. Lett., 253, 412 – 415 (2019).CrossRef G. Korznikova, K. S. Nazarov, R. Khisamov, et al., “Intermetallic growth kinetics and microstructure evolution in Al–Cu–Al metal-matrix composite processed by high pressure torsion,” Mater. Lett., 253, 412 – 415 (2019).CrossRef
9.
Zurück zum Zitat S. V. Sujith and R. S. Mulik, “Thermal history analysis and structure-property validation of friction stir welded Al-7079– TiC in-situ metal matrix composites,” J. Alloy Compd., 812, Art. No. Unsp 152131 (2020). S. V. Sujith and R. S. Mulik, “Thermal history analysis and structure-property validation of friction stir welded Al-7079– TiC in-situ metal matrix composites,” J. Alloy Compd., 812, Art. No. Unsp 152131 (2020).
10.
Zurück zum Zitat S. Marimuthu, L. Dunleavey, Y. Liu, et al., “Water-jet guided laser drilling of SiC reinforced aluminium metal matrix composites,” J. Compos. Mater., 53(26–27), 3787 – 3796 (2019).CrossRef S. Marimuthu, L. Dunleavey, Y. Liu, et al., “Water-jet guided laser drilling of SiC reinforced aluminium metal matrix composites,” J. Compos. Mater., 53(26–27), 3787 – 3796 (2019).CrossRef
11.
Zurück zum Zitat M. Ravikumar, H. N. Reddappa, and R. Suresh, “Study on mechanical and tribological characterization of Al 2O3SiCp reinforced aluminum metal matrix composite,” Silicon, 10(6), 2535 – 2545 (2018).CrossRef M. Ravikumar, H. N. Reddappa, and R. Suresh, “Study on mechanical and tribological characterization of Al 2O3SiCp reinforced aluminum metal matrix composite,” Silicon, 10(6), 2535 – 2545 (2018).CrossRef
12.
Zurück zum Zitat B. Munisamy, V. R. B. Madhavan, E. Chinnadurai, and J. Janardhanan, “Prediction of mechanical properties of Al6061 metal matrix composites reinforced with zircon sand and boron carbide,” Mater. Test., 61(6), 537 – 542 (2019).CrossRef B. Munisamy, V. R. B. Madhavan, E. Chinnadurai, and J. Janardhanan, “Prediction of mechanical properties of Al6061 metal matrix composites reinforced with zircon sand and boron carbide,” Mater. Test., 61(6), 537 – 542 (2019).CrossRef
13.
Zurück zum Zitat R. Raj and D. G. Thakur, “Effect of particle size and volume fraction on the strengthening mechanisms of boron carbide reinforced aluminum metal matrix composites,” P. I. Mech. Eng. C-J. Mec., 233(4), 1345 – 1356 (2019).CrossRef R. Raj and D. G. Thakur, “Effect of particle size and volume fraction on the strengthening mechanisms of boron carbide reinforced aluminum metal matrix composites,” P. I. Mech. Eng. C-J. Mec., 233(4), 1345 – 1356 (2019).CrossRef
14.
Zurück zum Zitat C. A. I. Merino, J. E. L. Sillas, J. M. Meza, and J. M. H. Ramirez, “Metal matrix composites reinforced with carbon nanotubes by an alternative technique,” J. Alloy Compd., 707, 257 – 263 (2017).CrossRef C. A. I. Merino, J. E. L. Sillas, J. M. Meza, and J. M. H. Ramirez, “Metal matrix composites reinforced with carbon nanotubes by an alternative technique,” J. Alloy Compd., 707, 257 – 263 (2017).CrossRef
15.
Zurück zum Zitat J. H. Jang and K. S. Han, “Fabrication of graphite nanofibers reinforced metal matrix composites by powder metallurgy and their mechanical and physical characteristics,” J. Compos. Mater., 41(12), 1431 – 1443 (2007).CrossRef J. H. Jang and K. S. Han, “Fabrication of graphite nanofibers reinforced metal matrix composites by powder metallurgy and their mechanical and physical characteristics,” J. Compos. Mater., 41(12), 1431 – 1443 (2007).CrossRef
16.
Zurück zum Zitat S. Yin, Z. Zhang, E. J. Ekoi, et al., “Novel cold spray for fabricating graphene-reinforced metal matrix composites,” Mater. Lett., 196, 172 – 175 (2017).CrossRef S. Yin, Z. Zhang, E. J. Ekoi, et al., “Novel cold spray for fabricating graphene-reinforced metal matrix composites,” Mater. Lett., 196, 172 – 175 (2017).CrossRef
17.
Zurück zum Zitat M. Megahed, M. A. Attia, M. Abdelhameed, and A. G. El-Shafei, “Tribological characterization of hybrid metal matrix composites processed by powder metallurgy,” Acta Metall. Sin-Engl., 30(8), 781 – 790 (2017).CrossRef M. Megahed, M. A. Attia, M. Abdelhameed, and A. G. El-Shafei, “Tribological characterization of hybrid metal matrix composites processed by powder metallurgy,” Acta Metall. Sin-Engl., 30(8), 781 – 790 (2017).CrossRef
18.
Zurück zum Zitat Yu. A. Sokolov, N. V. Pavlushin, and S. Yu. Kondrat’ev, “New additive technologies based on ion beams,” Russ. Eng. Res., 36(12), 1012 – 1016 (2016).CrossRef Yu. A. Sokolov, N. V. Pavlushin, and S. Yu. Kondrat’ev, “New additive technologies based on ion beams,” Russ. Eng. Res., 36(12), 1012 – 1016 (2016).CrossRef
19.
Zurück zum Zitat A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1–2), 27 – 32 (2016).CrossRef A. I. Rudskoy, S. Yu. Kondrat’ev, and Yu. A. Sokolov, “New approach to synthesis of powder and composite materials by electron beam. Part 1. Technological features of the process,” Met. Sci. Heat Treat., 58(1–2), 27 – 32 (2016).CrossRef
20.
Zurück zum Zitat R. Acuna, C. M. Abreu, M. J. Cristobal, et al., “Electrochemical study of the surface metal matrix composite developed on AA2024-T351 by the friction stir process,” Corros. Eng. Sci. Techn., 54(8), 715 – 725 (2019).CrossRef R. Acuna, C. M. Abreu, M. J. Cristobal, et al., “Electrochemical study of the surface metal matrix composite developed on AA2024-T351 by the friction stir process,” Corros. Eng. Sci. Techn., 54(8), 715 – 725 (2019).CrossRef
21.
Zurück zum Zitat Y. L. Cheng, Z. H. Chen, H. L. Wu, and H. M. Wang, “The corrosion behaviour of the aluminum alloy 7075SiCp metal matrix composite prepared by spray deposition,” Mater. Corros., 58(4), 280 – 284 (2007).CrossRef Y. L. Cheng, Z. H. Chen, H. L. Wu, and H. M. Wang, “The corrosion behaviour of the aluminum alloy 7075SiCp metal matrix composite prepared by spray deposition,” Mater. Corros., 58(4), 280 – 284 (2007).CrossRef
22.
Zurück zum Zitat R. Casati and M. Vedani, “Metal matrix composites reinforced by nano-particles – A review,” Metals, 4(1), 65 – 83 (2014).CrossRef R. Casati and M. Vedani, “Metal matrix composites reinforced by nano-particles – A review,” Metals, 4(1), 65 – 83 (2014).CrossRef
23.
Zurück zum Zitat Q. Lu, G. Keskar, R. Ciocan, et al., “Determination of carbon nanotube density by gradient sedimentation,” J. Phys. Chem. B, 110(48), 24371 – 24376 (2006).CrossRef Q. Lu, G. Keskar, R. Ciocan, et al., “Determination of carbon nanotube density by gradient sedimentation,” J. Phys. Chem. B, 110(48), 24371 – 24376 (2006).CrossRef
24.
Zurück zum Zitat L. Guadagno, M. Raimondo, V. Vittoria, et al., “The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins,” Nanotechnology, 24(30), Art. No. 305704 (2013). L. Guadagno, M. Raimondo, V. Vittoria, et al., “The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins,” Nanotechnology, 24(30), Art. No. 305704 (2013).
25.
Zurück zum Zitat K. Bandil, H. Vashisth, S. Kumar, et al., “Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite,” J. Compos. Mater., 53(28–30), 4215 – 4223 (2019).CrossRef K. Bandil, H. Vashisth, S. Kumar, et al., “Microstructural, mechanical and corrosion behaviour of Al–Si alloy reinforced with SiC metal matrix composite,” J. Compos. Mater., 53(28–30), 4215 – 4223 (2019).CrossRef
26.
Zurück zum Zitat P. K. Prajapati and D. Chaira, “Fabrication and characterization of Cu–B4C metal matrix composite by powder metallurgy: Effect of B4C on microstructure, mechanical properties and electrical conductivity,” T. Indian I. Metals, 72(3), 673 – 684 (2019).CrossRef P. K. Prajapati and D. Chaira, “Fabrication and characterization of Cu–B4C metal matrix composite by powder metallurgy: Effect of B4C on microstructure, mechanical properties and electrical conductivity,” T. Indian I. Metals, 72(3), 673 – 684 (2019).CrossRef
27.
Zurück zum Zitat M. F. Zawrah, I. M. Hassab-Allah, M. H. Ata, and H. Shouib, “Effect of Si, Al2O3, and aluminum dross on sinterability and properties of Ni-Ti metal matrix composites prepared by powder metallurgy,” Mater. Res. Express, 6(9), Art. No. 096588 (2019). M. F. Zawrah, I. M. Hassab-Allah, M. H. Ata, and H. Shouib, “Effect of Si, Al2O3, and aluminum dross on sinterability and properties of Ni-Ti metal matrix composites prepared by powder metallurgy,” Mater. Res. Express, 6(9), Art. No. 096588 (2019).
28.
Zurück zum Zitat K. J. Joshua, S. J. Vijay, and D. P. Selvaraj, “Effect of nano TiO2 particles on microhardness and microstructural behavior of AA7068 metal matrix composites,” Ceram. Int., 44(17), 20774 – 20781 (2018).CrossRef K. J. Joshua, S. J. Vijay, and D. P. Selvaraj, “Effect of nano TiO2 particles on microhardness and microstructural behavior of AA7068 metal matrix composites,” Ceram. Int., 44(17), 20774 – 20781 (2018).CrossRef
29.
Zurück zum Zitat N. Radhika, S. Thirumalini, and A. Shivashankar, “Investigation on mechanical and adhesive wear behavior of centrifugally cast functionally graded copper SiC metal matrix composite,” T. Indian I. Metals, 71(6), 1310 – 1321 (2018). N. Radhika, S. Thirumalini, and A. Shivashankar, “Investigation on mechanical and adhesive wear behavior of centrifugally cast functionally graded copper SiC metal matrix composite,” T. Indian I. Metals, 71(6), 1310 – 1321 (2018).
30.
Zurück zum Zitat M. K. Singh and R. K. Gautam, “Structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites,” J. Mater. Eng. Perform., 28(2), 886 – 899 (2019).CrossRef M. K. Singh and R. K. Gautam, “Structural, mechanical, and electrical behavior of ceramic-reinforced copper metal matrix hybrid composites,” J. Mater. Eng. Perform., 28(2), 886 – 899 (2019).CrossRef
31.
Zurück zum Zitat F. Kelen, M. Gavgali, and T. Aydogmus, “Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite,” Mater. Lett., 233, 12 – 15 (2018).CrossRef F. Kelen, M. Gavgali, and T. Aydogmus, “Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite,” Mater. Lett., 233, 12 – 15 (2018).CrossRef
32.
Zurück zum Zitat L. Reinert, I. Green, S. Gimmler, et al., “Tribological behavior of self-lubricating carbon nanoparticle reinforced metal matrix composites,” Wear, 408, 72 – 85 (2018).CrossRef L. Reinert, I. Green, S. Gimmler, et al., “Tribological behavior of self-lubricating carbon nanoparticle reinforced metal matrix composites,” Wear, 408, 72 – 85 (2018).CrossRef
33.
Zurück zum Zitat Y. D. Sui, L. N. Han, Y. H. Jiang, et al., “Effects of Ni60WC25 powder content on the microstructure and wear properties of WCp reinforced surface metal matrix composites,” T. Indian I. Metals, 71(10), 2415 – 2422 (2018).CrossRef Y. D. Sui, L. N. Han, Y. H. Jiang, et al., “Effects of Ni60WC25 powder content on the microstructure and wear properties of WCp reinforced surface metal matrix composites,” T. Indian I. Metals, 71(10), 2415 – 2422 (2018).CrossRef
34.
Zurück zum Zitat G. B. V. Kumar, P. P. Panigrahy, N. Suresh, et al., “Assessment of mechanical and tribological characteristics of silicon nitride reinforced aluminum metal matrix composites,” Compos. Part B-Eng., 175, Art. No. Unsp. 107138 (2019). G. B. V. Kumar, P. P. Panigrahy, N. Suresh, et al., “Assessment of mechanical and tribological characteristics of silicon nitride reinforced aluminum metal matrix composites,” Compos. Part B-Eng., 175, Art. No. Unsp. 107138 (2019).
35.
Zurück zum Zitat R. Raj and D. G. Thakur, “Influence of boron carbide content on the microstructure, tensile strength and fracture behavior of boron carbide reinforced aluminum metal matrix composites,” Materialwiss. Werkst., 49(9), 1068 – 1080 (2018).CrossRef R. Raj and D. G. Thakur, “Influence of boron carbide content on the microstructure, tensile strength and fracture behavior of boron carbide reinforced aluminum metal matrix composites,” Materialwiss. Werkst., 49(9), 1068 – 1080 (2018).CrossRef
36.
Zurück zum Zitat A. S. Smirnov, V. P. Shveikin, E. O. Smirnova, et al., “Effect of silicon carbide particles on the mechanical and plastic properties of the AlMg6/10% SiC metal matrix composite,” J. Compos. Mater., 52(24), 3351 – 3363 (2018).CrossRef A. S. Smirnov, V. P. Shveikin, E. O. Smirnova, et al., “Effect of silicon carbide particles on the mechanical and plastic properties of the AlMg6/10% SiC metal matrix composite,” J. Compos. Mater., 52(24), 3351 – 3363 (2018).CrossRef
Metadaten
Titel
Microstructure and Properties of Powder Composites with Aluminum Matrix Reinforced with Carbon Nanomaterials
verfasst von
Utpal Kumar Roy
Subrata Mondal
Publikationsdatum
07.09.2022
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 3-4/2022
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-022-00777-y

Weitere Artikel der Ausgabe 3-4/2022

Metal Science and Heat Treatment 3-4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.