Skip to main content
Erschienen in: Metal Science and Heat Treatment 3-4/2022

07.09.2022

Effect of Heat Treatment on Alloy GH901 Microstructure and Mechanical Properties

verfasst von: Rui Ma, Lulu Li, Ruixue Zhai, Xiagnan Meng, Jun Zhao

Erschienen in: Metal Science and Heat Treatment | Ausgabe 3-4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Processes occurring within heat-resistant alloy GH901 based on the Fe – 43Ni – 12Cr system during hot pressing performed with different rates at 990 – 1140°C are studied. Morphology, grain size, and secondary phase inclusion distribution are determined. Evolution of the alloy microstructure and of mechanical property variation are analyzed after different heat treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jianting Guo, High Temperature Alloy Materials Science, Science Press, Beijing (2008). Jianting Guo, High Temperature Alloy Materials Science, Science Press, Beijing (2008).
2.
Zurück zum Zitat S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat., 57(7–8), 402–409 (2015).CrossRef S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy,” Met. Sci. Heat Treat., 57(7–8), 402–409 (2015).CrossRef
3.
Zurück zum Zitat Fuwei Kang, “Hot deformation behavior and aging characteristics of jet forming GH742Y alloy,” J. Harbin Inst. Technol., 39, 1–16 (2007). Fuwei Kang, “Hot deformation behavior and aging characteristics of jet forming GH742Y alloy,” J. Harbin Inst. Technol., 39, 1–16 (2007).
4.
Zurück zum Zitat V. I. Gorynin, S. Yu. Kondrat’ev, and M. I. Olenin, “Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase,” Met. Sci. Heat Treat., 55(9–10), 533–539 (2014).CrossRef V. I. Gorynin, S. Yu. Kondrat’ev, and M. I. Olenin, “Raising the resistance of pearlitic and martensitic steels to brittle fracture under thermal action on the morphology of the carbide phase,” Met. Sci. Heat Treat., 55(9–10), 533–539 (2014).CrossRef
5.
Zurück zum Zitat V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A Concept of carbide design of steels with improved cold resistance,” Met. Sci. Heat Treat., 56(9–10), 548–554 (2015).CrossRef V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “A Concept of carbide design of steels with improved cold resistance,” Met. Sci. Heat Treat., 56(9–10), 548–554 (2015).CrossRef
6.
Zurück zum Zitat Jintong Chen, Haiqing Jiang, Huiyi Pan, et al., “Effect of heat treatment process on microstructure and properties of GH4169 alloy,” Iron Steel Vanadium Titanium, 6, 168–172 (2018). Jintong Chen, Haiqing Jiang, Huiyi Pan, et al., “Effect of heat treatment process on microstructure and properties of GH4169 alloy,” Iron Steel Vanadium Titanium, 6, 168–172 (2018).
7.
Zurück zum Zitat Binghong Pei, “Effect of heat treatment system on microstructure distribution of carbide in GH605 alloy,” Special Steel Technol., 01, 4–11 (2017). Binghong Pei, “Effect of heat treatment system on microstructure distribution of carbide in GH605 alloy,” Special Steel Technol., 01, 4–11 (2017).
8.
Zurück zum Zitat Wei Hu, “Effect of different heat treatment regimes on microstructure and hardness properties of GH4169 alloy sheet,” Baosteel Technol., 3, 36–42 (2018). Wei Hu, “Effect of different heat treatment regimes on microstructure and hardness properties of GH4169 alloy sheet,” Baosteel Technol., 3, 36–42 (2018).
9.
Zurück zum Zitat Ding Tiansheng, Zhang Xiancheng, Xu Shandong, et al., “Effect of heat treatment on microstructure and low cycle fatigue performance of GH4169 alloy at 650°C,” Trans. Mater. Heat Treat., 37(4), 69–75 (2016). Ding Tiansheng, Zhang Xiancheng, Xu Shandong, et al., “Effect of heat treatment on microstructure and low cycle fatigue performance of GH4169 alloy at 650°C,” Trans. Mater. Heat Treat., 37(4), 69–75 (2016).
10.
Zurück zum Zitat Bao Gong, Yang Li, and Mohua Cheng, “Effect of solution treatment on microstructure and mechanical properties of forged 800H alloy,” Heat Treat. Metal., 6, 148–152 (2018). Bao Gong, Yang Li, and Mohua Cheng, “Effect of solution treatment on microstructure and mechanical properties of forged 800H alloy,” Heat Treat. Metal., 6, 148–152 (2018).
11.
Zurück zum Zitat Jiajia Yan, Hongping An, “Study on austenite grain growth of forged 2.25Cr – 1Mo – 0.25V steel,” Heavy Cast. Forg., 4, 23–26 (2013). Jiajia Yan, Hongping An, “Study on austenite grain growth of forged 2.25Cr – 1Mo – 0.25V steel,” Heavy Cast. Forg., 4, 23–26 (2013).
12.
Zurück zum Zitat Wenzhu Zhang, Zhoufeng Xu, and Li Jiang, “Effect of solution heat treatment on microstructure and properties of GH3535 alloy,” Rare Metal Mat. Eng., 6, 1583–1587 (2016). Wenzhu Zhang, Zhoufeng Xu, and Li Jiang, “Effect of solution heat treatment on microstructure and properties of GH3535 alloy,” Rare Metal Mat. Eng., 6, 1583–1587 (2016).
13.
Zurück zum Zitat Weihu Zeng, Xiaoming Zhou, Bo Fang, et al., “Effect of solution treatment temperature on microstructure and properties of GH738 alloy,” Foundry Technol., 5, 500–503 (2019). Weihu Zeng, Xiaoming Zhou, Bo Fang, et al., “Effect of solution treatment temperature on microstructure and properties of GH738 alloy,” Foundry Technol., 5, 500–503 (2019).
14.
Zurück zum Zitat Jingling Zhang, “Effect of δ on microstructure evolution and properties of GH4169 alloy,” Trans. Tianjin Univ., 22(6), 493 – 501 (2016).CrossRef Jingling Zhang, “Effect of δ on microstructure evolution and properties of GH4169 alloy,” Trans. Tianjin Univ., 22(6), 493 – 501 (2016).CrossRef
15.
Zurück zum Zitat Zhiwei Huang, Fuhe Yuan, Zhongguang Wang, et al., “High temperature and low cycle fatigue properties and fracture mechanism of M38 nickel-based superalloy,” Acta Metall. Sinica, 43(10), 1025–1030 (2007). Zhiwei Huang, Fuhe Yuan, Zhongguang Wang, et al., “High temperature and low cycle fatigue properties and fracture mechanism of M38 nickel-based superalloy,” Acta Metall. Sinica, 43(10), 1025–1030 (2007).
Metadaten
Titel
Effect of Heat Treatment on Alloy GH901 Microstructure and Mechanical Properties
verfasst von
Rui Ma
Lulu Li
Ruixue Zhai
Xiagnan Meng
Jun Zhao
Publikationsdatum
07.09.2022
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 3-4/2022
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-022-00784-z

Weitere Artikel der Ausgabe 3-4/2022

Metal Science and Heat Treatment 3-4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.